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Understanding how intraspecies divergence results in speciation has great importance
for our knowledge of evolutionary biology. Here we applied population genomics
approaches to a fig wasp species (Valisia javana complex sp 1) to reveal its intraspecies
differentiation and the underlying evolutionary dynamics. With re-sequencing data, we
prove the Hainan Island population (DA) of sp1 genetically differ from the continental
ones, then reveal the differed divergence pattern. DA has reduced SNP diversity but a
higher proportion of population-specific structural variations (SVs), implying a restricted
gene exchange. Based on SNPs, 32 differentiated islands containing 204 genes were
detected, along with 1,532 population-specific SVs of DA overlapping 4,141 genes.
The gene ontology (GO) enrichment analysis performed on differentiated islands linked
to three significant GO terms on a basic metabolism process, with most of the genes
failing to enrich. In contrast, population-specific SVs contributed more to the adaptation
than the SNPs by linking to 59 terms that are crucial for wasp speciation, such as
host reorganization and development regulation. In addition, the generalized dissimilarity
modeling confirms the importance of environment difference on the genetic divergence
within sp1. Hence, we assume the genetic divergence between DA and the continent
due to not only the strait as a geographic barrier, but also adaptation. We reconstruct the
demographic history within sp1. DA shares a similar population history with the nearby
continental population, suggesting an incomplete divergence. Summarily, our results
reveal how geographic barriers and adaptation both influence the genetic divergence
at population-level, thereby increasing our knowledge on the potential speciation of
non-model organisms.

Keywords: genetic divergence, adaptation, geographic barrier, population genetics, Ficus hirta, Valisia javana

INTRODUCTION

The origination of new species usually starts from intraspecies diversity and population subdivision.
The division of one population into several descendances generally occurs. Several hypotheses were
proposed to explain the evolutionary dynamics driving the descendant populations into new species
such as adaptation (Martin et al., 2013), chromosomal structure variant (Korunes et al., 2021), and

Abbreviations: DEL, deletions; DUP, duplications; GO, gene ontology; INS, insertions; INV, inversions; ML, maximum
likelihood; Ne, effective population size; PCA, principal component analysis; SNP, single-nucleotide polymorphisms; SV,
structural variation; TRA, translocations; UTR, untranslated region; VOCs, volatile organic compounds; ya, years ago.
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absence of gene flow (Hill et al., 2021). However, the intraspecies
divergence, which is the very beginning of speciation, has
received much less attention than fully separated species.

Fig trees (Ficus, Moraceae) and fig wasp (Hymenoptera:
Chalcidoidea: Agaonidae) form a specialized co-evolution
system, containing the most complex speciation processes (Herre
et al., 2008; Bronstein, 2009; Cruaud et al., 2012). Female fig
wasps exclusively recognize the host fig tree for oviposition.
The host tree, on the other hand, provides their ovules as food
for the larvae and urn-shaped inflorescences (figs) as a mating
environment for the adults. When the new wasp generation
finish mating, they are ready to disperse. The stamens mature
simultaneously and stain the pollen on the wasps when they
leave. Thus, the wasps transfer pollen to other trees when entering
figs. For successful oviposition, wasps must specifically recognize
the volatile organic compounds (VOCs) of the host, and match
the narrow entrance (i.e., ostiole) of enclosed fig (Berg, 1989;
Bronstein and McKey, 1989; Borges, 2015; Chen Y. et al., 2016).
Hence, morphologically distinguished figs are usually pollinated
by distinct genera (Ramirez, 1970; Cruaud et al., 2012). For the
fig tree, successful pollination depends on the strictly consistent
life cycle with the wasp (Bronstein, 1988; Anstett et al., 1997;
Cook and Rasplus, 2003). Therefore, the fig tree and fig wasp
had long been considered as a co-evolution system. That is to
say, one fig wasp species inhabits in one particular fig species,
and one fig species is only pollinated by one particular fig
wasp species. Early molecular phylogenetic evidence supports
the co-divergence of fig trees and fig wasp (Weiblen, 2002;
Ronsted et al., 2005). However, recently studies have proven
that the speciation of wasps seems out of step with the host.
Multiple pollinator wasps were found co-existing in a single
host species (Darwell et al., 2014; Yang et al., 2015; Darwell and
Cook, 2017; Yu et al., 2019). Those wasps are genetically and
morphologically distinct. The phylogeny among those species
is complex, including populations under different phases of
speciation and fully separated new species (Liu et al., 2013; Tian
et al., 2015; Souto-Vilaros et al., 2019). One explanation is that the
insects have much shorter longevity than trees (Petit and Hampe,
2006; Thomas et al., 2010). For instance, when a reduce of gene
flow has led to divergence in the wasp after many generations, the
host tree population is still probably in one generation without
any genetic differentiation. The adaptation to different niches
is an alternative hypothesis for the rapid speciation (Darwell
and Cook, 2017), accompanied by others such as geographical
isolation (Liu et al., 2013), hybridization (Renoult et al., 2009),
host switching (Cruaud et al., 2012; Wang et al., 2021), and
pollinator sharing (Bernard et al., 2020).

Ficus hirta Vahl. is a wide-spread species with the most varied
pollinator wasps, Valisia javana Mayr (Wiebes, 1993; Yu et al.,
2019). Recently, analysis based on neutral gene markers and
microsatellites proved V. javana to be a complex including nine
cryptic species (referred as sp1–sp9) (Yu et al., 2019). The sp1
is also in the process of divergence: the population on Hainan
Island, China presents genetic differences from those of southeast
Asia (Tian et al., 2015; Yu et al., 2019). However, whole-genome
level analysis on fig wasps, especially on V. javana complex,
is still rare. The previous studies are based on relatively few

genetic markers, insufficient for revealing genome-wide pattern
and detecting the evolutionary dynamics within sp1.

Analysis of whole-genome re-sequencing data mainly focused
on single-nucleotide polymorphism (SNPs); other types of
variants such as structural variations have long been ignored
(Feuk et al., 2006; Frazer et al., 2009; Eichler et al., 2010).
Structural variation (SV) is a major source of genomic variations
affecting large regions (here defined as more than 50 bp),
including deletions (DEL), insertions (INS), inversions (INV),
duplications (DUP), and translocations (TRA) (Feuk et al., 2006;
Wellenreuther et al., 2019; Ho et al., 2020). The evolutionary
importance of SVs is proven in multiple species such as Atlantic
salmon (Bertolotti et al., 2020), domesticated crop (Gaut et al.,
2018), and the Corvus genus (Weissensteiner et al., 2020).
Nevertheless, knowledge about their evolutionary contributions
remains limited.

Here, we take sp1 of the V. javana complex as an example,
and combine both SNPs and SVs to detect its intraspecies genetic
divergence. To be specific, we ask: (1) do the Hainan and
continental populations of sp1, differ genetically at the whole-
genome level and (2) whether the variation patterns differ among
populations? Hainan island is divided from the continent by
Qiongzhou Strait and is under a tropical maritime climate, while
the continental habitats of sp1 are mainly under a subtropical
continental monsoon climate. Hence, we have interest in the
effect of the physical barrier caused by Qiongzhou Strait and
local adaptation caused by environmental difference. Finally, we
reconstruct the population-level demographic history within sp1
to realize the divergent process.

MATERIALS AND METHODS

Sampling, DNA Extraction and
Sequencing
From 2006 to 2014, we sampled figs containing mature fig wasps
across Southeast Asia. See Figure 1A is the map of sampling
locations and Table 1 provides details. Three locations were
included. One is from Hainan Island (DA) and two are from
the continent (VH and SCBG). The distances between each two
sampling locations are 822 km (SCBG-VH), 498 km (SCBG-
DA), and 532 km (VH-DA). In each location, figs were collected
from trees 3–5 m away from each other. We chose 10–30 figs
from each site and sealed them individually in fine-mesh bags
under ambient temperature until the mature wasps emerge. The
sp1 wasps were identified and collected, then preserved in 95%
ethanol under −20◦C until DNA extraction. The DNA pool
of each sample were created for all mature female wasps in a
single fig by mixing extraction of genomic DNA. We finally
obtained 26 samples for DNA extraction. Genomic DNA was
extracted following the method outlined in a previous study
(Tian et al., 2015). The genomic DNA was fragmented with the
S220 Ultrasonic Processor (Covaris, United States). After end
repairing and phosphorylating, common adapters were ligated
to the fragments for denaturing and amplifying. The prepared
libraries were sequenced with the Illumina HiSeq2500 (Illumina,
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FIGURE 1 | (A) Sampling locations. Sampling sites are Vinh Yen, Vietnam (VH, dark red); Hainan Island, China (DA, red); and Guangzhou, China (SCBG, pink). The
map is constructed by R package maps 3.3.0 (Becker et al., 2018). (B) Principal component analyses (PCA) based on SNPs for populations. (C) Maximum
likelihood (ML) tree based on SNPs. The bootstraps are indicated with blue spots. Population codes and color scheme for genetic groups is the same in (A–C).

TABLE 1 | Sample list and statistic of variants.

Sampling
locations

Code Latitude Longitude Sample
number

SV
number

SNP
number

Population-specific SV number Population-specific
SV proportion

Total DEL DUP INS INV

Vinh Yen, Vietnam VH 21.467 105.581 6 584 116958 311 249 38 7 17 53.25%
Dingan, China DA 19.697 110.328 10 1811 85122 1532 1231 118 110 73 84.59%
Guangzhou, China SCBG 23.179 113.352 10 849 103354 488 405 47 14 22 57.48%

United States). The DNA extraction and library preparation were
accomplished by NovoGene Company (Beijing, China).

Calling and Filter of Single-Nucleotide
Polymorphisms
Reads were evaluated with FastQC 1.0.0 (Andrews,
2010). Adapter sequences in reads were trimmed. Reads
containing > 10% N bases or Q no more than 5 were removed.
High-quality reads were mapped with BWA-MEM (Li and
Durbin, 2011) to the sp1 genome under accession number
GWHBDGE00000000, National Genomics Data Center. After
being sorted and indexed by SAMtools (Li et al., 2009), the
BAM files were then duplicate marked and underwent base
quality recalibration with Picard Toolkit 2.17.3 (Broad Institute,
2018). The SNPs of each sample were separately called from
resulting BAM files and filtered by GATK 4.1.0.0. (McKenna
et al., 2010) with suggested parameters. The samples from the
same population were merged into a single file with BCFtools
1.2 (Danecek and McCarthy, 2017) and filtered by VCFtools

0.1.16 (Danecek et al., 2011) with parameters as follows:
10 < read depths < 100, max missing < 0.5, and minor allele
frequency > 0.03. All SNPs located within 3 bp of an InDel were
removed. Finally, SNPs of each population were merged for the
following analysis.

Genetic Structure Within sp1
To detect the intraspecies structure within sp1, we performed
principal component analysis (PCA) and maximum likelihood
(ML) tree based on SNPs. The PCA was conducted by R package
SNPRelate (Zheng et al., 2012). PCA result was visualized with
R package ggplot2 (Wickham, 2016). The phylogenetic tree was
constructed with 1,000 bootstraps by iQtree (Nguyen et al.,
2015). Command “-m MFP” was set for automatic detecting
of the optimal model of nucleotide substitution. The bootstrap
value was adjusted by command “-bnni.” The final tree was
visualized by iTOL version 5 (Letunic and Bork, 2021). Only
SNPs with minor allele frequencies more than 0.05 and with
max missing less than 0.5 were used for PCA. Only SNPs at
fourfold degenerated sites (4DTv) were used for ML tree. The
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4DTv were then filtered by minor allele frequencies more than
0.02 and with max missing less than 0.5. To test the effects
of filtering threshold setting, we ran multiple filtering with
alternative parameters as follows: max missing < 0.5 or 0.7;
without Hardy-Weinberg equilibrium (HWE) setting or HWE
with p-value > 0.0001, > 0.001, > 0.1, and > 0.5; minor
allele frequencies >0.02, 0.03, and 0.05; and minimum distance
between any two sites >1000 and >5000. All filtering was
performed with VCFtools 0.1.16 (Danecek et al., 2011).

Population Genetics Analysis
We separately calculated nucleotide diversity (π) (Nei and Li,
1979) and Tajima’s D (Tajima, 1989) of each population and
relative divergence (Fst) (Weir and Cockerham, 1984) between
each population. All calculations were performed with VCFtools
0.1.16 (Danecek et al., 2011) in non-overlap 100-kb windows.
We also estimated the linkage disequilibrium (LD) decay with
PopLDdecay (Zhang et al., 2019) in the three populations. Only
SNPs were included. To compare the diversity pattern among
populations, we firstly performed a Shapiro-Wilk test (Shapiro
and Wilk, 1965) on the data for normality in frequentist statistics.
Based on the results, the unpaired two-samples Wilcoxon rank-
sum test (Wilcoxon, 1946) was applicated among π and Tajima’s
D of each population, and among the Fst of each combination.
Wilcoxon rank-sum test is a method to inspect whether the
samples are from two populations with different medians when
their distributions are not normal. The tests were performed
respectively with “shapiro.test()” and “wilcox.test()” in R 3.6.3
(R Core Team, 2020).

Identification and Gene Ontology
Enrichment of Differentiated Islands
To identify the differentiated islands between Hainan (DA) and
continental populations (VH and SCBG), the continental ones
were merged as a single mainland population. Then we calculated
the Fst (Weir and Cockerham, 1984) between DA and mainland
in 100-kb non-overlap window with VCFtools (Danecek et al.,
2011). The results were Z-transformed with R 3.6.3 (R Core
Team, 2020). In the present study, highly differentiated islands
were defined as windows with Fst three standard deviations
from the mean (i.e., Z-Fst > 3). To assess the signatures of
selection, we compared π and Tajima’s D between the islands
and background with the same methods in 2.4. Genes of every
identified island were assigned gene ontology (GO) enrichment
analyses by Ontologize 1.0 (Bauer et al., 2008). The GO terms
were inferred from the annotation of sp1, the same reference
genome as reads mapping. GO terms with p < 0.05 were
considered significant.

Demography
MSMC2 (Schiffels and Durbin, 2014; Malaspinas et al.,
2016) was employed to reconstruct the historical change
of effective population size (Ne). MSMC2 is capable of
estimating the continuous change of Ne over time by a
Markovian approximation of the coalescent-with-recombination
process. The input SNPs were sorted and aligned by TASSEL

(Bradbury et al., 2007). SNPs with minimum frequency below
0.05 were filtered. Then Beagle 5.2 (Browning et al., 2018)
was used for genotype phasing. Nasonia (Hymenoptera:
Chalcidoidea: Pteromalidae) is a well-studied genus of
Chalcidoidea and phylogenetically close to Valisia (King,
1961; Wylie, 1965; Werren et al., 2010). The substitution rate
at silent sites of Nasonia species was about 1.4 × 10−8 per site
per year (Oliveira et al., 2008). Since mutation includes not only
substitutions but more types, the mutation rate is at least twice
higher than the substitution rate (Press et al., 2019). Thus, in
the present study, the mutation rate for sp1 was estimated as
2.8 × 10−8 per site per year. The generation time was 0.25 per
year according to our field observation. The longest seventh
contigs were used. MSMC2 estimation was carried out under
the default parameters. Four samples from each population were
chosen randomly per run. Ten independent runs were performed
separately for each population.

Calling, Statistic and Annotation of
Structural Variations
Since translocation (TRA) may involve more than one contig,
short-read data is not suitable for translocation calling. Hence in
the present study, SVs only contained deletions (DEL), insertions
(INS), inversions (INV), and tandem duplications (DUP). To
reduce noise caused by individual-specific SVs, we separately
called SVs of each population used both DELLY 0.8.3 (Rausch
et al., 2012) and Manta 1.6.0 (Chen X. et al., 2016) by respective
default parameters. The results of each population were then
merged by SURVIVOR 1.0.3 (Jeffares et al., 2017) with the
parameters “1000 2 1 0 0 30.” Thus, only SVs reported by
both software within 1000 bp were retained. The results were
sorted by BCFtools 1.10 (Danecek and McCarthy, 2017) and
indexed by GATK 4.1.6.0 (McKenna et al., 2010). The number
and types of SVs was counted with svprops built in DELLY
(Rausch et al., 2012). To reveal the divergence pattern of SVs
among populations, we extracted the population-specific SVs
by Bedtools 2.25.0 (Quinlan and Hall, 2010), then annotated
their distribution regions with snpEff 4.3 (Cingolani et al., 2012).
GO enrichment analysis was performed on genes overlapping
with every population-specific SV by the same methods as
described above.

Contributions of Environment vs.
Geographic Distance
For estimating the effects of environment and geographic
distance on the genetic distance, we applied the generalized
dissimilarity modeling (GDM) (Ferrier et al., 2007) with R
package GDM (Manion et al., 2016).

The sp1 was recently identified as a separated species within
V. javana complex (Yu et al., 2019). Hence, the habitat records
of V. javana is too vague for predicting the habitats of sp1.
To expand the sampling area, we inducted 13 reliable sampling
sites from previous studies (Tian et al., 2015; Yu et al., 2019;
Supplementary Table 1). Wasps of the 13 sites were identified as
sp1 by COI gene markers. Because of the low nucleotide diversity
within sp1, the pairwise distance is barely distinguished among
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sites. Hence, we constructed the genetic matrix with Nei’s D (Nei,
1972), which is a standardized genetic distance ranging from 0
to 1. Furthermore, for reducing the effect of the similarity of
sequences from the same population, one COI sequence was
randomly chosen from each site. Three random samplings of COI
sequences were conducted. We then separately calculated Nei’s D
based on each random sampling with “nei.dist()” in R package
poppr (Kamvar et al., 2014). Then the 19 Bioclim variables
at 2.5 m resolution (Hijmans et al., 2005; Fick and Hijmans,
2017) of the 13 sites were obtained. According to Myers et al.
(2019), nine of the 19 variables have a low correlation between
variables (<0.7). Those are BIO1 (Annual Mean Temperature),
BIO2 (Mean Diurnal Range), BIO3 (Isothermality), BIO4
(Temperature Seasonality), BIO8 (Mean Temperature of Wettest
Quarter), BIO9 (Mean Temperature of Driest Quarter), BIO12
(Annual Precipitation), BIO14 (Precipitation of Driest Month),
and BIO15 (Precipitation Seasonality). We thus only used the
nine variables to present environmental differences. In the
GDM, we set the genetic distance as the response variable, and
respectively set three independent variables: (1) environment
differences and geographic distance, (2) environment differences
only, and (3) geographic distance only. The most fitted model and
the variable importance were quantified with “gdm.varImp()”
in the GDM package. The “gdm.varImp()” returns percent
deviance were explained and the p-value was fitted for each
model. The model with p < 0.01 and highest explained percent
deviance was considered as the most suitable for estimating
the variable importance and variable significance. We further
used MaxEnt 3.4.1 (Phillips et al., 2006) to evaluate the most
important environment variables based on all the 19 Bioclim
variables. MaxEnt is capable of parsing the contributions of
each variable regardless of their correlation (Elith et al., 2011;
Myers et al., 2019). The analysis was set with 10 replicates,
with 25% of samples as the training data. Receiver operating
characteristic curve (ROC) (or area under curve, AUC) and
jackknife method were used to measure fitness and variable
importance, respectively.

RESULTS

Sequencing, Mapping, and
Single-Nucleotide Polymorphisms
Calling
A total of 45.8 Gb clean data and 30.3 Gb filtered BAM files
were generated from 26 samples. The average sequencing depth
is 12.82× and the average alignment to the reference genome
is 97.01% (Supplementary Table 2). After filtering, 305,434
SNPs remained for further analysis (Table 1). The SNP number
of DA is the least (85,122), much lower than VH (116,958)
and SCBG (103,354).

Intraspecies Genetic Structure of Sp 1
We conducted a PCA and an ML tree based on SNPs to
explore the genome-wide genetic structure within sp1. See
Materials and Methods for parameters of SNP filtering. The

PCA proves that DA was clearly separated from the mainland
populations (VH and SCBG), even with overlap on Comp
1 (15.87%) and Comp 2 (6.42%) (Figure 1B). On the ML
tree (Figure 1C), all samples fell into two distinct clades
in which DA forms a monophyletic one. VH and SCBG
do not form clear sub-clades separated from each other.
Therefore, our results are consistent with previous studies
that showed that genetical divergence exists between DA and
the continental populations. We noticed that MAF and HWE
(>0.0001 or >0.001) barely affected the filtering results let
alone the genetic structure results. Different max missing, sites
distance, and severe HWE settings presented similar results
(Supplementary Figure 1).

Genetic Diversity
To compare the diversity pattern among the three populations,
the Tajima’s D and π of each population were calculated on 100-
kb non-overlap windows. The LD decay was variable among
the three populations (Supplementary Figure 2). DA has the
highest decay ratio while the continental populations present
strong linkage. The distributions of π and Tajima’s D of each
population and Fst of each combination were all non-normal
according to the Shapiro-Wilk test (Supplementary Table 3).
Therefore, the Wilcoxon rank-sum test was performed for
comparing their medians (Supplementary Table 4). Tajima’s
D of both continental populations is significantly higher than
DA with p < 0.01 (Figure 2A). The π presents a similar
pattern with D (Figure 2B). Hence, we assume that the
polymorphism in DA is significantly reduced. The median
of Fst scores between DA and SCBG is significantly higher
(p < 0.05) than that between DA and VH, and both of them
are significantly higher (p < 0.01) than the one between VH
and SCBG (Figure 2C). The Fst result confirms the clear
genetic structure between DA and the continental populations,
while the continental populations barely differ. The upper
quartiles of Fst between DA and the continental populations
are below 0.2 (Figure 2C), indicating the genetic differentiation
is still moderate due to incomplete block of gene flow or
recent divergence.

Identification and Gene Ontology
Enrichment of Differentiated Islands
A total of 32 differentiated islands with Z-Fst > 3 were identified
between DA and the mainland (Supplementary Figure 3 and
Supplementary Table 5). Continuous islands were merged
into a single one. The distribution of π and Tajima’s D within
or outside islands are all non-normal, except the Tajima’s D
of islands in DA (Supplementary Table 3). Hence, we still
applied the Wilcoxon rank-sum test for comparison. The
differentiated islands of DA have significantly lower π and
Tajima’s D (Figures 3A,B and Supplementary Table 4), with
p < 0.05 and < 0.01, respectively. In the mainland, π of
differentiated islands is significantly reduced (p < 0.05) but the
Tajima’s D shows no significant difference (Figures 3A,B). The
GO enrichment analysis of the 32 windows detected 204 genes,
but only linked to three significant GO terms with p < 0.05.
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FIGURE 2 | Boxplots of Tajima’s D (A), genetic diversity (π) (B), and relative divergence (Fst) (C) between populations with non-overlap 100-kb windows. VH, DA,
and SCBG present populations from Vinh Yen, Vietnam; Hainan Island, China; and Guangzhou, China, respectively. Outliers are not shown. Significance of Wilcoxon
rank-sum test are presented on the top (**0.01 < p < 0.05; ***p < 0.01).

These 3 GO terms are sodium:potassium-exchanging ATPase
complex (GO:0005890), cation-transporting ATPase complex
(GO:0090533), and glycerol-3-phosphate catabolic process
(GO:0046168). Each of the GO term contains three study terms,
which means that most of the 204 genes fail to be enriched by
any term.

Demography
To explore whether the demographic history differs between
island and continental populations, we estimated change of
the effective population size (Ne) along time. Due to the
very short generation time (0.25 year) and rapid mutation
rate (2.8 × 10−8 per site per year), the estimation of
demographic history can only be traced back 4,000 generations
(1,000 years) at most. According to the result, three populations
had declined 1,000 years ago (ya) then expanded lately
(Figure 4). The Ne of VH has been always higher than the
other two populations with a recent explosion. Nevertheless,
the demography of SCBG and DA has been similar. Thus,
the recent demographic history between the Hainan and
continental populations, at least between DA and SCBG, has
not separated.

Statistics and Annotation of Structural
Variations
We obtained a total of 3,244 SVs and 1,881 population-specific
SVs (Table 1). DA has the most SV (1,811), exponentially higher
than VH (584) and SCBG (849). The number of population-
specific SV in DA (1,532) are also multiples higher than
the two continental populations (VH: 311; SCBG: 488). As a
result, DA has the highest population-specific SV proportion
(84.59% vs. VH: 53.25% and SCBG: 57.48%). Hence, in addition
to SNPs, SVs contribute to the genetic difference of DA as

well. All three populations showed a similar pattern on the
type of SVs (Figure 5A). In every population, DEL takes the
highest proportion. The population-specific SVs are mostly
located at inter-gene regions and introns (Figure 5B). In VH
and DA, an unusually high proportion of SV is on splice
site donner and transcript, respectively. The results imply
that the population-specific SVs may lead to transcriptomic
differences in VH and DA. We failed to detect any gene that
overlaps the population-specific SVs of VH or SCBG. 4,141
genes were discovered overlapping the population-specific SVs
of DA. The GO enrichment analysis of those 4,141 genes
enriched to 59 significant GO terms (p < 0.05) (Figure 6). The
GO terms, such as signaling pathway, cell communication, or
stimulus response, are important for specific host cognization.
Besides, GO terms linked to development regulation imply a
flexible life cycle.

Contributions of Environment vs.
Geographic Distance
To compare the effects of environment and geographic
distance, and evaluate the most important environment variables,
we applied the GDM to estimate the correlation between
genetic distance and environment difference and/or geographic
distance. We performed three random samples from the
COI sequences. In each run, one sequence was selected
from each site. We then separately calculated the Nei’s
D as response variable. The GDM results based on the
three samples (random 1–3) were presented in Table 2.
Three GDM analyses returned a similar conclusion, in which
models involving both environment and geographic distance
as potential predictor variables explained the most deviance
(52.590–57.894%). When only the environment was included,
the predictor variables still explained almost half of the
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FIGURE 3 | Violin plots for (A) Tajima’s D and (B) genetic diversity (π) in the
Hainan and continental populations in differentiated islands (Is.) and the
background (BG.). DA and MLD represent Hainan and the merged continental
populations, respectively. Significant results of t-test are represented by
asterisks (**0.01 < p < 0.05; ***p < 0.01).

deviance (49.778–53.433%). However, when only geographic
distance included, the predictor variables explained 11.693–
13.791% of the deviance, or even failed to predict response
variable. The result confirmed the findings of previous studies
(Tian et al., 2015; Yu et al., 2019), which detected the
lack of genetic isolation by distance within the mainland
populations of sp1. The most important Bioclim variable
was either BIO8 (Mean Temperature of Wettest Quarter) or
BIO9 (Mean Temperature of Driest Quarter); both present
the synchronization of temperature and humidity. Therefore,
we assume that the genetic distance in sp1 is due to
environment, implying differentiation driven by adaptation.
Heat stress accompanied by dryness stress could be a crucial
influence. We further estimated the importance of all 19 Bioclim
variables. The AUC values of the result are not excellent but
acceptable (training AUC: 0.8231; test AUC: 0.5897), due to the
strapped number of sampling sites. According to the jackknife
method, BIO5 (Max Temperature of Warmest Month, Percent
contribution= 50.613%) contributes the most to the distribution
of sp1, while the model highly depends on BIO7 (Temperature
Annual Range, permutation importance = 54.902%). The result
is consistent with GDM, both of which predict the importance of
heat stress.

FIGURE 4 | Demographic history of island (DA) and continental (VH and
SCBG) populations. The demographic history is reconstructed from the seven
longest contigs by multiple sequential Markovian coalescence (MSMC) model.
Inferred fluctuations in effective population size (Ne) from 1,000 years ago (ya)
to the present based on the 0.25-year generation time and 2.8 × 10−8 per
site per generation mutation rate assumptions. Lines represent each one of
ten independent estimates, in which four samples from one population were
chosen randomly. Red, blue, and purple present populations from Vinh Yen,
Vietnam (VH); Hainan island, China (DA); and Guangzhou, China (SCBG),
respectively.

DISCUSSION

Genome-Wide Patterns of Divergence
Within sp1
The potential divergence between the Hainan and the continental
populations of sp1 was hinted by neutral gene markers
(Tian et al., 2015; Yu et al., 2019). Our results confirm the
genetic structure within sp1 at genome-level, suggesting the
Hainan population (DA) has been genetically differing from the
continental populations (VH and SCBG). Furthermore, we reveal
the divergence pattern across the whole genome.

The PCA (Figure 1B) and ML tree (Figure 1C) based on re-
sequencing data both confirm the previous pattern. In addition,
the Fst between DA and either VH or SCBG is significantly higher
than that between the two continental populations (Figure 2C).
All those results indicate a larger genetic distance between DA
and continental populations than within the continental ones.
We additionally proved that both SNPs and SVs contributed to
the genetic difference of DA. The SNP number (Table 1), Tajima’s
D (Figure 2A), and π (Figure 2B) of DA are immensely lower
than the continental populations. The population-specific SVs
of DA, however, are larger in number and higher in proportion
than the other two populations (Table 1). Thus, the genetic
difference of DA is caused by a decrease on SNP polymorphism
and a differentiation on chromosome structure. The LD decayed
rapidly in DA but maintained strong linkage in both of the
continental populations. Such a phenomenon could be due to
the influence of a high proportion of SVs. Moreover, the pattern
of variant localization is heterogeneous across the genome but
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FIGURE 5 | Types and distribution patterns of structural variations (SVs). (A) Pie chart of SV types in each population. DEL, DUP, INS, and INV indicate deletions,
duplications, insertions, and inversions, respectively. (B) Bar chart of the population-specific SV proportion in different genome regions.

differs among populations. Firstly, we detected 32 differentiated
islands with Z-Fst > 3 based on the SNP. Those differentiated
islands have significantly reduced diversity than the genomic
background (Figure 3 and Supplementary Table 4), and cluster
on a few contigs (Supplementary Figure 3 and Supplementary
Table 5). Secondly, the proportion of SVs varies among genomic
regions (Figure 5B). SVs are significant components of genomic
variants and affect large genomic regions (Feuk et al., 2006;
Wellenreuther et al., 2019; Ho et al., 2020). The present study
discovered a great number of population-specific SVs in DA
(1,532), which is times higher than in VH (311) or SCBG (488).
DA also presents a higher proportion of SVs in the transcript
regions than the others. Therefore, SVs cause divergence not only
in genome but also in transcriptome. We detected 4,141 genes
overlapping the population-specific SVs of DA, more than the
204 genes detected in the differentiated islands based on SNPs.
Furthermore, the functions of those 204 genes are still vague,
indicating that they are probably hypothetical genes without
thorough study. One SV may overlaps a significant amount of
genes and lead to enormous genetic diversity in the process of
evolution (Bertolotti et al., 2020; Weissensteiner et al., 2020) and
domestication (Liu et al., 2019; Kou et al., 2020). We assume that
the divergence between DA and the continental populations is
more likely caused by SVs than SNPs.

Our results show some differences from the previous studies.
According to mitochondrial gene COI, the Tajima’s Ds of all
sp1 populations are significantly negative (Tian et al., 2015).
In the present study, however, the whole-genome data reveal
an overall positive D (Figure 2A). A probable explanation is
that the evolution rate of cytoplasmic genome is much slower
than nuclear genome. Therefore, gene markers surely have fewer
variants than the nuclear genome.

Geographical Barrier Contributes to the
Genetic Divergence
The severe reduced SNP polymorphism and high proportion of
population-specific SV in DA represent a signature of gene flow
restriction from the continental populations. The Qiongzhou
Strait may provide a geographical barrier. Qiongzhou Strait
separates Hainan Island from Southeast China, which is about
30 km wide and opened nearly 8,000 years ago (Zhao et al.,
2007; Ni et al., 2014). In the pollinator wasp, the lack of genetic
structure across a large distance on continent was reported, such
as Valisia (Tian et al., 2015) and Wiebesia species (Liu et al., 2015)
across Southeast China, or Ceratosolen fusciceps from Southeast
China to Thailand (Kobmoo et al., 2010). However, population
fragmentation also occurs when their habitats are islands. The
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FIGURE 6 | Gene ontology enrichment results of population specific structural
variations.

signatures of isolation-by-distance was discovered in a Wiebesia
species among the islands of Zhoushan Archipelago (Liu et al.,
2013), even though the same species are genetically homogeneous
over a distance of 1,000 km across Southeast China (Liu et al.,
2015). It is thus reasonable to hypothesize that for pollinator
wasp, the dispersal capability might be weakened by water bodies,
or limited by islands. The dispersal of wasps totally depends on
the adult female. After emerging from figs, an adult female wasp
only survives for 1–2 days and is vulnerable to abiotic stresses. For
them, high temperature and dryness are lethal while moisture is a
relief (Ware and Compton, 1994; Dunn et al., 2008; Jevanandam
et al., 2013; Gigante et al., 2020). Thus, the dispersal of wasps
could be limited by the drastically changing weather above the

Qiongzhou Strait, which is open to direct sunlight, and often
experiences high temperatures and strong winds. The host of sp1,
F. hirta, is a dioecious shrub existing in secondary jungle and
the edge of forests. Pollinator wasps of such a host prefer the
understory with gentle air (Harrison and Rasplus, 2006; Chen
et al., 2011). It is reasonable to assume that the sensitivity and/or
preference on habitats delimit the dispersal of wasp, and then
restrict the gene flow. Previous studies (Tian et al., 2015; Yu et al.,
2019) and our own (Table 2) all confirm the limited influence
of the geographic distance. To be clear, the Qiongzhou Strait
contributes to the gene flow barrier not because of its width but
its unfavorable weather, suggesting that adaptation may also be
an underlying drive.

The Role of Adaptation in the Genetic
Divergence
The climate of Hainan Island is a tropical maritime climate while
the habitats of sp1 continental populations are mainly under
subtropical continental monsoon climate. As we have discussed
before, in the absence of moisture, heat and dryness lead to
high mortality of fig wasp (Dunn et al., 2008; Jevanandam et al.,
2013; Gigante et al., 2020). Our own results also prove that
the synchronization of temperature and humidity is the most
important influence underlying the genetic divergence within sp1
(Table 2). Furthermore, heat and dryness are major restrictions
of sp1 distribution (See “Contributions of Environment vs.
Geographic Distance”). Therefore, it is reasonable to say that local
adaptation contributes to the genetic structure between Hainan
and the mainland population of sp1. In addition, different from
the densely populated continent, Hainan Island is a biodiversity
hotspot, still maintaining anatural tropical rainforest (Li, 1995;
Luo et al., 2020). Human activity such as industrial pollution
or pesticide may also cause a strong influence, for example,
the industrial melanism of moth (Cook et al., 1970; Cook and
Saccheri, 2013).

The differentiated islands in DA as well as islands in
the mainland show decreased diversity. The results of GO
enrichment on the differentiated islands also failed to linked to
any genes that maybe related with speciation (See “Identification
and Gene Ontology Enrichment of Differentiated Islands”).
Hence, we assume that background selection before population
dividing is a more likely causation. The GO enrichment analyses
performed on the genes overlapping population-specific SVs,
however, presented a more informative result. No gene was
detected in the population-specific SVs of VH or SCBG. On the
contrary, enormously higher number of genes (4,141) overlap
the population-specific SVs of DA. We then performed GO
enrichment analysis on those 4,141 genes and obtained 59
significant GO terms with p < 0.05 (Figure 6). It is worth
noting that most of the 59 GO terms link to regulation of
signaling pathway and external stimulus response. Pollinator
wasps recognize the host through VOCs produced by figs
(Weiblen, 2002; Chen Y. et al., 2016). Geographic divergence
of VOCs was reported in F. hirta, the host of sp1 (Deng et al.,
2021). The floral odors of F. hirta in Hainan clearly distinguished
from those in the continent. The differences that occur in hosts
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TABLE 2 | Results of the generalized dissimilarity modeling analyses.

Repetition Environment only Environment and geographic distance Geographic distance only

Percent Deviance Explained random 1 50.63255 57.89369 Uncorrelated

random 2 53.4332 53.55879 11.69346077

random 3 49.77807 52.58965 13.79100426

Most important variable random 1 BIO9 BIO9 NA

random 2 BIO8 BIO9 NA

random 3 BIO8 BIO8 NA

NA, data cannot be estimated. BIO8, Mean Temperature of Wettest Quarter. BIO9, Mean Temperature of Driest Quarter.

could also drive the adaptation of pollinator wasps. For example,
Ficus tikoua presents morphological differences of figs along
its habitat (Deng et al., 2016). Its pollinator wasps show a
genetic structure that loosely corresponds to the distribution of
those morphologically different figs (Deng et al., 2020). Hence,
the intra-species divergence of sp1 is probably a consequence
of the co-evolution with its host. The 59 GO terms also link
to the developmental process, indicating that DA may present
difference in developmental regulation or life cycle. On the basis
of our field observation, the figs mature much slower in cold
periods, and the life cycle of fig wasps still strictly corresponds
to the development of figs. Even in the same sampling location,
the life cycle of fig wasp changes throughout seasons. Therefore,
a flexible life cycle could facilitate adaptation to different climates.

Besides the divergence of genome, the differences on
transcription and alternative splicing may result in the local
adaptation of each population as well. The distribution of SVs’
localization differs among populations (Figure 5B). VH had an
unusually higher proportion of population-specific SVs on the
donor of splice sites and DA on the transcript region. Therefore,
studies on transcriptome would provide more information.
In brief, we confirm that local adaptation is an important
force underlying the genetic divergence between DA and the
continental populations. For adapting the divergence of its
host population and the tropic environment, the Hainan wasp
population may evolve special mechanisms for host recognition
and life cycle regulation. SVs contribute more than SNPs to the
genetic basis of adaptation.

Structural variation is an important source of materials for
evolution (Frazer et al., 2009; Weissensteiner et al., 2020).
Analyses based on SVs are still rare in insects. Most studies
focus on the well-studied model species, Drosophila melanogaster
(Dopman and Hartl, 2007; Emerson et al., 2008; Zichner et al.,
2013; Long et al., 2018). Those works collected SVs across
D. melanogaster genome, and calculated the SV types. In
D. melanogaster, deletions also take the largest part of SVs. Long
et al. (2018) annotated the distribution of SVs in exons and
pointed out that the types and numbers of SVs highly differed
among populations as well as in sp1. Hence, SVs contribute to
the genetic divergence within D. melanogaster. A recent preprint
study on Manduca sexta sheds light on the importance of a
single inversion which enhances adaptation of the Z chromosome
(Mongue and Kawahara, 2020). Generally speaking, SVs attract
much less attention than SNPs. The present study highlights its
importance in local adaptation. Nevertheless, it is still challenging
to precisely annotate SVs with short-read sequencing data

(Tattini et al., 2015). Complex SVs such as TRA are excluded
in our study and its effect on the intraspecies divergence of Sp1
unfortunately remains unknown. The high proportion of DEL
in SVs seems unusual in sp1 and D. melanogaster. Transposon
activity is a possible explanation, but more accurate calling of SVs
is required for transposon annotation. Further, the methods for
downstream analysis for SV are much less than for SNP. Suitable
methods for SV are urgently required.

The Demographic Reconstruction Within
Sp 1
The reconstruction of a demographic history for fig wasp
is intractable due to their relatively short adult longevity
and life cycle. The varied mutation rates along the genome
complicate the demographic estimation even more. Thirdly,
frequent mutation within the population reduces the robustness
of its demography reconstruction when repeated sampling is
applied. Most important, local extinction-recolonization usually
occurs in insects (Harrison, 2000; Devoto et al., 2005; Liu et al.,
2013; Lever et al., 2014). The factors affecting fig production could
also affect the survival of wasps. For example, high temperature
and dryness are not only lethal for adult wasp, but also cause
stress for fig trees. The fig trees in Borneo failed to produce
figs during a drought, which then caused local extinction of
their pollinator wasp (Harrison, 2001). The demography of fig
wasp is therefore remarkably changeable even in a very recent
period. The demographic studies of wasps usually based on field
observation in a relatively short duration focus on the yearly
fluctuations of demographic factors (e.g., number, daily survival
rates, and sex ratio) (Forouzan et al., 2013; Asadi et al., 2019).
For example, the 3-year field experiments (1997–1999) in a
social wasp species (Polistes fuscatus) (Nadeau and Stamp, 2003),
and the observation of a primitively eusocial wasp (Ropalidia
fasciata), in Japan began in 1983 (Ito, 1996; Ito and Kasuya, 2005).
Some other studies estimated a rough demographic history based
on a few highly conservative gene markers (Wang et al., 2013;
Tian et al., 2015; Yu et al., 2019). To our knowledge, the present
study is the first that attempted to reconstruct the demographic
history of fig wasp by whole-genome re-sequencing data. The
demographic histories of the three populations were traced
back 4,000 generations (1,000 ya). The Ne of all populations
declined since 1,000 ya with a recent expansion (Figure 5). In
one continental population VH, a recent population expansion
was detected. However, the demography history does not differ
between DA and the other continental population, SCBG.

Frontiers in Ecology and Evolution | www.frontiersin.org 10 November 2021 | Volume 9 | Article 764828

https://www.frontiersin.org/journals/ecology-and-evolution
https://www.frontiersin.org/
https://www.frontiersin.org/journals/ecology-and-evolution#articles


fevo-09-764828 November 3, 2021 Time: 11:38 # 11

Xu et al. Intraspecies Divergence of Fig Wasp

The similar results of DA and SCBG indicate that Hainan and
continental populations still share an evolutionary process due
to incompletely blocked gene flow, or incomplete lineage sorting.
VH is geographically remote from DA and SCBG (Figure 1A)
and locates in a landlocked habitat. Hence, we assume that the
climatic contrasts between inland and coastal areas is the critical
factor. Unfortunately, we failed to provide a more accurate
estimation on the divergence time of sp1. Comparing with the
whole-genome re-sequencing data and population genomics, we
suggest the transcriptome approaches because the transcriptome
is more conservative than genome. To be specific, we hope
a molecular clock based on single copy genes could provide
more reliable evidence for the divergence time estimation of fig
wasp. We also performed the demography reconstruction with an
approximated mutation rate according to the substitution rate at
silent sites of Nasonia (Oliveira et al., 2008). Specific estimation
of Valisia species mutation rate, for accuracy, will offer more
interesting information.
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