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Thousands of armed predatory species, distributed widely across the metazoan tree-
of-life, consume only hard-shell or exoskeleton-bearing organisms (called “durophagy”).
Prey armor clearly has evolved in response to selection by predators, but there is
little evidence of the contrary, counter-adaptation by predators. Evolved consumer
responses to prey, in general, might be more readily expressed in ways other than
morphological traits, including via sensory cues. Here, we explored the chemosensory
basis for durophagy in a model predator-prey system, and identified intimate
associations between durophagous predators and their shelled prey. Barnacles (Balanus
glandula and Semibalanus cariosus) bear hard shells and secrete, respectively, a 199
or 201 kDa glycoprotein ortholog (named “MULTIFUNCin”), with expression limited to
the body armor (epidermis, cuticle, and live shell). To test for effects of MULTIFUNCin
on predators, we constructed faux prey to mimic meaningful physical and chemical
characteristics of live barnacles. In separate experiments, each consumer species was
presented MULTIFUNCin, purified from either B. glandula or S. cariosus, at a typical
armor concentration. All six predatory species (sea star, Pisaster ochraceus; whelks,
Acanthinucella spirata, Nucella emarginata, N. ostrina, N. canaliculata, and N. lamellosa)
attacked and ate MULTIFUNCin-infused faux prey significantly more than controls.
Akin to barnacles, secretion of glycoprotein-rich extracellular matrices is common
among armored prey species—from marine sponges to terrestrial vertebrates. Our
results, therefore, suggest that chemosensory exploitation of glycoproteins could be
widespread, with notable consequences for life on land and in the sea.

Keywords: chemical cue, feeding stimulant, durophagy, sensory ecology, predation

INTRODUCTION

A myriad of metazoan species have evolved armor in morphological defenses. The scales of fishes
and reptiles, cuticles and carapaces of insects and crustaceans, as well as skeletons and shells of
corals, mollusks, brachiopods, echinoderms, and sponges, all protect against the “slings and arrows”
of a dangerous world (Kruppert et al., 2020). There is an intuitive appeal to viewing struggles among
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species as arms races between natural enemies (Brodie and
Brodie, 1999). The evolution of armed predators may have led
to the evolution of mineralized armor in prey since near the
beginning of the Cambrian (Vermeij, 1989; Marshall, 2006; Wood
and Zhuravlev, 2012).

The arms race analogy has been applied to a wide array
of natural enemies, even though the degree of reciprocity
and details of selection vary among antagonistic encounters.
Predator-prey interactions, especially, may be characterized by
asymmetrical selection that precludes arms races (selection on
prey is thought to be stronger than on predators) (Dawkins
and Krebs, 1979; Brodie and Brodie, 1999; Whitenack and
Herbert, 2015). Elaborated jaws, and other weapons, increase
the ability of consumers to capture prey. Such innovations also
evolve in response to selection pressures imposed by higher-
order predators and by competitors for food, space, and mates
(Vermeij, 1994, 2013; Bicknell and Paterson, 2018; Aristide
and Morlon, 2019). Enhanced capacity to capture prey can be
an unintended consequence of escalation in a particular anti-
predator, or anti-competitor, morphological or behavioral trait.

Prey armor clearly has evolved in response to selection from
predators, but there is little evidence of the contrary, counter-
adaptation by predators (Harvell, 1984; Vermeij, 1994, 2013;
Kosloski and Allmon, 2015; Klompmaker et al., 2017). Evolved
predator responses to prey might be more readily expressed
in ways other than morphological traits, including via sensory
cues. Essentially every living organism has a chemical sense
to exploit valuable resources and ward off danger. Prey flee,
hide, or elaborate armor in response to infochemicals emitted
by durophagous consumers (Zimmer et al., 2006; Poulin et al.,
2018; Weiss et al., 2018). Morphologically defended prey also
release alarm substances when attacked. These compounds cue
escape or defense in other, threatened individuals (Ono et al.,
2003; Jacobson and Stabell, 2004; Smee and Weissburg, 2006).
Surprisingly, little is known about the reciprocal interaction:
do durophagous predators exploit molecules associated with
armored prey? If so, are these cues species-, or taxon-specific, and
are they expressed uniquely in prey body armor?

Hard-shelled barnacles are superior competitors for space
within the higher-reaches of wave-swept shores. As foundation
species, they provide resources to community members and
act as determinants of biodiversity (Trussel et al., 2003; Maggi
et al., 2015). Durophagy by sea stars (Pisaster ochraceus) and
whelks (Acanthinucella spirata, Nucella emarginata, N. ostrina,
N. canaliculata, and N. lamellosa) shapes barnacle (Balanus
glandula and Semibalanus cariosus) populations, thereby
impacting intertidal communities along the Pacific Ocean coast
of North America (from the Aleutian Islands to central Baja,
Table 1; Connell, 1961, 1970; Murdoch, 1969; Dayton, 1971;
Navarrete, 1996). Sea stars explore the substrate with contact
chemoreceptors located on tube feet (McClintock et al., 1994).
In contrast, whelks have contact chemoreceptors distributed
diffusely across the foot and concentrated on a retractable
proboscis that probes substrate surfaces (Crisp, 1971; Hodgson
and Brown, 1985). Whereas sea stars feed by first protruding
their lower stomach into a barnacle, whelks penetrate the shell
using a drill-like radula.

TABLE 1 | Tidal heights and geographical ranges of study species along the North
America Pacific Ocean coast.

Species Tidal height Geographical range

Predators

Acanthinucella
spirata

Mid to high Bodega Bay, CA to San Quintin, Baja,
MX

Nucella emarginata Mid to high Half Moon Bay, CA to Punta Eugenia,
Baja, MX

Nucella ostrina Mid to high Yakutat, AK to Point Conception, CA

Nucella lamellosa Low to mid Aleutian Islands, AK to Santa Cruz, CA

Nucella canaliculata Low to mid Aleutian Islands, AK to Piedras Blancas,
CA

Pisaster ochraceus
segnis

Low to mid Point Sal, CA to Ensenada, Baja, MX

Prey

Balanus glandula Mid to high Aleutian Islands, AK to San Quintin,
Baja, MX

Semibalanus
cariosus

Low to mid Aleutian Islands, AK to Morro Bay, CA

Mytilus
californianus

Low to mid Aleutian Islands, AK to Socorro Is, MX

Tegula funebralis Mid to high Vancouver Island, BC to Comondú,
Baja, MX

Species used in each set of experiments is shown in Figure 2.

Each barnacle species (B. glandula and S. cariosus) secretes,
respectively, a 199 or 201 kDa glycoprotein ortholog (named
“MULTIFUNCin,” in recognition of its multifunctional
properties), with expression limited to the body armor
(epidermis, cuticle, and live shell materials) (Ferrier et al.,
2016a; Figure 1). To test for effects of MULTIFUNCin on
consumers, we constructed faux prey to mimic meaningful
physical and chemical properties of live barnacles. In separate
experiments, MULTIFUNCin, purified from either B. glandula or
S. cariosus, was presented alone at a typical armor concentration.
All six predatory species attacked and ate MULTIFUNCin-
infused faux prey significantly more than controls. These
results are consistent with a chemosensory basis for durophagy,
and suggest that mechanisms for glycoprotein recognition
have converged across phylogenetically diverse taxa (sea
stars and whelks) to promote the exploitation of a valuable,
shared prey resource.

MATERIALS AND METHODS

Isolation and Purification of
MULTIFUNCin Proteins
Overview
Chemical fractionation and isolation of MULTIFUNCin
followed established procedures (Ferrier et al., 2016a,b).
Elsewhere, translations of complete amino acid and nucleotide
sequences are described for each molecule and its encoding
gene (GenBank accession numbers: KC152471 for B.
glandula MULTIFUNCin, and KC152472 for S. cariosus
MULTIFUNCin) (Figure 1; Ferrier et al., 2016a). For
each barnacle species (Balanus glandula and Semibalanus
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FIGURE 1 | Structural architectures and domain organizations of (A) Balanus glandula MULTIFUNCin and (B) Semibalanus cariosus MULTIFUNCin. These 199 and
201 kDa glycoprotein orthologs, respectively, are expressed uniquely in the armor (epidermis, cuticle, and new shell material) of each species (Ferrier et al., 2016a).
The two compounds and their encoding genes share 82% amino acid and 83% nucleotide sequence homologies. Several, shared, conserved domains place both
substances within the α2-macroglobulin subgroup of the thioester-containing protein family. A signal peptide, modified thioester motif, and other notable domains
and regions are highlighted by color-specific rectangles. Predicted amino acid positions of N-glycosylation sites are provided (closed circles), as well as the site of a
putative catalytic histidine (*) in B. glandula MULTIFUNCin. Vertical lines with bold numbers denote cysteine positions. The estimated locations of disulfide bridges are
marked with horizontal lines connecting bold cysteine residues. A2M, α2-macroglobulin; KGD, lysine-glycine-aspartic acid; C3, C4, and C5, complement component
factor proteins 3, 4, and 5. Each MULTIFUNCin molecule consists of 1,567 or 1,578 amino acid residues (1 = amino terminus; 1,567 or 1,578 = carboxy terminus).

cariosus), MULTIFUNCin purification steps comprised, in
succession, (1) extraction of animal shells and tissues with
trishydroxymethylaminomethane-HCl (hereafter, tris-HCl)-
buffered saline, (2) ammonium sulfate ([NH4]2SO4) protein
precipitation, (3) size-exclusion chromatography, (4) lentil-lectin
(LCA) affinity chromatography, and finally, (5) SDS-PAGE
protein separation with electroelution of purified compounds.
Purity and concentration of MULTIFUNCin were confirmed
using matrix-assisted laser desorption ionization time-of-flight
mass spectrometry (Voyager DE-STR, Applied Biosystems,
Foster City, CA) (Ferrier et al., 2016a).

Tissue Extraction and Protein Precipitation
Live barnacles (0.4–1.0 cm shell height) were collected at field
sites, flash frozen in liquid nitrogen, and either transported

directly (Balanus glandula from Malibu, CA), or shipped on
dry ice via overnight courier (B. glandula from Cattle Point,
WA, and Semibalanus cariosus from Bodega, CA), to our UCLA
laboratory. Individuals from each collection site were separated,
crushed, and homogenized at high speed (using a Waring
blender) in a 1:1.5 (v/v) of 50 mmol L−1 tris-HCl (pH 7.5)
buffer. Resulting homogenates were stirred on ice for 120 min,
rough filtered through gauze (nominal 80 µm pore diameter),
and centrifuged at 40,000 × g (for 30 min at 4◦C). Supernatants
were filtered to 0.45-µm, and eluates served as “crude extracts.”

Initial purification steps involved separating eluate
components on the basis of solubility through stepwise
ammonium sulfate precipitation. Bioactive proteins were
isolated from other, organic, molecules starting with a 35%,
increasing to 70%, and ending with 100% (NH4)2SO4 saturation.
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Ammonium sulfate was added to each barnacle crude extract
and stirred at 4◦C for 10 min, then centrifuged at 40,000 ×
g (4◦C for 15 min), before the supernatant was removed.
MULTIFUNCin was retained as a component in precipitate of
the 35–70% saturation solution (Ferrier et al., 2016a). Each pellet
was resuspended in 2 mL of 50 mmol L−1 tris-HCl (pH 7.5) and
dialyzed [Slide-A-LyzerTM dialysis cassettes, 5 kDa molecular
weight cutoff (MWCO, hereafter); Thermo Fisher Scientific,
Waltham, MA] against and diluted with 0.45 µm-filtered
seawater, as needed.

Size-Exclusion and Lentil-Lectin Affinity
Chromatography of Barnacle Bioactive Precipitate
Resuspended precipitates were fractionated using size-exclusion
(SEC) and lentil-lectin (LCA) affinity chromatography. A HiPrep
16/60 high resolution S-200 sephacryl gel size-exclusion column
(SEC, GE Healthcare, Waukesha, WI) was eluted at 0.8 mL min−1

with 50 mmol L−1 Tris-HCl (pH 7.5) buffer on a BiologicTM fast
performance liquid chromatography (FPLC) system (Bio-Rad,
Hercules, CA). MULTIFUNCin was retained in the 150–530 kDa
SEC peak (Ferrier et al., 2016a).

Each peak was collected, and divided into two samples based
on the presence/absence of glycan groups. A 16/40 column
(GE Healthcare) was packed with LCA sepharose 4B beads (GE
Healthcare), and equilibrated with a FPLC system running buffer
[0.5 mol L−1 NaCl, 25 mmol L−1 tris-HCl (pH 7.5)] at 0.8 mL
min−1. Concentrated (1 mg mL−1) 150–530 kDa peak material
was washed through the LCA beads with an additional 150 mL
of equilibrated buffer. MULTIFUNCin, bound to the LCA beads
following the wash, was removed with 150 mL of elution buffer
[0.2 mol L−1 methyl α,D-mannopyranoside, 0.5 mol L−1 NaCl,
25 mmol L−1 tris-HCl (at pH 7.5)] increasing linearly from 0 to
100% over 30 s at the same flow rate. It was then concentrated
using ultrafiltration (MWCO = 10 kDa).

SDS-PAGE Protein Separation and Electroelution of
Purified MULTIFUNCin
Final purification involved protein separation and isolation
through preparative SDS-PAGE. Each sample (1 mL), containing
MULTIFUNCin, was conditioned with 5X Laemmli buffer
and loaded onto a 7.5% acrylamide (acrylamide:bis = 29:1)
slab gel (16 × 22 cm). It was run on ice at 180 V, until
clear separation of molecular markers. All protein bands were
visualized with imidazole-zinc reverse staining. From each gel,
the MULTIFUNCin band was excised with a sterile scalpel, de-
stained in Laemmli buffer, and recovered from the acrylamide via
electroelution. Each gel fragment, containing MULTIFUNCin,
was put into a Spectra/Por regenerated cellulose dialysis tubing
(1 kDa MWCO, 8 mL volume; Spectrum Medical Corp., Long
Beach, CA), sealed, and placed between the electrodes of a
western blotting rig. Both tubing and rig were filled with Laemmli
buffer, stirred, and cooled on ice. An electric current (100 V)
was applied for 1 h. Isolated MULTIFUNCin migrated out of
each fragment and into the buffer. Following electroelution,
selected fragments were removed and stained with Coomassie G-
250 dye to check protein recovery (which averaged 65%). The

buffers were exchanged, through dialysis, to 50 mmol L−1 tris-
HCl (pH 7.5). Purified MULTIFUNCin was concentrated 10-fold
through ultrafiltration (MWCO = 10 kDa), dialyzed (Slide-A-
LyzerTM dialysis cassettes, 5,000 Da MWCO) again, and diluted
with 0.45 µm-filtered seawater, as required for bioassay. When
not used immediately in bioassay, MULTIFUNCin was stored at
−80◦C in tris-HCl buffer.

Bioassays of MULTIFUNCin as a Contact
Cue to Predation
Overview
Experiments tested for MULTIFUNCin effects on durophagy. Six,
armed, consumer species were chosen for bioassays, based on
their important roles in structuring rocky-intertidal communities
(Connell, 1961, 1970; Paine, 1966, 1974; Murdoch, 1969;
Navarrete, 1996). Three of these species are more abundant
in northern latitudes (Nucella ostrina, N. canaliculata, and N.
lamellosa), whereas the other three prevailed in southern latitudes
(Acanthinucella spirata, N. emarginata, and Pisaster ochraceus
segnis) (Table 1). Each selected consumer species naturally preys
on dense patches of barnacles (Balanus glandula, Semibalanus
cariosus), mussels (Mytilus californianus), turban snails (Tegula
funebralis), and, less often, other invertebrate taxa (Feder, 1959;
Paine, 1966; Murdoch, 1969; Connell, 1970; Dayton, 1971;
Navarrete, 1996).

Faux Prey
Faux prey were fabricated for use in laboratory experiments.
All soft tissues, along with cuticles, were removed with sterile
instruments from barnacles (Balanus glandula and Semibalanus
cariosus, 0.4–0.6 cm shell heights for experiments on whelks;
0.8–1.0 cm shell heights for sea stars). The empty shells were
combusted for 12 h at 150◦C, bathed for 15 min in a stirred, 5%
(v/v) HCl solution (in tris-HCl buffer), and scrubbed thoroughly
with Nanopure-grade deionized water to eliminate any residual
organics. Cleaned, empty, barnacle shells served as physical
replicas (“faux”) of the live animals.

Prey chemistry was simulated in flavored gels. Sodium
carboxymethylcellulose (11.7% w/v) was mixed with 0.45-µm
filtered seawater and purified MULTIFUNCin (from B. glandula
or S. cariosus), then cured for 10 min at 4◦C. Gels also
were made using crude extracts of mussels or turban snails
(see section “Materials and Methods” in “Tissue extraction” for
barnacles), bovine serum albumin (BSA, 4 × 10−7 molar), or
0.45-µm filtered seawater alone. These alternative extracts and
BSA served as organic enrichment controls in bioassays on
chemical prey preferences. Once prepared, each gel had the
consistency of prey flesh, and a 0.3–0.6 mL aliquot of gel was
injected into a cleaned, empty, barnacle shell for immediate
use in experiments. Concentrations of MULTIFUNCin (75 µg
mL−1, about 4 × 10−7 molar) were the same across all
prepared gels and live barnacle shell materials. Similarly, molar
concentrations of BSA and MULTIFUNCin were the same across
all prepared gels. Total protein levels in mussel and turban
snail crude extracts were established using the Bradford method
with bovine serum albumin as a standard (Bradford, 1976).
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FIGURE 2 | A schematic depicting Set 1, Set 2, and Set 3 experiments. Images are not drawn to scale. Each circle, with a number inside, represents a single faux
prey that contains gel filled with (1) MULTIFUNCin from Balanus glandula (MULTI), (2) mussel crude extract (MCE), (3) turban snail crude extract (TCE), (4) filtered
seawater (FSW), (5) MULTIFUNCin from Semibalanus cariosus (MULTI), or (6) bovine serum albumin (BSA). Each trial was stopped after a whelk or sea star
consumed a single faux prey, or after 1 h without feeding. Set 1 experiments were replicated for five whelk species (Acanthinucella spirata, Nucella emarginata,
N. lamellosa, N. ostrina, and N. canaliculata); Set 2 experiments were replicated for two whelk species (A. spirata and N. canaliculata); a single Set 3 experiment was
performed for the sea star, Pisaster ochraceus. One predator was placed per trial and never reused. For each trial in every experiment, 12 faux prey were positioned
equidistantly so as to surround the centrally positioned predator. In Sets 1 and 2, the 12 faux prey were divided into three groups of four. Each group contained one
MULTI, one MCE, one TCE, and one FSW. The exact position of each prey type within a given group was selected using a random numbers table, and the random
order changed from trial-to-trial. Similar methods were applied in the Set 3 experiment, except here, the 12 faux prey were divided into four groups of three: MULTI,
FSW, and BSA. When given a choice, sea stars ate only mussel impregnated gels and not MULTIFUNCin impregnated gels in preliminary trials. A different organic
enrichment control (BSA) therefore was needed. We used bovine serum albumin to be consistent with our previous studies (Zimmer et al., 2016b, 2017).

Relative to MULTIFUNCin gels, total protein concentrations
(w/v) were approximately 50 times higher in mussel and turban
snail crude extract gels.

Animal Maintenance and Holding Procedures
Bioassays were performed over 2 years during June–September,
when sea stars and whelks fed most actively in native habitats.
Predators were collected from locations in Northern California
(Horseshoe Cove and Mussel Point, Bodega Bay), Southern
California (Broad Beach, Malibu), and Washington (Cattle Point,
San Juan Island). These consumers were collected and either
transported directly (Acanthinucella spirata, Nucella emarginata,
and Pisaster ochraceus from Malibu, CA), or shipped on ice via
overnight courier (N. lamellosa from Cattle Point, and N. ostrina
and N. canaliculata from Bodega) to our laboratory. Consumers
were fed an ad libitum diet of barnacles, mussels, and turban
snails for 1–2 weeks, and then fasted for 3–5 days before testing.

The experimental set-up consisted of a 28,000-L seawater
reservoir (oceanic quality, 33 psu salinity) with particle filtration
(5-µm cut-off), UV sterilization (as needed), and computer-
controlled water/air temperature (±1◦C off set-points) and light
cycle (L:D 14:10, light on at 0630 h). Animals from Malibu,
Bodega, and Cattle Point were held and tested, respectively, at
water temperatures of 19–21, 13–15, or 9–11◦C. During animal
holding periods and experiments, lighting (full spectrum, General
Electric Daylight Ultra) was maintained at a level (75 µmol

m−2 s−1) simulating field habitats during late afternoon. Each
species was held separately at a density of 12–15 m−2 (whelks)
or 3–4 m−2 (sea stars) with continuously recirculating seawater
(45 L min−1), replenished twice per week.

General Experimental Procedures
All bioassays were performed in Plexiglas arenas (see section
“Results” below for more details). These tanks were 60 cm
(length)× 60 cm (width)× 15 cm (depth) for sea stars, or 10 cm
× 10 cm × 5 cm for whelks. A constant supply of single-pass, 5-
µm filtered seawater (1 L min−1) was delivered to every arena,
held at ambient ocean temperature and salinity (see “Animal
maintenance” above). Each tank was washed thoroughly with 1%
(v/v) HCl in Nanopure water after every trial, and then rinsed
with Nanopure water and seawater to eliminate any residual
organics. All trials were performed between 10:00 and 18:00 h.
An individual animal was tested once only in a given experiment.

Chemical Prey Preference Tests
For consistency and comparison of results to previous studies
(Ferrier et al., 2016a,b; Zimmer et al., 2016a), we performed
each experiment as a preference test (Figure 2). The suite of
experiments, conducted here, provided the most meaningful
information in the fewest number of trials. Three sets of
experiments were performed. In Set 1, we compared the
consummatory responses of five whelk species. A trial began
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when a single whelk (1.5–3.0 cm shell length) was placed
at the center of an arena and presented with 12 faux prey.
The 12 faux prey were divided into three groups of four that
encircled the whelk. Each group contained one MULTIFUNCin
(prepared using Balanus glandula from Malibu), one mussel
crude extract, one turban snail crude extract, and one filtered
seawater treatment. The exact position of each prey type within
a given group was selected using a random numbers table. Each
trial lasted until the predator selected, attacked and consumed a
single faux prey, terminating after 1 h regardless.

Set 2 experiments were performed identically to set 1 with
two notable exceptions. Here, (1) trials were limited to two
whelk species (Acanthinucella spirata and Nucella canaliculata),
and (2) MULTIFUNCin was purified from Semibalanus cariosus.
These tests were truncated because of the considerable time
and effort needed in purifying large amounts of MULTIFUNCin
for meaningful bioassay. Consummatory responses in Set 1
tests were nearly identical across all five whelk species (see
section “Results,” below), rendering the re-testing of each whelk
species redundant.

Set 3 consisted of a single experiment. In initial trials (n = 5),
sea stars preyed only on mussel-crude-extract gels, and not
on MULTIFUNCin-gels (Binomial test: P = 0.031). This result
was not surprising, given that sea stars prefer mussels over
all other tested prey (Paine, 1966, 1974; Landenberger, 1968;
Dayton, 1971). Consequently, we repeated chemical preference
tests for sea stars, substituting bovine serum albumin (BSA, an
organic enrichment control) for crude extracts, together with
filtered seawater and MULTIFUNCin (purified from Balanus
glandula collected at Malibu) faux prey. The use of BSA was
consistent with our previous studies (Zimmer et al., 2016b, 2017).
Similar to Sets 1 and 2, a trial began when a single sea star
(length: 7–12 cm from distal tip of longest arm to center of
oral disc) was placed in the center of an arena and presented
with 12 faux prey. The 12 faux prey were divided into four
groups of three that encircled the sea star. As in Sets 1 and
2, the exact position of each prey type within a group was
determined using a random numbers table. Each trial lasted
until the predator selected, attacked and consumed a faux prey,
terminating after 1 h regardless.

RESULTS

When faux prey were prepared using Balanus glandula from
Malibu populations, feeding preferences were not significantly
different among the five whelk species (Chi-square test for
heterogeneity with Williams’ correction for small sample sizes:
χ2 = 8.896, df = 16, P = 0.928) (Figures 3A,C–F). In performing
this analysis, we included a category for null responses, as
well as separate categories for positive responses to each of
the four experimental treatments (MULTI, MCE, TCE, and
FSW). Given no significant difference, data were subsequently
pooled across all five species before further analyses. This
last procedure greatly increased statistical power in multiple
comparisons among the experimental treatments. Combined,

whelk consumers fed significantly more often on faux prey
with MULTIFUNCin as opposed to seawater [Sign test with
Bonferroni’s correction (α = 0.05/6 = 0.008): P < 0.00001],
turban snail crude extract (P < 0.00001), and mussel crude
extract (P < 0.0001). Each whelk fed only on one faux prey
per trial. In addition, whelks attacked and ate significantly
more faux prey with mussel crude extract than with seawater
(P = 0.0018), but not with turban snail crude extract (P = 0.067).
There was no significant difference in whelk reactions to turban
snail crude extract and seawater (P = 0.193). Thus, overall,
attack and feeding by whelks were paramount in response to
the single molecule, MULTIFUNCin. As conservative tests of
selectivity for this glycoprotein, MULTIFUNCin concentration
(75 µg mL−1; about 4 × 10−7 molar) was approximately
50 times lower than total concentrations (w/v) of protein
in crude extracts.

A strong genetic cline separates southern (Monterey Bay,
southward) from northern (Half Moon Bay through Alaska)
populations of B. glandula (Wares and Cunningham, 2005).
The experiment with Acanthinucella spirata, therefore, was
repeated using faux prey with purified MULTIFUNCin from
barnacles collected at our northernmost locale, Cattle Point,
WA. Chemical preferences of A. spirata were independent
of the MULTIFUNCin source population (Chi-square test for
heterogeneity with Williams’ correction for small sample sizes:
χ2 = 1.838, df = 4, P = 0.772) (Figures 3A,B). Consequently,
all other experiments were performed using only the southern
barnacle variant in order to save time and purified material.

MULTIFUNCin also was isolated from a second barnacle
species, Semibalanus cariosus. Results were non-significantly
different between bioassays using the Semibalanus cariosus
MULTIFUNCin and each of two whelk species (Acanthinucella
spirata and Nucella canaliculata) (Chi-square test for
heterogeneity with Williams’ correction: χ2 = 2.772, df = 4,
P = 0.621) (Figures 4A,B). Combined, whelks significantly
preferred S. cariosus MULTIFUNCin over mussel and
turban snail crude extracts, and over seawater (Sign test with
Bonferroni’s correction, α = 0.008: P ≤ 0.0061, all comparisons).
In addition, findings were similar for S. cariosus MULTIFUNCin
and Balanus glandula MULTIFUNCin (compare Figures 3A–
4A, Figures 3F–4B) (Chi-square tests for heterogeneity with
Williams’ correction: χ2

≤ 5.480, df = 4, P ≥ 0.286, both
comparisons). Each whelk species did not discriminate between
faux prey containing MULTIFUNCin from one or the other
barnacle species (unpublished data). The two compounds,
therefore, are likely quantitatively equivalent with respect to
chemosensory recognition.

Bioassays with sea stars were limited in scope. The number of
trials was restricted by system failures of our aged FPLC, which
occurred after whelk and during sea star experiments. When
substituting BSA for crude extracts, sea stars fed significantly
more often on MULTIFUNCin-laced faux prey (Figure 5).
Here, sea stars preferred MULTIFUNCin over both organic
enrichment and seawater (absence of organics) controls (Sign
tests with Bonferroni’s correction, α = 0.0167: P ≤ 0.0059,
both comparisons).
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FIGURE 3 | Feeding preferences of five whelk species for faux prey. FSW, 0.45 µm-filtered seawater infused gels; TCE, turban snail crude extract; MCE, mussel
crude extract; B. glan MULTISorN, MULTIFUNCin isolated either from a southern (Malibu, CA) or a northern (Cattle Point, WA) population of barnacles, Balanus
glandula. All gels were presented in cleaned, acid-washed, barnacle tests. n = number of replicate trials. Each predator was allowed to consume no more than one
faux prey in a given trial. As shown in (A), there were 22 total replicate trials (=n); a predator ate one of the four faux prey types (10 MULTI + 2 MCE + 3 TCE + 2
FSW) in 17 trials; and, a predator failed to feed on faux prey in 22–17 = 5 trials. Separate experiments were performed with (A,B) Acanthinucella spirata, (C) Nucella
emarginata, (D) Nucella lamellosa, (E) Nucella ostrina, and (F) N. canaliculata. For each experiment, a bar depicts the total number of replicate trials in which a given
faux prey type was eaten. All whelk species fed readily on TCE- and MCE-infused gels in the absence of MULTI-infused gels.

DISCUSSION

Many armed predatory species have specialized diets and
feed only on hard-shell or exoskeleton-bearing organisms. The
degree to which these exploiters and victims have evolved
in response to one another has been difficult to discern.
This problem has been especially challenging in regard to the
predators. For example, development of specialized weaponry
may enhance the likelihood for prey capture and subjugation.
Yet, such innovation commonly evolves as a consequence
of selection pressures imposed, not by the prey, but by
competitors and/or higher-order consumers (Dietl and Kelley,
2002; Vermeij, 2013). In addition to morphological traits,
species-, or taxon-specific chemical cues would provide a
meaningful axis for evaluation of relations among enemy
combatants. It has been well established that armored prey
exhibit strong behavioral and morphological responses to unique
infochemicals released by specific (and deadly) durophagous
consumers (Poulin et al., 2018; Rittschar et al., 2020). In
contrast, until now, there has been little evidence for the
reciprocal interaction.

This study identifies chemosensory exploitation by armed
consumers as an evolved predatory response to armored prey.
Specifically, our results show that all six tested consumer

species attacked and ate MULTIFUNCin-infused faux barnacle
prey significantly more than controls. In fact, MULTIFUNCin
alone was sufficient to trigger a predatory response. After 670
million years of genetic isolation (Ayala et al., 1998), molecular
mechanisms for chemical recognition differ considerably
among protostomes (including mollusks) and deuterostomes
(including echinoderms) (Bargmann, 2006; Cummins et al.,
2009; Derby et al., 2016). Yet, for sea star and whelk consumers,
glycoprotein detection has converged across the protostome-
deuterostome division to promote durophagy on a valuable,
shared, prey resource.

Resistant (or tolerant) consumers have evolved the ability to
recognize toxins and poisons using chemosensory mechanisms.
Thus, select predatory species can dine on specific, chemically
defended prey species (Bernays et al., 2002; Hwang et al.,
2007; Wink, 2018). Such biotic interactions play seminal roles,
shaping community structure and function and, in some cases,
triggering arms races and co-evolution especially among plants
and herbivores (Anderson and Mitchell-Olds, 2011; Bruce,
2015). Unlike chemical defense compounds, molecules uniquely
associated with armored defenses would impact ecological
relationships without the need for toxin resistance or tolerance
in source and/or consumer species. Given freedom from these
evolutionary constraints, chemosensory exploitation of prey
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FIGURE 4 | Feeding preferences of two whelk species (A, Acanthinucella
spirata; B, Nucella canaliculata) for faux prey. All conditions are as described
in Figures 2, 3 legends. In this case, MULTIFUNCin was isolated from the
barnacle, Semibalanus cariosus. n = number of replicate trials.

FIGURE 5 | Feeding preferences of sea stars (Pisaster ochraceus) for faux
prey. All conditions are as described in Figures 2, 3 legends. In this case, we
used bovine serum albumin (BSA) as permeant in place of MCE and TCE.
BSA thus served as an organic enrichment control. n = number of replicate
trials.

body armor is likely widespread, acting as a critical ecological
determinant.

Barnacles are widely distributed on wave-swept shores
along the entire North America Pacific Ocean coast (see
Table 1). Here, we identify a potential community role for
chemosensory exploitation by armed consumers. In response
to a glycoprotein cue (MULTIFUNCin), predation by sea stars,
and especially by whelks, could limit the abundances and
distributions of prey (barnacle) populations, thereby altering
the availability of community resources, including food and
space (Feder, 1959; Connell, 1961, 1970; Dayton, 1971). Such
changes would lead to new “winners” and “losers” in a
sweepstakes among subordinate and dependent species, thus

initiating cascades of community-wide impacts (Connell, 1972;
Maggi et al., 2015).

Shared, conserved domains place MULTIFUNCin in the
α2-macroglobulin (A2M) subgroup of the thioester-containing
protein (TEP) family (Ferrier et al., 2016a). The A2Ms are
vital to structural defenses (Armstrong and Quigley, 1999) and
for the attack and subjugation of surface-colonizing microbial
pathogens (Chu and Pizzo, 1994; Blandin and Levashina, 2004;
Budd et al., 2004; Armstrong, 2010). MULTIFUNCin orthologs
also cue habitat colonization by conspecific larvae and possibly
act as pheromones (Dreanno et al., 2006; Zimmer et al., 2016a).
To maintain these critical, ancestral, functions, we propose that
MULTIFUNCin has been subjected to purifying selection in
barnacles. Purifying (or “negative”) selection would eliminate
deleterious mutant alleles in order to maintain stringent binding
affinities and other, essential molecular properties. Accordingly,
MULTIFUNCin would evolve as an honest and reliable cue in
chemosensory exploitation by armed predators.

Chemosensory exploitation extends beyond barnacles
and their predators on rocky, wave-swept shores. Akin to
barnacles, mussels (Mytilus californianus, M. edulis, and
M. galloprovincialis) dominate space and act as foundation
species on wave-swept shores (at intermediate and/or low tidal
levels) (Paine, 1966; Dayton, 1971; Suchanek, 1992). Each mussel
species produces and secretes a glycoprotein ortholog (named
KEYSTONEin, molecular weights: 28.1–29.6 kDa) which acts,
singularly, to cue sea star, crab, and whelk predation (Zimmer
et al., 2016b, 2017). These orthologs are uniquely associated with
mussel body armor (extrapallial fluid, epidermis, periostracum,
and shell materials). A large, conserved, globular domain places
KEYSTONEin within the Complement Component 1 Domain
Containing (C1qDC) protein family (Nonaka and Kimura, 2006;
Carland and Gerwick, 2010). C1q proteins are part of the classical
complement pathway and are critical especially to the innate
immune systems of invertebrates (Gestal et al., 2010; Gerdol
et al., 2011). For mussels, these compounds are also secreted by
the mantle epidermis and act in shell formation through Ca2+

binding and subsequent calcium carbonate deposition (Hattan
et al., 2001; Yin et al., 2005).

Chemical recognition via surface glycoproteins is not limited
to species on wave-swept shores (Wyatt, 2014). The molecules
serve, for example, as signals when bound in the integuments
of rotifers, crustaceans, sea hares, squids, insects, amphibians
(newts), and mice (Snell and Carmona, 1994; Painter et al., 2004;
Dreanno et al., 2006; Snell et al., 2009; Woodley, 2010; Cummins
et al., 2011; Matsuura, 2012; Roberts et al., 2012). They also
act in communication between metazoan sperm and egg, and
function as stringent pre-zygotic barriers that block hybridization
among gametes of different species (Vacquier, 1998; Wilburn and
Swanson, 2016).

Often requisite for internal (cell level) or external (organismal
level) communication, glycoproteins are well suited for
chemosensory exploitation. A prime example is the targeting of
host-expressed mucin and collagen by pathogenic bacteria for
attachment and colony establishment (Roos and Jonsson, 2002).
In fact, thousands of armored metazoan species—from marine
sponges to terrestrial vertebrates—secrete glycoprotein-rich
extracellular matrices (Sarashina and Endo, 2006;
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Ehrlich, 2010; Wang and Nilsen-Hamilton, 2013). As an evolved
counter-adaptation by durophagous predators, chemosensory
exploitation of glycoproteins may well have notable effects across
the metazoan tree-of-life.
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