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The importance of vertebrate animals as seed dispersers (zoochory) has received
increasing attention from researchers over the past 20 years, yet one category in
particular, diploendozoochory, remains understudied. As the term implies, this is a
two-phase seed dispersal system whereby a secondary seed predator (carnivorous
vertebrate) consumes a primary seed predator or granivore (rodent and bird) with
undamaged seeds in their digestive tract (mouth, cheek pouch, crop, stomach, or other
organ), which are subsequently eliminated with feces. Surprisingly, although snakes
are among the most abundant predators of granivorous vertebrates, they are the least
studied group insofar as our knowledge of seed rescue and secondary dispersal in a
diploendozoochorous system. Here, using live snake subjects of the Sonoran Desert
(one viperid and two colubrid species) and seeds of the Foothill Palo Verde (Parkinsonia
microphylla), a dominant tree of the same region, we experimentally tested germination
frequency and rate, and seedling viability. Specifically, to mimic rodents with seed-
laden cheek pouches, we tested whether wild-collected P. microphylla seeds placed
in the abdomen of thawed laboratory mice and ingested by the snakes would retain
their germination viability. Second, we examined whether seeds exposed to gut transit
germinated at a greater frequency and rate than the controls. While we found strong
statistical support for our first hypothesis, both aspects of the second one were
not significant. Accordingly, we provide an explanation for these results based on
specific life-history traits (dormant and non-dormant seeds) of P. microphylla. Our
study provides support for the role of snakes as important agents of seed rescue and
dispersal in nature, their potential as ecosystem engineers, and crucial evidence for
the investment of field-based studies on diploendozoochorous systems in deserts and
other ecosystems.

Keywords: Crotalus atrox, Foothill Palo Verde, diploendozoochory, Lampropeltis splendida, Pituophis catenifer,
reptiles, seed rescue, seed dispersal
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INTRODUCTION

The significance of diverse seed dispersal systems to biotic
communities, especially concerning the important role of
vertebrate animals as dispersers (zoochory), has received
increasing attention from researchers over the past several
decades (Correa et al., 2007; Traveset et al., 2007, 2008,
2014; Schupp et al., 2010; Hämäläinen et al., 2017; Coughlan
et al., 2019; Beckman et al., 2021). In the dispersal system
termed endozoochory, seeds are directly consumed (e.g., by
bears, primates, rodents, birds, or turtles) and later voided
via regurgitation or defecation (Traveset et al., 2001, 2007,
2008; Steyaert et al., 2019). Endozoochory is prevalent in
many vertebrate lineages, including freshwater fishes (Galetti,
2007), anuran amphibians (Silva and de Britto-Pereira, 2006;
Hocking and Babbitt, 2014), a variety of nonavian reptiles
(Blake et al., 2012; Reiserer et al., 2018; Valido and Olesen,
2019; Falcón et al., 2020), birds (Nathan et al., 2008; Heleno
et al., 2011; Padilla et al., 2012; Baños-Villalba et al., 2017;
Bartel et al., 2018; Blanco et al., 2018; Coughlan et al., 2019;
Bravo et al., 2021), and both placental and marsupial mammals
(Traveset et al., 2014; Jaganathan et al., 2016; Hämäläinen et al.,
2017).

Diploendozoochory, possibly first documented by Darwin
(1859), differs from endozoochory in that it is a two-phase
seed dispersal system with several key players. In this system, a
secondary (P2) predator (e.g., carnivorous vertebrate) consumes
a primary (P1) seed predator (granivore) such as a rodent or bird
with seeds in its digestive tract (e.g., mouth, cheek pouch, crop,
and stomach) which are subsequently eliminated in the feces of
P2 (Hämäläinen et al., 2017). In diploendozoochorous systems,
when a secondary predator (P2) such as a rattlesnake subjugates
and consumes a primary seed predator (P1) that has intact seeds
in its cheek pouches (e.g., in our system, a heteromyid and
geomyid rodent), the seeds are transported to the digestive tract
of P2 and ultimately excreted. Consequently, some or all excreted
seeds from P2 potentially survive this journey and germinate;
thus, they can be viewed as "rescued" from P1 (post-dispersal
seed predation, see Gong et al., 2015). Unlike endozoochory,
our present knowledge of seed germination and the fate of
dispersed seeds by P2 in diploendozoochorous systems is limited
(Vander Wall and Longland, 2004; Hämäläinen et al., 2017; van
Leeuwen et al., 2017). Nonetheless, with increased knowledge
of the trophic behavior and ecology of carnivorous vertebrates
that feed on granivores, the role of seed rescue and secondary
dispersal appears to be non-trivial (Vander Wall and Longland,
2004; Hämäläinen et al., 2017; van Leeuwen et al., 2017; Pérez-
Méndez and Rodríguez, 2018; Reiserer et al., 2018). Importantly,
diploendozoochory can influence plant fitness in a number of
ways including (a) seed transport, (b) altering the viability of
transported seeds, and (c) changing the quantity of seeds that are
dispersed (Hämäläinen et al., 2017; Saldaña-Vázquez et al., 2019;
Rubalcava-Castillo et al., 2020). Accordingly, numerous avenues
of inquiry remain to be investigated in diploendozoochorous
systems which include diversity of species as agents of seed rescue
and dispersal (Hämäläinen et al., 2017; Reiserer et al., 2018).

Among the terrestrial vertebrates, snakes are the least studied
group with respect to seed rescue and secondary dispersal
(Engel, 1997; Reiserer et al., 2018). This deficiency is somewhat

perplexing and lacks a clear explanation given that they can be
among the most abundant predators (high population densities
and biomass per hectare) of seed-eating mammals (e.g., rodents)
and birds in temperate and tropical regions (Klauber, 1972;
Greene, 1997; Bonnet et al., 2002; King et al., 2018; Reiserer
et al., 2018; Martins and Lillywhite, 2019; Henderson et al.,
2021). And recent work on rattlesnakes indicates their potential
importance as agents in diploendozoochorous systems (Reiserer
et al., 2018). Specifically, in a museum study of 50 preserved
rattlesnake specimens, nearly 1000 seeds were found to be
indirectly ingested by way of consuming rodents possessing
seed pouches, particularly heteromyids and geomyids. Careful
examinations of entire digestive tracts revealed that not only
were rodent-derived seeds abundant, but that numerous seeds
germinated in the snakes’ colons (Reiserer et al., 2018).

In North America, geomyid, heteromyid and some sciurid
rodents have specialized cheek pouches for transporting seeds
from plant source to cache sites, where they are often eliminated
from the pool of plant propagules by consumption (Price
et al., 2000; Kaufman et al., 2004; Hope and Parmenter, 2007).
However, in some cases, seeds stored in these caches will
germinate after a rainy season. Distances for seed dispersal
in scatter-hoarding mammals (Morris, 1962) vary greatly and
depend on species, size of seeds, nutrition value, season, and a
host of other factors. For example, kangaroo rats, species with
cheek pouches (heteromyids), typically predate, and cache seeds
close to their home burrow systems (Jones, 1989; Daly et al.,
1992; see Price et al., 2000; Lichti et al., 2017; Wang and Cortlett,
2017). Lifetime dispersal distances in Merriam’s kangaroo rat
(Dipodomys merriami), a common rodent in the Sonoran Desert,
range from 0 to 265 m in males, and from 0 to 158 m in females
(Jones, 1989).

Seed-laden rodents are commonly consumed by snakes as
they forage, but unlike raptors, coyotes, bobcats, and other
endothermic predators which eat rodents and are known (or
implicated) to be secondary seed dispersers (Sarasola et al.,
2016), the role of snakes in seed dispersal in nature remains
unexplored (Reiserer et al., 2018). Nevertheless, desert-dwelling
rattlesnakes and other vipers can be abundant (e.g., western
diamond-backed rattlesnake, Crotalus atrox, more than 50 adults
per km2), and individuals are capable of consuming 12–20 rodent
meals and potentially hundreds of seeds (Vander Wall et al.,
1998) during an active season lasting 25–30 weeks. Moreover,
individuals occupy large home ranges in which they sometimes
travel more than 2 km within several days (Beaupre, 2016; Schuett
et al., 2016; DeSantis et al., 2020). Consequently, vast numbers
of seeds may potentially achieve exceptionally long secondary
dispersal distances, perhaps several times greater than those
distributed by the rodents themselves (Nathan et al., 2008; Wang
and Cortlett, 2017). Despite the importance of the findings by
Reiserer and colleagues (Reiserer et al., 2018) and the potential
of snakes as seed dispersers outlined above, the most crucial
ecological and evolutionary corollaries of this system hinge on
the survival of voided (excreted) seeds and viability of seedlings
(Hämäläinen et al., 2017).

Here, using live snake subjects, we experimentally
tested germination properties in seeds of the Foothill Palo
Verde (Parkinsonia microphylla), an ecologically important and
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FIGURE 1 | Western Diamond-backed Rattlesnake (Crotalus atrox). New
Mexico SR 9, near Animas, Hidalgo County, New Mexico. Photograph
courtesy of William Wells.

dominant tree of the Sonoran Desert (Bowers, 1994, 2004).
We first tested whether wild-collected seeds of P. microphylla
placed in the abdomen of thawed laboratory mice and ingested
by viperid and colubrid snakes would germinate and produce
viable seedlings. Specifically, in our primary study, we tested
the Western-Diamond-backed Rattlesnake, Crotalus atrox
(Figure 1), a pitviper (viperid) species, based on results of a
previous study (Reiserer et al., 2018). In a secondary study,
we tested two species of sympatric colubrid snakes in which
seed rescue and consumption are unknown but predicted to be
present based on their diets, the Desert Kingsnake, Lampropeltis
splendida, and the Sonoran Gopher Snake, Pituophis catenifer
affinis (Figure 2). Second, in the primary study only, we tested
whether the seeds exposed to gut transit germinated at a greater
rate and frequency than those of the controls, viz. the accelerated
germination hypothesis (Castilla, 2000; Traveset et al., 2001;
Hämäläinen et al., 2017; Hanish et al., 2020; Salazar-Rivera et al.,
2020; Yang et al., 2021).

MATERIALS AND METHODS

Selection of Plant Species
The Foothill Palo Verde (Parkinsonia microphylla), the State
Tree of Arizona1, was selected for this study for several
reasons. First, detailed information on its biology and life-
history is widely available, including details on germination
under natural and artificial conditions (Benson and Darrow,
1981; McAuliffe, 1986, 1990; Bowers, 1994, 2004; Bowers and
Turner, 2002; Medeiros and Drezner, 2012). Second, the seeds
are reasonably large (several mm across) and easily manipulated
for the experiments we executed. Third, wild heteromyid and
geomyid rodents (seed predators) are known to harvest the
seeds of P. microphylla, temporarily storing them undamaged
in their external cheek pouches and subsequently cache them
below the soil surface, such as in burrows (McAuliffe, 1990; G.

1http:aznps.com/arizona-state-tree

FIGURE 2 | (A) Sonoran Gophersnake (Pituophis catenifer). Vulture Mine
Road, Maricopa County, Arizona. (B) Desert Kingsnake (Lampropeltis
splendida). Animas Road, Hidalgo County, New Mexico. Photographs
courtesy of William Wells.

Schuett, pers. observ.). Furthermore, both of these rodent groups
are common prey species of snakes from the Sonoran Desert,
including the rattlesnake species (Crotalus atrox) and colubrid
species (Lampropeltis splendida and Pituophis catenifer affinis)
used in this study (Schuett et al., 2016; Reiserer et al., 2018; see
Supplementary Figure 1). Last, Foothill Palo Verde is one of the
most widely distributed and abundant trees of the Sonoran Desert
(Arizona and northern Mexico) and its seeds are easily harvested
(Bowers, 2004).

Experimental Protocol
Though there are many approaches to reveal the impacts
of digestion on seed germination and seedling viability (e.g.,
Guillen et al., 2009; Benítez-Malvido et al., 2014; Gonzalez-Di
Pierro et al., 2021), few studies have assessed these metrics in
diploendozoochorous systems, and none have examined them
in snake species. We, therefore, developed a novel approach in
which seeds of P. microphylla for this study were collected locally
(Phoenix, Maricopa County, Arizona) from mature pods of a
single tree in late June 2019. In most seeds, both germination
frequency and rate are dependent on numerous factors (Mitchell
et al., 2017), including genetic diversity within (Hantsch et al.,
2013) and among populations (Ginwal and Gera, 2000; Donohue
et al., 2005). Accordingly, to explicitly decouple these aspects
of germination from potential genetic effects, we chose to
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select seeds from a single source tree. The study was divided
into two treatments conducted at two different locations. The
primary treatment group was conducted at the Chiricahua Desert
Museum (Rodeo, Hidalgo County, New Mexico) and involved
using the Western Diamond-backed Rattlesnake, Crotalus atrox,
Trials involving the secondary group were conducted at the
Desert Botanical Garden. The Phoenix Zoo and involved using
the Desert Kingsnake (Lampropeltis splendida) and Sonoran
Gopher Snake (Pituophis catenifer affinis).

The primary study (Chiricahua Desert Museum) used two
Western Diamond-backed Rattlesnake, Crotalus atrox (Figure 1),
collected as juveniles in Cochise County, Arizona as neonates
(summer 2017), and reared individually to adulthood (1 m in
total length at time of testing, 2019–2020). We followed standard
institutional protocols for housing and husbandry for these two
venomous snake species (e.g., Warwick et al., 1995; Smith, 2005).
Five trials per snake (10 trials in total for both snakes) were
carried out on the same day from December 2019 to April 2020.
In each trial the two snake subjects were fed thawed (frozen)
laboratory-reared mice (40 g) obtained from a common source
that were impregnated with seeds of P. microphylla. Specifically,
seeds for the treatment and control groups were randomly
selected from a common source (∼1000 seeds). For each of
the treatment trials, a total of 10 seeds (5–7 mm length) were
used; five seeds were placed in the abdominal cavity in each
of two adult commercial white laboratory mice (40 g each)
that had been thawed. Owing to restrictions and difficulties of
using wild heteromyid or geomyid rodents to feed snakes at
our respective institutions (e.g., potential of disease transmission;
availability of appropriately sized rodents), we lacked a rodent
model with cheek pouches as vehicle for intact seeds. To mitigate
this problem, we used a simple method to act as surrogate to the
rodent cheek pouch: a small (1 cm) incision was made at the mid-
venter of each thawed lab-reared mouse; five randomly selected
seeds were inserted by hand and pushed gently just beneath the
skin in the abdominal cavity; the incision was then lightly pinched
to prevent seeds from being expelled during ingestion by the
snakes. Both snake subjects were then promptly hand-fed two
seed-impregnated mice. Each snake was observed during feeding
until both mice were consumed. Hence, by coupling intact seeds
with the body of the rodent, we experimentally mimicked the
way seeds are handled by mice in nature. Since our main goal
was to test for germination viability (performance) of snake-
ingested foothill palo verde seeds (P. microphylla), the rodent
was the natural vehicle for the seeds. Thus, whether test seeds
were located in cheek pouches or just beneath the abdominal
skin (abdominal cavity) of the ingested rodent, the fate of the
seeds remains the same in being readily exposed to the digestive
processes of the test snakes. No meal was refused by the snakes
during the 5-month period of testing (December 18, 2019 to
April 31, 2020).

Typically, the snakes had their first defecation within 5–7
days after ingesting the two mice implanted with seeds; a second
defecation occurred up to 14 days after the treatment meal.
Snakes were checked 3–4 times daily to obtain seeds as quickly
as possible after defecation. Wastes were carefully removed from
the cages and placed into a fine metal wire strainer. Tap water

was gently run to help separate the seeds from the wastes
(feces and urates). All harvested seeds were placed onto damp
paper toweling before being incubated for germination tests. Five
control trials, each with a total of 10 seeds (total of 50 seeds),
were set up the same day (within 60 min) as the snakes were fed
their treatment meal. None of the control seeds were scarified or
altered in any way.

Seed Germination Protocol – Treatment
and Control Groups
The P. microphylla seeds harvested from the feces of C. atrox were
placed on damp paper toweling inside a plastic germination box.
Each box was 28 L× 18 W× 13 H cm and had three small (7 mm)
holes drilled on each side for air circulation. Furthermore, the
seeds were covered with a single layer of wet (damp) white paper
toweling (no dyes). The paper toweling and seeds were never
allowed to become dry. The germination boxes were placed on
a commercial rack equipped with 5 cm wide heat tape at one end.
Each rack could hold 10 boxes. One end of each germination box
was exposed to heat tape (28–30◦C), which was set by an electric
timer for 12D:12N. The seeds were never exposed directly to the
heat tape. Air temperature inside the box during the day (12 h)
was 26–30◦C. During night, when the heat tape was off, air and
substrate temperature was 21–24◦C. Seeds used for the control
trials were set up in different boxes, but were identical in all other
respects to the treatment group.

The treatment and control groups of the primary study were
checked 3–4 times daily for evidence of germination. Once seeds
became imbibed (e.g., larger and paler in color than their original
state), germination was imminent (hours). A seed was scored as
germinated when a radicle was visible. Although the overall study
was conducted from December 18, 2019 to August 31, 2020, a
total of 257 days, each trial was allowed to run for approximately 4
months (128 days) for balance. Owing to diversified germination
behavior (dormant and non-dormant seeds) in this species
(Bowers and Turner, 2002; Bowers, 2004), this amount of time
allotted for germination was deemed to be sufficient. For the
treatment group, germination (days) was calculated as the period
from the day of feeding until the appearance of the radicle.

Seedling Viability
To determine whether the germinated seeds of P. microphylla
in the primary study would show seedling viability, multiple
germinated seeds from each of the five treatment (snake-1: n = 19;
snake-2: n = 12) and control trials (n = 14) were sown in small
pots with commercial soil and allowed to grow to approximately
13–15 cm in height. The remaining germinated seeds were
preserved in 95% EtOH. Germinated seeds in the secondary study
were not tested for seedling viability.

Statistical Analyses
To test hypothesis 1, we used a binomial linear regression
with germination (0 = no germination and 1 = germination)
as the response variable, and treatment (snake digested and
control), trial (first or second), snake (1 or 2), and defecation
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as explanatory variables. To test hypothesis 2, we used the non-
parametric Mann-Whitney U test, as data were non-normally
distributed, with time to germination (in days) as the response
variable and treatment (as above) as the explanatory variable. The
first analysis was conducted in R (R Core Team, 2021) in R Studio
(R Studio Team, 2019), and the second using the open-source
project JASP (Love et al., 2019)2.

Secondary Study
Our secondary study using P. microphylla seeds was executed
using two species of nonvenomous colubrid (colubrine) snakes,
the Sonoran Gophersnake, Pituophis catenifer, and the Desert
Kingsnake, Lampropeltis splendida (Figure 2). Both species are
inhabitants of the Sonoran Desert and sympatric with the
Western Diamond-backed Rattlesnake, Crotalus atrox (Figure 1).
To our knowledge, there are no publications on seed rescue
and germination in colubrid snakes. Importantly, as adults,
both colubrid species consume similar mammalian prey (e.g.,
heteromyid and geomyid rodents) as the Western Diamond-
backed Rattlesnake, C. atrox (Holycross and Mitchell, 2021).

Trials consisted of using two species of the two colubrid snakes
(as above) and the same set of seeds collected for the primary
study. Snakes were maintained at The Phoenix Zoo (PZ) as part
of their public outreach collections. Owing to close proximity
(1.6 km) seed germination was overseen at the Desert Botanical
Garden (DBG). Three trials were run: the first was from August
23 to September 03, 2019 (11 days); the second was from October
1–28, 2019 (27 days); and the third was from March 1 to June 4,
2020 (95 days) Feeding of snakes at PZ was conducted as in the
primary study, but only five seeds per feeding were used instead
of 10. Snakes were checked once daily for voided excreta (feces
and urates) and seeds. Excreta were placed in small plastic tubes

2jasp-stats.org

(Supplementary Figure 2) and transferred to the DBG (1.6 km)
for germination trials. In cases where the germination tests could
not be started immediately, the samples were refrigerated at 1◦C
until use with 24–48 h. In trials 1 and 2, the seeds were not
removed from the excreta before initiating germination tests.
This was done to determine if any compounds in the excreta
itself inhibit or promote germination and subsequent growth.
The seeds used in the third trial were gently removed from
excreta and briefly washed with tap water, similar to the trials in
the primary study.

All seeds (in excreta or washed) were placed on Whatman R©

qualitative filter paper, Grade 1, 90 mm (Sigma-Aldrich, Inc.,
St. Louis, MO, United States) inside a plastic petri dish and
moistened with distilled water. The petri dishes were then
placed into a Percival 36-L germination chamber, model GR36L
(Percival Scientific, Inc., Perry, IA, United States) with a schedule
of 12 h day/12 h night, 25◦C day /15◦C night, and 75 micromole
light intensity.

RESULTS

Primary Study (Chiricahua Desert
Museum)
In the primary study, each trial in the treatment and control
groups was 128 days. Excreted seeds of P. microphylla successfully
germinated (Figure 3). Specifically, in the treatment group
(five trials for each of the two rattlesnake subjects), 94 of
100 seeds (94%) were recovered from the feces; 78 (83%)
of those successfully germinated (Table 1). Mean gut-passage
time of seeds was 6 to 14 days (9.1 ± 2.5 days), and in
eight instances germinated seeds were recovered in snake feces,
implicating germination occurred during gut transit (sensu

FIGURE 3 | Summary of germination frequency of P. microphylla seeds in the primary study involving the rattlesnakes (Crotalus atrox). Five trials were conducted
and each one lasted 128 days. Germination (days) was calculated as the period from the day of feeding until the appearance of the radicle. The histogram was
generated using the Histogram function in Excel version 16.48 Data Analysis Tool.
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TABLE 1 | Seed counts of P. microphylla in trial conditions of the primary study involving the Western Diamond-backed Rattlesnakes (C. atrox).

Trials Initial sample Unrecovered from scat Ungerminated Germination frequency

Control 50 – 14 36/50 (72%)

Treatment 100 6 16 78/94 (83%)

Reiserer et al., 2018). All seeds in preparation of germination (i.e.,
appearance of the radicle) became imbibed, swelling to twice their
original size (11–13 mm length) and were noticeably paler in
coloration (Figure 4). Of the 16 treatment seeds that did not
germinate, 2 developed mold, yet the remaining 14 were normal
in appearance and thus likely were viable (Bowers, 2004). In
the control group (five trials), 36 of 50 seeds (72%) successfully
germinated; 2 of the 14 ungerminated seeds developed mold yet
the remaining 12 appeared to be viable. No significant differences
were found in germination frequency with respect to any of
the explanatory variables (i.e., treatment, trial, snake, and/or
defecation) (Table 2).

Over the full duration of the experiment (128 days), mean
germination time (GT) for treatment seeds was 31.9 days
(SD: ± 27.2 days; min-max: 6–112 days) and 40.56 days
(SD: ± 36.3 days; min-max: 2–123 days) for control seeds. No
significant difference in GT was found between the treatment and
control groups (Mann-Whitney U test: U = 1465.5, p = 0.626,
ns) (Figure 5). All germinated seeds (n = 45) that were
planted (treatment: n = 31; control: n = 14) from the primary

FIGURE 4 | Seeds of P. microphylla post-gut transit and recovered from
feces of a rattlesnake (C. atrox) in the primary study. The seed on the left has
undergone imbibition (imbibed and swelled) and germinated (presence of the
radicle) while the other seed shows no outward change in appearance from its
original state despite having been exposed to the digestive tract.

TABLE 2 | Logistic regression results from primary study.

Coefficients Estimate Std. Error Z-value a

Intercept 2.56E+00 1.38E+00 1.853 0.0639

Treatment −9.42E-01 1.34E+00 −0.705 0.4808

Trial −7.52E-02 1.59E-01 −0.474 0.6356

Snake 1.15E-15 5.78E-01 0.000 1

Defecation −3.35E-01 5.82E-01 −0.575 0.5652

Testing whether or not seeds germinated with Treatment (snake digested or
control), Trial (1 or 2), and Snake (1 or 2) as explanatory variables. With an alpha
level of 0.05, all factors were non-significant, suggesting that snake-digested seeds
were as viable as non-digested seeds.

treatment group survived and were grown to a height of 13–
15 cm (Figure 6).

Secondary Study (Desert Botanical
Garden, the Phoenix Zoo)
The three trials yielded 22, 23, and 17 excreted seeds, respectively,
from both snake species, and tests for germination ran for 11,
27, and 95 days, respectively. Five untreated seeds were used
as controls for each of the three trials. A total of 16 seeds
germinated after passing through the digestive tracts of the
Sonoran Gophersnake (4 of 17 = 17.4%) and Desert Kingsnake
(12 of 29 = 41.4%). Comparing trials 1 and 2, in which the feces
containing the seeds were placed in the petri dishes, vs. trial 3,
where seeds were removed from the fecal bolus and washed with
tap water, revealed a large difference in germination frequency.
Germination for the combined trials 1 and 2 were 15.6% (7/45)
vs. 53% (9/17). Mold was an issue in many cases in the combined
trials (Supplementary Figure 3), but far less so in trial 3 where the
seeds were gently washed in tap water. Mold was rarely observed
in the primary trials (see main text). The combined results of the
three secondary trials revealed that the germination rate of the
treatment seeds (16/62 = 25.8%) was not significantly different
(7/25 = 28%) (Z-test, two-tailed: Z = −0.210, p > 0.05, ns) from
the control seeds.

DISCUSSION

The most important outcome in all diploendozoochorous
systems, from ecological and evolutionary perspectives, is that
seeds survive all steps of the process—harvested or swallowed
by a seed predator, swallowed whole or stored undamaged (e.g.,
cheek pouches and crop), swallowed undamaged by a secondary
predator, and retention of germination viability after elimination
from the gut of the secondary predator (Traveset et al., 2008,
2019; Hämäläinen et al., 2017). In a study involving preserved
museum specimens of rattlesnakes (Reiserer et al., 2018), seeds
found in the guts of snakes were derived from heteromyid
and geomyid rodents, which were likely harvested and stored
unharmed in their seed pouches. Uniquely, rattlesnakes and most
other snake species subjugate and consume these rodents whole
and do not chew (crush); consequently, most seeds transmitted
through the GI tracts of snakes from these sources do not
appear to be mechanically damaged. Furthermore, owing to long
retention times in the digestive tracts of rattlesnakes, some seeds
are capable of germination during gut transit (Reiserer et al.,
2018; see Cabral et al., 2019; Carbajal-Márquez et al., 2020).

In support of our main hypothesis, we provide the first
experimental evidence, to our knowledge, that seeds of the
Foothill Palo Verde (P. microphylla) retain germination
performance (e.g., viability) when indirectly consumed by
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FIGURE 5 | Results of the primary study involving Western Diamond-backed
Rattlesnakes (C. atrox). Box plots of mean germination times (GT - days) of P.
microphylla seeds for control (c) and treatment (t) groups for 128 days.
Horizontal line in boxes = median. Mann-Whitney U test: U = 1465.5,
P = 0.626, ns.

FIGURE 6 | Examples of P. microphylla seedlings derived from the treatment
group (snake gut transit) in the primary study involving Western
Diamond-backed Rattlesnakes (C. atrox).

snakes—one species of rattlesnake and two species of colubrids—
and subsequently recovered from their excreta (Figures 1, 2 and
Table 1). Importantly, seeds found to be imbibed and germinated
in excreta (feces/urates) produced healthy seedlings (Figure 6).
In the primary study, all germinated seeds subsequently
tested for seedling viability grew normally and developed
into healthy plants.

Under the conditions of the primary study, both aspects
of our second hypothesis (accelerated germination) were not
statistically supported. The mature seeds of P. microphylla
(located in pods) are dry and have physical dormancy
(“hardseededness”) resulting from densely packed layers of
palisade cells impregnated with water-repellent substances which
constrains imbibition of water (Baskin et al., 2000; Baskin and
Baskin, 2014), a necessary step for germination. Thus, based
on studies of other organisms (reviewed in Hämäläinen et al.,
2017), we anticipated that gut-passage in the snakes would
aid in chemical and mechanical scarification and accelerate
germination frequency and rate. In other studies involving
reptiles, the effects of gut passage on germination rate and
frequency are mixed; in some cases both germination rate and

frequency are accelerated (e.g., Yang et al., 2021), yet in others
neither of these effects are observed (e.g., Castilla, 2000). Clearly,
for reptiles, studies of diploendozoochory are in their infancy
and it would be premature to make hard conclusions at this
time based on the little available information (Hämäläinen et al.,
2017; Reiserer et al., 2018). Nonetheless, the importance of
positive effects of gut passage, such as described in other studies
(Hämäläinen et al., 2017), cannot be overlooked and should
encourage further research in this understudied area of ecology.

We provide several possible explanations for our results with
respect to the second hypothesis tested in the primary study.
Foothill Palo Verde (P. microphylla) is a species in which the
seed crop is comprised of both non-dormant and dormant seeds
and thus diversified germination behavior is exhibited (Bowers
and Turner, 2002; Bowers, 2004). Consequently, a variable
proportion (e.g., 20 to 34%) of them can germinate shortly after
dispersal from their pods and, importantly, without scarification
(Bowers, 2004). The dormant seeds can persist into a second
season (or even longer) and require exposure to environmental
scarification (high heat, rain, wind, and abrasion) for germination
to occur (Bowers and Turner, 2002; Bowers, 2004). Second,
in germination studies of P. microphylla, we suspect capturing
subtle differences in germination rate and frequency will likely
require a much larger sample size of seeds to achieve statistical
significance for a potentially small effect. Perhaps a 10-fold
increase of seeds (e.g., 1000) would be required to overcome
the abovementioned problems associated with dormant and
non-dormant seed types (see Figure 5). Finally, because wet
heat appears to be an important release of dormancy in a
closely related species of tree from Mexico (Parkinsonia aculeate),
and thus likely others (Van Klinken et al., 2006), subjecting
P. microphylla seeds to warmer conditions (e.g., 38–45◦C) during
germination tests in future studies is warranted.

Similar to the results of the primary study involving Western
Diamond-backed Rattlesnakes (C. atrox) mice impregnated
with seeds of P. microphylla were consumed by the Sonoran
Gophersnake (P. catenifer) and Desert Kingsnake (L. splendida).
Some of those seeds that transited the digestive tracts retained
viability and germinated (see Supplementary Figure 3).
Nonetheless, when compared to the primary study, germination
frequency was significantly greater in the primary study (z-test,
two-tailed: z = 7.140, p < 0.001). This result was likely due to
greater trial duration in the primary study (trials were run for 128
days) and germination conditions were likely superior (e.g., less
moisture, warmer, and better air circulation) for P. microphylla.
Mold was commonly associated with seeds kept in their feces in
trials 1 and 2 of the secondary study. However, we suspect that
the highly moist conditions and lack of air flow in petri dishes
contributed to this issue. In the Sonoran Desert, similar condition
would rarely be encountered. Clearly, in the secondary study,
better results were obtained when seeds were removed from
the feces and urates. Germination conditions that more closely
mimic natural situations (e.g., drier and warmer) are warranted
in future studies, which we envision to include performing tests
under a range of natural conditions (e.g., outdoor plots).

We provide herein support for the role of viperid and colubrid
snakes as important agents of seed rescue and dispersal in nature,
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highlight their importance as potential ecosystem engineers, and
offer sound justification for future field-based studies (Reiserer
et al., 2018). Clearly, more research is needed, especially studies
that are field-based, to provide context and to better understand
the ecological and evolutionary ramifications of this fascinating,
yet mostly understudied, diploendozoochorous system (Franklin
et al., 2016). Although our current focus has been on organisms
of North American deserts, clearly other regions (e.g., tropics)
should be explored (Reiserer et al., 2018; Dugger et al., 2019).
Furthermore, other plant and snake species would be desirable to
study purely for inclusion of greater biodiversity and exploration
of potential variation (Hämäläinen et al., 2017).

CONCLUSION

Topics closely related to seed dispersal and their fates will need
to be investigated in field-based studies of diploendozoochory
in snakes. For example, despite an abundance of research
on defecation sites of lizards, the closest extant relatives of
snakes, similar detailed studies are nonexistent, to the best of
our knowledge, for wild snakes. Unquestionably, the fate of
eliminated seeds in instances of diploendozoochory by snakes
and other vertebrates may be further influenced, both positively
and negatively, by abiotic (e.g., rain and temperature) and biotic
factors (Vander Wall and Longland, 2004). Invertebrates, for
instance, such as ants (Pascov et al., 2015; Luna et al., 2018;
Anjos et al., 2020) and dung beetles (D’hondt et al., 2007; Midgley
et al., 2015), are common vectors in several ecosystems that
disperse and alter ground-based seeds both mechanically and
chemically (Franklin et al., 2016). Given that only anecdotal data
are available, the ecology of defecation sites in snakes and the fate
of seeds present in their feces remain open research questions.
Indeed, as stated by Anni Hämäläinen and her colleagues
(Hämäläinen et al., 2017, p. 13), “It is currently unknown
how important the phenomenon (of diploendozoochory) is
ecologically, but given its potentially vast prevalence and the
possible implications, it is possible that ignoring it could
impair the interpretation of broad ecological patterns or hinder
conservation efforts.” Importantly, it is incumbent upon us to
comment that many of the vipers and other snake species that
are candidate ecosystem engineers are themselves endangered for
various reasons, including from direct persecution by humans
(Maritz et al., 2016; Birskis-Barros et al., 2019; Fathinia et al.,
2020). It is hoped that highlighting their potential new role
as agents of seed rescue and secondary dispersal for deserts
and other ecosystems will encourage both academic and public
involvement (e.g., citizen scientists) in generating interest and
legislature for their protection and long-term conservation.
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