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Environmental variability in coastal oceans associated with upwelling dynamics probably
is one of the most pervasive forces affecting the physiological performance of
marine life. As the environmental temperature is the abiotic factor with major
incidence in the physiology and ecology of marine ectotherms, the abrupt temperature
changes in upwelling systems could generate important variations in these organisms’
functional processes. The relationship between ambient temperature and physiological
performance can be described through a thermal performance curve (TPC). The
parameters of this curve usually show geographic variation usually is in accordance with
the predictions of the climate variability hypothesis (CVH), which states that organisms
inhabiting more variable environments should have broader ranges of environmental
tolerance in order to cope with the fluctuating environmental conditions they experience.
Here we study the effect generated by the environmental variability in an active upwelling
zone on the physiological performance of the marine ectotherm Achanthopleura
echinata. In particular, we compared the parameters of the TPC and the metabolic
rate of two populations of A. echinata, one found in high semi-permanent upwelling
(Talcaruca), while the other is situated in an adjacent area with seasonal upwelling (Los
Molles) and therefore more stable environmental conditions. Our results show that:
(1) oxygen consumption increases with body size and this effect is more significant
in individuals from the Talcaruca population, (2) optimal temperature, thermal breadth,
upper critical limit and maximum performance were higher in the population located in
the area of high environmental heterogeneity and (3) individuals from Talcaruca showed
greater variance in optimal temperature, thermal breadth, upper critical limit but not
in maximum performance. Although it is clear that a variable environment affects the
thermal physiology of organisms, expanding their tolerance ranges and generating
energy costs in the performance of individuals, it is relevant to note that upwelling
systems are multifactorial phenomena where the rise of water masses modifies not only
temperature, but also decreases O2, pH, and increases pCO2 which in turn could modify
metabolism and TPC.

Keywords: thermal sensitivity, heart rate, thermal performance curve, upwelling, geographic variation,
environmental variability
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INTRODUCTION

Environmental variability in coastal oceans associated with
upwelling dynamics probably is one of the most pervasive
forces affecting the physiological performance of marine life
(Gaitán-Espitia et al., 2017; Doney et al., 2020). Coastal
upwelling originates from large-scale processes that couple
atmospheric and oceanographic features (Hill et al., 1998) and
its waters are characterized by a high primary productivity, cold
temperatures, low pH, low O2 and high CO2 concentrations
(Kapsenberg and Hofmann, 2016; Ramajo et al., 2020). Therefore,
upwelling systems are characterized to be highly variable and
unpredictable for intertidal and sub-tidal ectotherms in both,
short time and large spatial scales, in several environmental
conditions such as temperature, pH and oxygen availability
(Torres et al., 2011; Aravena et al., 2014; Vargas et al., 2017;
Ramajo et al., 2020; Lardies et al., 2021). These variations in
the physicochemical characteristics of water have a profound
impact in the physiological capacities of marine fauna (Duarte
et al., 2018; Ramajo et al., 2020). This is particularly true
for the broad daily (see Osores et al., 2018) and seasonal
variations in temperature, which can be as extensive as their
cold/heat tolerance limits (Helmuth et al., 2006; Somero,
2010). Furthermore, as the environmental temperature is the
abiotic factor with major incidence in the physiology and
ecology of marine ectotherms (Pörtner, 2001), the abrupt
temperature changes in upwelling systems could generate
important variations in these organisms’ functional process (e.g.,
growth, reproduction, physiology) (Lardies et al., 2011; Barria
et al., 2014, 2018; Broitman et al., 2021).

The relationship between ambient temperature and
physiological performance can be described through a thermal
performance curve (TPC) (Huey et al., 2001). This curve is
usually characterized by four parameters: the minimum and
maximum critical temperatures (CTmin; CTmax), which are,
respectively, the minimum and maximum environmental
temperatures at which performance is zero; and the optimal
temperature (Topt), which is the temperature at which the
performance is maximized (Pmax) (Barria and Bacigalupe, 2017).
The TPC has been used to describe mechanistically the thermal
sensitivity among populations of ectothermic species (Kingsolver
et al., 2004; Barria et al., 2018; Broitman et al., 2018). In addition,
it is well known that the parameters of the TPC usually show
geographic variation depending on the local environment and
genetic background of populations (Gilchrist, 1996; Kingsolver
et al., 2004; Gaitán-Espitia et al., 2014, 2017; Barria et al., 2018;
Broitman et al., 2021). This geographic variation usually is
in accordance with the predictions of the climate variability
hypothesis (CVH), which states that organisms inhabiting more
variable environments (i.e., high altitudes or latitudes) should
have broader ranges of environmental performance in order
to cope with the fluctuating environmental conditions they
experience (e.g., Gaitán-Espitia et al., 2017). However, living in
highly variable environments is not without costs (Van Buskirk
and Steiner, 2009; Murren et al., 2015). The metabolic rate of
an organism is linked to its energy use and as such reflects the
energetic cost of adaptation to a particular thermal environment

(Gillooly et al., 2001; Lardies et al., 2011). In this context, and
under the basis of CVH, it would be expected that populations
living in places exposed to abrupt temperature fluctuations show
higher energy costs (Barria and Bacigalupe, 2017; Broitman et al.,
2018; Lardies et al., 2021).

The north-central coast of Chile (20–35◦S) along the western
edge of South America exhibits typical structures of an upwelling
system (Rahn et al., 2011). The climate is dominated by the
Pacific-South anticyclone that favors the semi-arid zones and the
prevalence of south winds during most of the year, promoting
the upwelling of cold waters along the coast, which are equally
rich in nutrients, supersaturated in CO2, low in O2, and pH
(Ramajo et al., 2020; Lardies et al., 2021). In particular, Punta
Lengua de Vaca (30◦S; front Talcaruca) is recognized as one
of the most active upwelling centers of the region (Figueroa
and Moffat, 2000; Torres et al., 2011; Rahn et al., 2015), which
undoubtedly generates an extreme scenario for the organisms
inhabiting there. These different patterns of upwelling produce
strong differences in the variability of sea surface temperature,
total alkalinity, carbonate and the partial pressure of CO2 among
other factors (see Table 1). Hence, here we study the effect
generated by the environmental variability in an active upwelling
zone on the physiological performance of the marine ectotherm
Achanthopleura echinata (Barnes, 1824). This polyplacophore is
distributed from Punta Filomena (North of Perú, 9◦16′S) to
Punta Parra (South of Chile, 36◦40′S) (Tobar-Villa and Ibáñez,
2013) and is one of the most common mollusks of the coastal
benthic fauna. Despite this, there are extremely few studies
on this species (Camus et al., 2012). Therefore, we compared
the parameters of the TPC and the metabolic rate of two
populations of Achanthopleura echinata, one found in high semi-
permanent upwelling (Talcaruca), while the other is situated in an
adjacent area with seasonal upwelling and therefore more stable
environmental conditions (Los Molles, 32◦24′S).

TABLE 1 | Summary of salinity and seawater carbonate chemistry variables
measured in two study locations.

Parameter Locality

30◦ 29′ S
Talcaruca

32◦ 24′ S
Los Molles

Salinity (ppm) 33.05 ± 0.96 33.23 ± 1.31

PHNBS (mol) 7.91 ± 0.48 8.10 ± 0.17

TA (µmol Kg−1) 2291.07 ± 106.16 2252.14 ± 38.72

CO3
−2 (µmol Kg−1) 181.41 ± 59.22 138.62 ± 34.66

PCO2 (µatm) 590.25 ± 471.72 441.12 ± 174.06

�calcite 2.18 ± 0.88 3.18 ± 0.51

�aragonite 2.12 ± 0.46 2.20 ± 0.22

SST (◦C) 13.02 (8.0, 16.3) 14.21 (9.7, 16.8)

CV SST (%) 26.09 12.45

Mean ± SD during 2017 to 2020, the temperature information includes the annual
average of the Sea Surface Temperature (SST) during the same periods. The
minimum and maximum temperatures are shown between parentheses. Other
parameters are total alkalinity (TA), carbonate (CO3

−2), the partial pressure of CO2
(pCO2), saturation states for aragonite �Aragonite, and saturation states for calcite
�Calcite.
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MATERIALS AND METHODS

Study Sites
Fifty-two individuals of Acanthopleura echinata were randomly
collected by hand during the austral spring in low intertidal
rocky shores from Talcaruca (30◦29′S, 71◦41′W; N = 32)
and Los Molles (32◦24′S, 71◦50′W; N = 20). Animals were
transported during 2–3 days in refrigerated containers to the
laboratory at Adolfo Ibañez University in Santiago. These sites are
characterized by contrasting variability in upwelling dynamics
and in the physical-chemical characteristics of their coastal waters
(Table 1). While Talcaruca demarcates the southern border
of the Peruvian province (Rivadeneira and Fernández, 2005;
Barria et al., 2014), and is characterized by a strong, continuous
upwelling, supersatured with dissolved CO2 and low pH levels
in near-shore areas (Torres et al., 2011) Los Molles (32◦S) is
exposed to seasonal, fluctuating upwelling events (see Vargas
et al., 2017; Broitman et al., 2018) in the transitional zone.
Ocean temperature, salinity, and seawater carbonate system
parameters were measured directly in the intertidal zone (see
below and Table 1). For the temperature estimation, submersible
temperature data loggers (HOBOTM, Onset Computer Corp.,
MA, United States) were installed, housed inside PVC pipes
embedded in concrete blocks, and deployed at –1 m below
the surface (see Broitman et al., 2018 for details). The loggers
recorded the sea surface temperature data every 30 min, which
was downloaded on a monthly schedule; see details Lardies et al.
(2021). Data for local temperature climatology (see Table 1)
are long-term daily averages, and in both sites have more than
2 years of high frequency data. Using the same methodology
and frequency described above, we anchored conductivity
dataloggers (HOBO U24-001 Conductivity Data LoggerTM,
ONSET Computer Corp., MA, United States) to determine
salinity in the intertidal zone (∼0.5 m below the seawater surface
at the mid-intertidal). The pH in the field was measured biweekly
for 2019 and 2020 using a Metrohm 713 Meter (MetrohmTM)
connected to a combined electrode (Metrohm model 6.0219.100)
previously calibrated with the Metrohm pH 4 (6.2307.200), pH
7 (6.2307.210), and pH 9 (6.2307.220) standard buffers. The pH
values are reported on the NBS scale. Furthermore, seawater
samples were taken with a biweekly frequency (for 2019 and
2020) to measure Total Alkalinity (TA). Given this information,
we proceed to estimate carbonate system parameters (see Ramajo
et al., 2020 for details of estimation of carbonate parameters) in
both localities. Samples for Total Alkalinity (TA) were poisoned
using HgCl2 50 µL, and the bottles (PyrexTM, Corning) were
sealed using parafilm. Then, TA was determined using the open-
cell titration method (Dickson et al., 2007) using an automatic
alkalinity titrator (Model AS-ALK2, Apollo SciTech) equipped
with a combination pH electrode (8102BNUWP, Thermo Fisher
Scientific) and temperature probe (Star ATC, Thermo Fisher
Scientific) connected to a pH meter (Orion Star A211, Thermo
Fisher Scientific). All samples were analyzed at 25◦C (± 0.1◦C),
and the temperature was regulated using a water bath (Lab
Companion CW-05G). Accuracy was controlled using certified
reference material (CRM, supplied by A. Dickson, University

California San Diego), and the TA repeatability was 2–3 µmol
kg−1 on average.

At each study site stones covered Ulva spp., corallines and
barnacles were collected and transported to the lab as food for
the sampled individuals (see Camus et al., 2012). As A. echinata
inhabits the low intertidal (Otaiza and Santelices, 1985) it is
not exposed to air for most part of the day, thus animals from
both localities were acclimated for 2 weeks at water temperature
of 14 ± 1◦C (SunSun R©) without tidal regime. Nevertheless,
aquariums (dimensions 80× 40× 40 cm) were covered with just
2/3 of their height in water and rocks to provide individuals the
opportunity to be exposed to air if they wanted to. Photoperiod
was maintained at 14:L–10:D (i.e., spring condition), pH at
8.1 ± 0.1 and salinity at 33 ± 1 PSU, controlled by a pH-metere
(Metrohm model 826) and a salinometer, respectively. Food
was provided ad libitum and sea water was constantly aerated
(InstantOcean R©). Each individual was marked with a numerical
and colored bee mark (i.e., beeworks©) on the II plate. Before
experiments, each individual was measured (from the anterior
to the posterior mantle girdle) using a digital caliper Litz and
weighted with an analytical balance (Shimazu, model AUX220).

Oxygen Consumption
The metabolic rate was measured as oxygen consumption
using fiber optic oxygen sensors (Precision Sensing, GmbH,
Germany) connected to a PreSens Oxy-4 mini R© respirometer.
Each individual was put inside a glass respirometry chamber of
1 L connected to a sensor and filled up with UV filtered water.
All individuals were fasted 24 h at maintenance conditions before
the O2 consumption was measured. Temperature was stabilized
using a recirculating water bath (BOYU, Model L075). Sensors
were previously calibrated with saturated Na2SO3 solution and
aerated sea water, to estimate 0 and 100% oxygen, respectively
(see Gaitán-Espitia et al., 2014). Sensors measured the oxygen
in the water every 15 s for a period of approximately 60 min
to obtain several estimates. The first 5 and last 5 min of each
measurement were discarded to avoid possible disturbances
associated to stress of the animals. The mean value of those
50 min in between was considered as the O2 consumption rate
of each individual. The same respirometry chambers were used as
controls, but without chitons inside, under the same experimental
conditions (the control never had a reduction of the oxygen
concentration higher than 3% of measurements).

Thermal Performance Curves
Thermal effects on physiological performance were estimated
for 18 individuals from Los Molles and 15 from Talcaruca
using an electric heart sensor positioned VII on the plate (heart
location) connected to an Oscilloscope (TiePie engineering,
model HS4; see Gaitán-Espitia et al., 2017 for methodology)
to estimate heart rate (HR, cardiac activity). Animals were
immobilized with adhesive tape on a wet plate and introduced
into a thermorregulated chamber (JeioTech, model RW-2025).
Electric impulses were registered as an electrocardiogram by
the program Multi Channel Oscilloscope v1.31.2.0 (TiePie
engineering). Measurements of HR were made to each organism
at fourteen temperatures: 0, 3, 6, 9, 12, 14, 17, 20, 23, 26, 29, 32,
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35, and 37◦C. These temperatures are supported by prior pilot
experiments on the TPC in A. echinata. All individuals were first
tested at the maintenance temperature (i.e., 14◦C). After a short
acclimation of 30 min to remove any potential effect caused by
manipulation, the heart rate was recorded for 10 min, after which
the temperature was set to 12◦C. After 20 min of adjustment, the
heart rate was recorded for 10 min, after which the temperature
was decreased to the next value (i.e., 9◦C). This procedure was
repeated until rate was recorded at 6, 3, and 0◦C. After a 2-day
recovery period for all individuals, a similar protocol was used to
measure HR from 14 to 37◦C.

Statistical Analyses
We used a simple linear model to evaluate the effects of
population and wet weight on metabolic rate. Both numeric
variables were log10 transformed to comply with the assumptions
of a normal distribution. Regarding the TPC, for each locality
we obtained a mean value and SD at each environmental
temperature, which were then used to create 100 null TPC
distributions (see Rezende and Bozinovic, 2019 for details).
From each run of bootstrapping we obtained the maximum
performance (Pmax), the temperature at which performance is
maximized (Topt), the upper critical limit (CTmax) and the
temperature range in which performance remains above 80% of
its maximum (Breath80). We then used a simple linear model
to compare the means of these parameters between localities.
Nineteen of those 200 null distributions failed to converge (N = 9
in Talcaruca, and N = 10 in Los Molles) which gives a final sample
size for analyzing the TPC parameters of 181. Furthermore,
the estimation of CTmax was not possible in 15 of those 181
null distributions (N = 12 in Talcaruca and 3 in Los Molles)
while the estimation of Tbreadth was not possible for one null
distribution in Talcaruca, all of which affected the final error
degrees of freedom. All variables were log10 transformed to meet
normality assumptions. Finally, we used a Fisher test to compare
the variances of the parameters of the TPC between localities. All
analyses were carried out in R version 3.6.3 (R Core Team, 2020).

RESULTS

Salinity in both coastal localities was similar, with values around
33.10 ppm. Instead, ocean temperature showed differences with
a colder annual media of 13.02◦C, an annual maximum of
16.30◦C, and a minimum of 8.00◦C in Talcaruca (see Table 1).
On the other hand, Los Molles has a hotter annual media of
14.21◦C, with an annual maximum of 16.8◦C and a minimum
of 9.70◦C. Interestingly, the coefficient of variation of sea surface
temperature was higher in Talcaruca with 26.1% compared with
only 12.4% in Los Molles (see Table 1). Seawater carbonate
chemistry parameters varied notably among studied localities
(Table 1). The highest and more variable levels of pCO2 were
observed in Talcaruca (590.2 ± 471.7 µmol kg−1), while a pCO2
of 441.1 ± 174.0 (µmol Kg−1) was observed in Los Molles. Los
Molles exhibited higher pH values but more minor variation
(8.10 ± 0.17) than Talcaruca site, which evidenced a higher
variability (7.91± 0.48). The saturation states for calcite (�calcite)

and aragonite (�aragonite) were lower in Talcaruca, with some
events of undersaturation, compared with Los Molles (Table 1).
TA (Total Alkalinity) presented similar values in both sites
(see Table 1).

Although the metabolic rate was positively associated with
body mass in both populations, the rate of increase in metabolic
rate per unit of change in mass was higher in Talcaruca
[Interaction log10(Body mass) × Locality: F(1, 47) = 4.408,
P = 0.041] (Figure 1). This suggest that the overall metabolic
costs increase with body mass in both localities, but those
costs are higher for bigger individuals in Talcaruca. Overall, the
TPC was taller and wider in the population near the upwelling
system (Figure 2). That is, Talcaruca showed higher Pmax [F(1,

178) = 9.611, P = 0.002], Topt [F(1, 178) = 26.19, P < 0.001], CTmax
[F(1, 163) = 42.074, P < 0.001] and Tbreadth [F(1, 177) = 11.438,
P < 0.001] (Figure 2). Additionally, individuals from Talcaruca
showed a higher variance in Topt [F(89, 89) = 0.400, P < 0.001],
CTmax [F(86, 77) = 0.594, P = 0.019] and Tbreadth [F(89,

88) = 0.486, P < 0.001] but not in Pmax [F(89, 89) = 0.866,
P = 0.499] (Figure 2).

DISCUSSION

Ambient temperature plays a fundamental role on the
performance and fitness of ectotherm organisms (Angilletta,
2009; Sunday et al., 2011), and therefore, knowing the
physiological capacities of populations would allow us to
better understand the implications of temperature changes in
the current scenario of global warming (Calosi et al., 2008;
Sunday et al., 2012; Gunderson and Stillman, 2015; Ramajo
et al., 2020). In the present study we found that: (1) oxygen
consumption increases with body size and that this effect is
greater in individuals from the Talcaruca population, (2) Topt,
Tbr, CTmax, and Pmax are higher in the population located in the
area of high environmental heterogeneity (i.e., semi-permanent
upwelling) and (3) individuals from Talcaruca have greater
variance in Topt, Tbr, CTmax, but not in Pmax.

The pattern of energy use of an organism is reflected in its
energy expenditure, and the metabolic rate is the most common
way to measure it (Seibel and Drazen, 2007; Lardies et al.,
2011, 2021). In this context, our results show that individuals
with larger body sizes have higher energy expenditures, which
would impact the reproduction, feeding and growth, among
others consequences (Lardies and Bozinovic, 2008; Lardies
et al., 2011; Ramajo et al., 2020; Broitman et al., 2021).
Furthermore, the increase in energy expenditure with body size
is more pronounced in the Talcaruca population, which suggests
that exposure to a fluctuating environment has important
implications on the performance of individuals (Bozinovic et al.,
2016; Barria et al., 2018; Lardies et al., 2021). In particular,
this higher cost associated with body size in Talcaruca could
be related to the need for constant shell production, since the
water masses that rise during upwelling have lower pH and high
pCO2, which causes the permanent dissolution of this structure
in mollusks (see Table 1; Duarte et al., 2014; Broitman et al.,
2018; Osores et al., 2018; Lardies et al., 2021). Furthermore,
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FIGURE 1 | Relationship between weight and metabolism in each population of Acanthopleura echinata. (Circle/black = Los Molles; Triangle/gray = Talcaruca). The
shaded area represents 95% confidence intervals. The parameters of the relationship for each locality in a log10–log10 scale are: (i) Talcaruca = –0.624 (intercept) and
1.143 (slope) and (ii) Los Molles = –0.366 (intercept) and 0.523 (slope).

carbonate dissolution increases at low temperatures (Morse et al.,
2007; Lagos et al., 2016) and therefore, plate production and
mineralization are more difficult to perform in upwelling zones
(see Broitman et al., 2018; Ramajo et al., 2020).

Intertidal ectotherms are subject to significant body
temperature variations in temporal and spatial scales due
to exposure to tides (Helmuth et al., 2006) and temperatures
during emersion periods at low tides can exceed the thermal
limits of marine invertebrates (Harley, 2008). For example,
signals of heating days have been evidenced along the coast
of Chile in Talcaruca location (Gaitán-Espitia et al., 2014),
however, the thermal stress in intertidal ectotherm is more
related to elevated water temperature than aerial temperature
(Seabra et al., 2016). Furthermore, we found chitons during
low tides events under macroalgae canopy and not in sun-
exposed microhabitats (see Otaiza and Santelices, 1985). In

general, this thermal refugia are positively correlated with air
temperature and solar radiation on marine invertebrates and
where selection of these cool microhabitats produces a low
respiratory performance (see Monaco et al., 2015). For example,
a recent study in the chiton Cryptochiton stelleri indicates
that its large size and reduced mobility force it to select lower
temperatures to avoid overheating in those favorable thermal
habitats (McIntire and Bourdeau, 2020). The previous may be
the case of Acantopleura echinata due to their larger size (see
Ibáñez et al., 2021), which can also be a poor thermoregulator,
since therefore, future scenarios of increased temperature will
expose chitons to more stressful temperature and can have a
detrimental effect on organismal performance (see Miller, 2013)
especially in highly variable thermal environments as Talcaruca
location. In general, intertidal invertebrates live very close to their
thermal tolerance (Denny et al., 2011; Gaitán-Espitia et al., 2017;
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FIGURE 2 | Mean values ± SD for Maximum performance (A); optimal temperature (B); thermal breadth (C) and critical maximum temperature (D).

Barria et al., 2018), but preference of A. echinata for cool
microhabitats during low tide suggest that survival probability
regarding to body temperatures could be high even in this
variable environment.

Additionally, our results show that individuals living in
more variable environments (i.e., Talcaruca) not only have
greater thermal amplitudes (Tbr) and are capable of tolerating
higher temperatures (CTmax) compared to individuals from
more constant environments (i.e., Los Molles), but they also
present greater variance in these traits (see Barria et al.,
2018). These results are in agreement with the predictions
of the CVH, which indicates that populations inhabiting
environments with fluctuating temperatures require wider
tolerance limits (Angilletta, 2009; Gaitán-Espitia et al., 2017;
Broitman et al., 2021; Lardies et al., 2021). However this
increase in thermal tolerance is not related with latitude in our
chitons populations (see Bozinovic et al., 2011). Similarly, the

higher Pmax in the population with semi-permanent upwelling
would indicate that changing and variable environments require
greater cardiac activity, which at the same time needs higher
energy expenditures. In this context, a higher cardiac output
would allow for a greater flow of hemolymph and the
distribution of heat between the center and the surface of
the body (Grigg and Seebacher, 1999) which could permit a
more adequate thermoregulation to cope with environmental
variations (Angilletta, 2009; Kodirov, 2011). We found higher
heart rate under high temperatures probably occur during low
tide (i.e., increase of aerial temperature) and this increase allows
a rapid transport of oxygen to all tissues of chitons which elevated
concurrently the metabolic rate of individuals. Finally, our results
show that Topt of the chitons was larger in the population
located in Talcaruca than in Los Molles and also showed a
larger variance. Although this might be counterintuitive at first,
since the population of Talcaruca is exposed to colder average
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temperatures, these differences in Topt might be explained by the
fact that usually, Topt and Tbr are positively associated (Barria
et al., 2018; Broitman et al., 2018). In particular, individuals in
the permanent upwelling zone experience more extreme cold
seawater surface temperature (SST) as well as hot SST and air
temperatures in comparison to individuals from Los Molles,
which could influence the increase of this trait (see Lardies et al.,
2011). In addition, these results might be explained by the known
negative relationship between Topt and latitude (Gaitán-Espitia
et al., 2014; Barria et al., 2018; Broitman et al., 2018).

According to our results, it is clear that a variable environment
affects the thermal physiology of organisms, expanding their
tolerance ranges and generating energy costs in the performance
of individuals. However, it is relevant to note that upwelling
systems are phenomena where the rise of water masses modifies
not only temperature, but also decreases O2, pH, and increases
pCO2 (Torres and Ampuero, 2009; Schneider et al., 2017; Ramajo
et al., 2020; Lardies et al., 2021). Together, these factors can
influence the energy expenditure of mollusks, since, according to
the literature, the differences in metabolic rates can be related to
oxygen limitations in the environment (Frederich and Pörtner,
2000) and/or with its aerobic capacity as an adaptation to
environmental heterogeneity (Clarke and Fraser, 2004; Watson
et al., 2014; Pörtner and Gutt, 2016). Therefore, exposure to
variable environments in oxygen concentration and pCO2 could
also increase metabolic costs for maintaining homeostasis and
thus, to compensate for energy expenditure, chitons could
reduce shell formation (i.e., reduction in calcification rate) in
environments with abrupt variations in pH (see Lannig et al.,
2010; Lagos et al., 2016; Osores et al., 2017).

The vulnerability of organisms to variations in the
temperature of the environment will depend on exposure,
resilience and plasticity to adapt to environmental change (Huey
et al., 2012; Donelson et al., 2019). Together, our observational
and experimental results suggest that environmental conditions
around large upwelling centers (i.e., high environmental
heterogeneity) display higher levels of phenotypic variability
(i.e., plasticity) in local population performance of adult
individuals, and may represent a genetic buffer for the effects

of ocean warming. Therefore, it is necessary to understand
the thermal performance of marine organisms, considering the
consequences of climate change, where the increase in ocean
temperature could cause an increase in the frequency and
intensity of upwelling systems on the Pacific Coast (Sydeman
et al., 2014; Broitman et al., 2021) generating repercussions on the
distribution, performance and fitness of the coastal populations
and communities.
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