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There is no agreed definition of intelligence, so it is problematic to simply ask whether

brains, swarms, computers, or other systems are intelligent or not. To compare

the potential intelligence exhibited by different cognitive systems, I use the common

approach used by artificial intelligence and artificial life: Instead of studying the substrate

of systems, let us focus on their organization. This organization can be measured with

information. Thus, I apply an informationist epistemology to describe cognitive systems,

including brains and computers. This allows me to frame the usefulness and limitations

of the brain-computer analogy in different contexts. I also use this perspective to discuss

the evolution and ecology of intelligence.
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1. INTRODUCTION

In the 1850s, an English newspaper described the growing global telegraph network as a “nervous
system of the planet” (Gleick, 2011). Notice that this was half a century before Ramón y Cajal (1899)
first published his studies on neurons. Still, metaphors have been used since antiquity to describe
and try to understand our bodies and our minds (Zarkadakis, 2015; Epstein, 2016): humans have
been described as made of clay (Middle East) or corn (Americas), with flowing humors, like
clockwork automata, similar to industrial factories, etc. The most common metaphor in cognitive
sciences has been that of describing brains as computers (von Neumann, 1958; Davis, 2021).

Metaphors have been used in a broad range of disciplines. For example, in urbanism, there
are arguments in favor of changing the dominant narrative of “cities as machines” to “cities as
organisms” (Batty, 2012; Gershenson, 2013b).

We can have a plethora of discussions on which metaphors are the best. Still, being pragmatic,
we can judge metaphors in terms of their usefulness: if they help us understand phenomena
or build systems, then they are valuable. Notice that then, depending on the context, different
metaphors can be useful for different purposes (Gershenson, 2004). For example, in the 1980s, the
debate between symbolists/representationists (brain as processing symbols) (Fodor and Pylyshyn,
1988) and connectionists (brain as network of simple units) (Smolensky, 1988) did not end
with a “winner” and a “loser,” as both metaphors (computational, by the way) are useful in
different contexts.
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There have been several other metaphors used to describe
cognition, minds, and brains, each with their advantages and
disadvantages (Varela et al., 1991; Steels and Brooks, 1995;
Clark and Chalmers, 1998; Beer, 2000; Gärdenfors, 2000; Garnier
et al., 2007; Chemero, 2009; Froese and Ziemke, 2009; Kiverstein
and Clark, 2009; Froese and Stewart, 2010; Stewart et al.,
2010; Downing, 2015; Harvey, 2019). It is not my purpose to
discuss these here, but to notice that there is a rich variety of
flavors when it comes to studying cognition. Nevertheless, all
of these metaphors can be described in terms of information
processing. Since computation can be understood as the
transformation of information (Gershenson, 2012), “computers,”
broadly understood as machines that process information can be
a useful metaphor to contain and compare othermetaphors. Note
that the concept of “machine” (and thus computer) could also be
updated (Bongard and Levin, 2021).

Formally, computation was defined by Turing (1937). A
computable function is that which can be calculated by a
Universal Turing Machine (UTM). Still, there are two main
limitations of UTMs related to modeling minds (Gershenson,
2011a):

1. UTMs are closed. Once a computation begins, there is
no change in the program or data, so adaptation during
computation is limited.

2. UTMs compute only once they halt. In other words, outputs
depend on a UTM “finishing its computation.” Still, minds
seem to be more continuous than halting. Then the question
arises: what function would a mind be computing?

As many have noted, the continuous nature of cognition seems
to be closely related to that of the living (Maturana and
Varela, 1980; Hopfield, 1994; Stewart, 1995; Walker, 2014). We
have previously studied the “living as information processing”
(Farnsworth et al., 2013), not only at the organism level, but at
all relevant scales. Thus, it is natural to use a similar approach to
describe intelligence.

Note that the limitations of UTMs apply only for theoretical
computation. In practice, many artificial computation systems
are continuous, such as reactive systems. An example would be
an operating system, that does not precisely halt, but is always
expecting events (internal or external) and responding to these.

In the next section, I present a general notion of information
and its limits to study intelligence. Then, I present the advantages
of studying intelligence in terms of information processing.
Intelligence is not restricted to brains, and swarms are a classic
example of this, which can also be described as information
processing systems. Before concluding, I exploit the metaphor
of “intelligence as information processing” to understand its
evolution and ecology.

2. INFORMATION

Shannon (1948) proposed a measure of information in the
context of telecommunications, that is equivalent to Boltzmann-
Gibbs entropy. This measure characterizes how much a receiver
“learns” from incoming symbols (usually bits) of a string, based

on the probability distribution of previously known/received
symbols: if new bits can be completely determined from the
past (as in a string with only one repeating symbol), then they
carry zero information (because we know that the new symbols
will be the same as previous ones). If previous information is
useless to predict the next bit (as in a random coin toss), then
the bit will carry maximum information. Elaborating on this,
Shannon calculated howmuch redundancy is required to reliably
transmit a message over an unreliable (noisy) channel. Even
when Shannon’s purpose was very specific, the use of information
in various disciplines has exploded in recent decades (Haken,
1988; Lehn, 1990; Wheeler, 1990; Gell-Mann and Lloyd, 1996;
Atlan and Cohen, 1998; DeCanio and Watkins, 1998; Roederer,
2005; von Baeyer, 2005; Cover and Thomas, 2006; Prokopenko
et al., 2009, 2011; Batty et al., 2012; Escalona-Morán et al., 2012;
Gershenson, 2012, 2020, 2021b; Fernández et al., 2014, 2017;
Zubillaga et al., 2014; Haken and Portugali, 2015; Hidalgo, 2015;
Murcio et al., 2015; Amoretti and Gershenson, 2016; Roli et al.,
2018; Equihua et al., 2020; Krakauer et al., 2020; Scharf, 2021).

We can say that electronic computers process information
explicitly, as we can analyze each change of state and information
is encoded in a precise physical location. However, humans
and other animals process information implicitly. For example,
we say we have memories, but these are not physically at a
specific location. And it seems unfeasible to represent precisely
the how information changes in our brains. Still, we do process
information, as we can describe “inputs” (perceptions) and
“outputs” (actions).

Shannon assumed that the meaning of a message was agreed
previously between emitter and receiver. This was no major
problem for telecommunications. However, in other contexts,
meaning is not a trivial matter. Following Wittgenstein (1999),
we can say that the meaning of information is given by the use
agents make of it. This has several implications. One is that
we can change meaning without changing information [passive
information transformation; (Gershenson, 2012)]. Another is the
limits on artificial intelligence (Searle, 1980; Mitchell, 2019), as
the use of information in artificial systems tends to be predefined.
Algorithms can “recognize” traffic lights or cats in an image,
as they are trained for this specific purpose. But the “meaning”
for computer programs is predefined, i.e., what we want the
program to do. The quest for an “artificial general intelligence”
that would go beyond this limit has produced not much more
than speculations.

Even if we could simulate in a digital computer all the neurons,
molecules, or even elementary particles from a brain, such a
simulation would not yield something akin to a mind. On the
one hand, interactions generate novel information at multiple
scales, so we would need to include not only brain, but body
and world that interacts with the brain (Clark, 1997). Moreover,
such a simulation would require to model not only one scale,
but all scales relevant to minds (see below). On the other hand,
as mentioned above, observers can give different meanings to
the same information. In other words, the same “brain state”
for different people could refer to different “mental states.” For
example, we could use the same simple “neural” architecture of a
Braitenberg vehicle (Braitenberg, 1986) that exhibits phototaxis,
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but connect the inputs to different sensors (e.g., sound or odor,
instead of light), and the “meaning” of the information processed
by the same neural architecture would be very different. In a
sense, this is related to the failure of Laplace’s daemon: even
with full information of the states of the components of a
system, prediction is limited because interactions generate novel
information (Gershenson, 2013a). And this novel information
can determine the future production of information at different
scales through upward or downward causation (Campbell, 1974;
Bitbol, 2012; Farnsworth et al., 2017; Flack, 2017), so all relevant
scales should be considered (Gershenson, 2021a). An example
of downward causation can be given with money: it is a social
contract, but has a causal effect on matter and energy (physics),
e.g., when we extract minerals from a mountain. This action
does not violate the laws of physics, but the laws of physics are
not enough to predict that the matter in the mountain will be
extracted by humans for their own purposes.

In spite of all its limitations, the computer metaphor can
be useful in a particular way. First, the limits on prediction by
interactions are related to computational irreducibility (Wolfram,
2002). Second, describing brains and minds in terms of
information allows us to avoid dualisms. Thus, it becomes natural
to use information processing to describe intelligence and its
evolution. Finally, information can contain other metaphors and
formalisms, so it can be used to compare them and also to exploit
their benefits.

3. INTELLIGENCE

There are several definitions of intelligence, but not a single
one that is agreed upon. We have similar situations with
the definitions of life (De Duve, 2003; Aguilar et al., 2014),
consciousness (Michel et al., 2019), complexity (Lloyd, 2001;
Heylighen et al., 2007), emergence (Bedau and Humphreys,
2008), and more. These concepts could be said to be of the type
“I know it when I see it,” to quote Potter Stewart.

Still, having no agreed definition is no motive nor excuse
for not studying a phenomenon. Moreover, having different
definitions for the same phenomenon can give us broader
insights than if we stick to a single, narrow, inflexible definition.

Thus, we could define intelligence as “the art of getting away
with it” (Arturo Frappé), or “the ability to hold two opposed
ideas in mind at the same time and still retain the ability to
function. One should, for example, be able to see that things
are hopeless and yet be determined to make them otherwise”
(F. Scott Fitzgerald). Turing (1950) proposed his famous test to
decide whether a machine was intelligent. Generalizing Turing’s
test, Mario Lagunez suggested that in order to decide whether
a system was intelligent, first, the system has to perform an
action. Then, an observer has to judge whether the action was
intelligent or not, according to some criteria. In this sense, there
is no intrinsically intelligent behavior. All actions and decisions
are contextual (Gershenson, 2002). Like with meaning, the same
action can be intelligent or not, depending on the context and on
the judge and their expectations.

Generalizing, we can define intelligence in terms of
information processing: An agent a can be described as
intelligent if it transforms information [individual (internal) or
environmental (external)] to increase its “satisfaction” σ .

I have previously defined satisfaction σ ∈ [0, 1] as the degree
to which the goals of an agent have been fulfilled (Gershenson,
2007, 2011b). Certainly, we still require an observer, since we are
the ones who define the goals of an agent, its boundaries, its scale,
and thus, its satisfaction. Examples of goals are sustainability,
survival, happiness, power, control, and understanding. All of
these can be described as information propagation (Gershenson,
2012): In this context, an intelligent agent will propagate its
own information.

Brains by themselves cannot propagate. But species of animals
with brains tend to propagate. In this context, brains are parts of
agents that help process information in order to propagate those
agents. From this abstract perspective, we can see that such ability
is not restricted to brains (Levin and Dennett, 2020). Thus, there
are other mechanisms capable of producing intelligent behavior.

4. SWARMS

There has been much work related to collective intelligence and
cognition (Hutchins, 1995; Heylighen, 1999; Reznikova, 2007;
Couzin, 2009; Malone and Bernstein, 2015; Solé et al., 2016).
Interestingly, groups of humans, animals or machines do not
have a single brain. Thus, information processing is distributed.

A particular case is that of insect swarms (Chialvo and
Millonas, 1995; Garnier et al., 2007; Passino et al., 2008; Marshall
et al., 2009; Trianni and Tuci, 2009; Martin and Reggia, 2010),
where not only information processing is distributed, but also
reproduction and selection occur at the colony level (Hölldobler
and Wilson, 2008).

To compare the cognitive architectures of brains and swarms,
I previously proposed computing networks (Gershenson, 2010).
With this formalism, it can be shown that the differences
in substrate do not necessarily imply a theoretical difference
in cognitive abilities. Nevertheless, in practice, the speed and
scalability of information processing of brains is much superior
than that of swarms: neurons can interact in the scale of
milliseconds, and mammal brains can have a number of neurons
in the order of 1011 with 1014 synapses (several species have more
neurons than humans, including elephants and some whales,
orcas having the most and more than twice as humans). The
largest insect swarms that have been registered (locusts) are also
in the order of 1011 individuals (covering 200Km2). However,
insects interact in the scale of seconds, and only with their local
neighbors. In theory, it might not matter much. But in practice,
this limits considerably the information processing capacities of
swarms over brains.

Thus, the brain as computer metaphor is not appropriate for
studying collective intelligence in general, nor swarm intelligence
in particular. However, the intelligence of brains and swarms can
be described in terms of information processing, as an agent a can
be an organism or a colony, with its own satisfaction σ defined by
an external observer.
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Another advantage of studying intelligence as information
processing is that we can use the same formalism to
study intelligence at multiple scales: cellular, multicellular,
collective/social, and cultural. Curiously, at the global scale
(where we might reach a scale of 1011 humans later this century),
the brainmetaphor has also been used (Mayer-Kress and Barczys,
1995; Börner et al., 2005; Bernstein et al., 2012), although its
usefulness remains to be demonstrated.

5. EVOLUTION AND ECOLOGY

If we want to have a better understanding of intelligence,
we must study how it came to evolve. Intelligence as
information-processing can also be useful in this context, as
different substrates and mechanisms can be used to exhibit
intelligent behavior.

What could be the ecological pressures that promote the
evolution of intelligence? Since environments and ecosystems
can also be described in terms of information, we can say
that more complex environments will promote—through natural
selection—more complex organisms and species, which will
require a more complex intelligence to process the information
of their environment and of other organisms and species they
interact with (Gershenson, 2012). In this way, the complexity of
ecosystems can also be expected to increase though evolution.
It should be noted that we understand complexity as a balance
between order and chaos, stability and change (Packard, 1988;
Langton, 1990; Lopez-Ruiz et al., 1995; Fernández et al., 2014;
Roli et al., 2018). Thus, species cannot be too robust or too
adaptable in order to thrive in a complex ecosystem. This
certainly will depend on how stable or volatile the ecosystems
will be Equihua et al. (2020), but it is clear that organisms require
to match the variety that their environment poses (Ashby, 1956;
Gershenson, 2015) (see below).

These ideas generalize Dunbar’s (1993, 2003) “social brain
hypothesis”: larger and more complex social groups put a
selective pressure on more complex information processing
(measured as the neocortex to bodymass ratio), which gives
individuals more cognitive capacities to recognize different
individuals, remember who can they trust, multiple levels of
intentionality (Dennett, 1989), and so on. In turn, increased
cognitive abilities lead to more complex groups, so this cycle
reinforces the selection for more intelligent individuals.

One can make a similar argument using environments
instead of social groups: more complex ecosystems put a
selective pressure for more intelligent organisms, social groups,
and species; as they require greater information-processing
capabilities to survive and exploit their environments. This
also creates a feedback, where more complex information
processing by organisms, groups, and species produce more
complex ecosystems.

However, individuals can “offload” their information
processing to their group or environment, leading to a decrease
in their individual information processing abilities (Reséndiz-
Benhumea et al., 2021). This is to say that intelligence does

not always increase. Although there is a selective pressure for
intelligence, its cost imposes limits that depend as well on the
usefulness of increased cognitive abilities.

Generalizing, we can say that information evolves to have
greater control over its own production (Gershenson, 2012).
This leads to more complex information-processing, and thus,
we can expect intelligence to increase at multiple scales through
evolution, independently on the substrates that actually do the
information processing.

Another way of describing the same: information is
transformed by different causes. This generates a variety of
complexity (Ashby, 1956; Gershenson, 2015). More complex
information requires more complex agents to propagate
it, leading to an increase of complexity and intelligence
through evolution.

At different scales, since the Big Bang, we have seen an increase
of information processing through evolution. In recent decades,
this increase has been supraexponential in computers (Schaller,
1997). Although there are limitations for sustaining this rate of
increase (Shalf, 2020), we can say that the increase of intelligence
is a natural tendency of evolution, be it of brains, swarms, or
machines. This will not lead to a “singularity,” but to an increase
of the intelligence and complexity of humans, machines, and the
ecosystems we create.

6. CONCLUSION

Brains are not essential for intelligence. Plants, swarms, bacterial
colonies, robots, societies, and more exhibit intelligence without
brains. An understanding of intelligence (and life, Gershenson
et al., 2020) independently of its substrate, in terms of
information processing, will be more illuminating that focussing
only on the mechanisms used by vertebrates and other animals.
In this sense, the metaphor of the brain as a computer, is limited
more on the side of the brain than on the side of the computer.
Brains do process information to exhibit intelligence, but there
are several other mechanisms that also process information to
exhibit intelligence. Brains are just a particular case, and we can
learn a lot from them, but we will learn more if we do not limit
our studies to their particular type of cognition.
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