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The degradation of wetlands due to climate change is of critical concern to human
beings worldwide. Little is known about the potential synergistic effects of simultaneous
water level reduction and warming on the underground wetland ecosystems. We
conducted a 5-month field experiment in the Sanjiang Plain, utilizing open-top chambers
and water level automatic control systems to investigate such synergistic effects.
Soil springtails (Collembola) and mites (Acari) in the top (0–20 cm) soil layers were
sampled to calculate their density, diversity, and to screen for indicator species. Warming
significantly influenced soil springtail communities, slightly increasing the total density
and total abundance under the natural water level while reducing them under a constant
water level. In addition, Anurida maritima and Vertagopus laricis, two indicators for
the natural water level, had the highest densities in the natural water level treatment
and under the combined treatment of warming and natural water level, respectively.
Cheiroseius sinicus and Malaconothrus tardus had the highest densities in warming
under the 0 cm water level, significantly higher than the other three treatments.
This study also revealed the importance of maintaining fluctuating water levels for
microarthropod communities influenced by global warming, providing a theoretical basis
for water level control in wetland restoration.

Keywords: climate change, collembola, mites, indicator species, wetland restoration

HIGHLIGHTS

- Air warming increased the density and richness of springtails (Collembola), while no
significant effects on the density and richness of soil mites (Acari).

- Springtails were more sensitive to warming and drainage than mites.
- Anurida maritima (springtails) and Vertagopus laricis (springtails) had the highest densities

in the natural water level and warming under the natural water level, respectively. Besides,
Cheiroseius sinicus (mites) and Malaconothrus tardus (mites) had the highest densities in
warming under the 0 cm water level. These four indicator species characterized warming and
water level changes in wetlands.

- Natural water level fluctuations are important for soil microarthropods protection.
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INTRODUCTION

Soil fauna are a crucial part of the terrestrial biosphere, and plays
an important role in ecosystem function and plant community
dynamics (Brussaard, 1998; Geisen and Bonkowski, 2018; Phillips
et al., 2019; van den Hoogen et al., 2019; Hallam and Hodson,
2020; Oliverio et al., 2020). Driven by resource heterogeneity,
nutrient availability, and abiotic conditions, they could impose
direct or indirect and positive or negative feedbacks on
aboveground biology by altering rates of nutrient mineralization
and the spatial distribution of nutrient availability, rhizospheric
hormones and the soil environment (Wang and Ran, 2008). The
composition and diversity of soil fauna are closely related to
soil properties (physical, chemical, and microbial characteristics),
vegetation, and climate (Wardle et al., 2005; Liu et al., 2012;
Phillips et al., 2020; Vazquez et al., 2020), among which
some sensitive species can also act as indicators to indicate
environmental changes (Liang et al., 2001; Sun et al., 2021).
It is noteworthy that changes in composition and distribution
patterns of soil fauna are likely to impact ecosystem processes and
functions (Koltz et al., 2018).

Among soil fauna, soil microarthropods (most fungi-
/detritivores) such as Collembola, oribatid mites (Acari:
Oribatida), and enchytraeids (Oligochaeta: Enchytraeidae) take
part in important ecosystem functions such as decomposition,
nutrient mobilization, soil mixing, and aggregate formation
(Lindberg, 2003; Semenina and Tiunov, 2020). Climate change
impacts soil fauna’s growth, development, and reproduction,
impacting soil microarthropod communities’ abundance, and
composition, by altering the soil microenvironment. Climate
change can also indirectly influence the soil microarthropod
communities’ structure by changing the resource availability
and composition of the soil food web (Kardol et al., 2011;
Zhang and Wu, 2020).

The effect of warming on soil microarthropods is
controversial, as some studies have found that warming
significantly reduced the biomass and diversity of springtails
(Makkonen et al., 2011; Chang et al., 2019), as well as significantly
changing the composition and diversity of soil fauna (Briones
et al., 2009; Kardol et al., 2011). In contrast, others have found
that warming either increased the total abundance of springtails
(Orchesellides) in grasslands of the Songnen Plain, northeast
China (Yan et al., 2015) or had no significant effect on the
abundance of soil collembola and mites. The different results
were possibly related to water content of ecosystems. In humid
area, the warming effect was positive or insignificant. However,
in relatively arid areas, warming had a negative effect on soil
microarthropods, and the variation of precipitation often
had a more significant effect on soil microarthropods than
warming. For example, one study conducted on a semiarid
grassland in Duolun County showed that an increase in
rainfall significantly increased the abundance of soil mites
and springtails, but warming had no significant effect on
soil microarthropods (Wu et al., 2014). Drought increased
the abundance of soil microarthropods while reducing their
biomass, it also increased the abundance of small mites (body
length 0.20 mm), and decreased the abundance of large mites

(body length >0.40 mm) in the sandy forest soils (the water level
is between 5 and 30%) (Xu et al., 2012). In comparison, warming
only slightly affected the animal population (Xu et al., 2012).
This was similar to a meta-analysis that identified that the soil
microbiota responded more strongly to changes in precipitation
than warming (Blankinship et al., 2011). Nevertheless, other
studies have found that changes in precipitation can have no
significant impact on soil microarthropods (Kardol et al., 2011;
Darby and Neher, 2012).

Wetlands provide critical ecosystem functions, including
water storage and flood regulation, water quality purification,
and local climate regulation. However, the annual average
temperature of the Sanjiang Plain and the average temperature
of the growing season has increased over the past 60 years,
with projections to rise continuously over the next 30 years
(Liu, 2016; Meng, 2016). Concurrently, the water levels of
the marsh have declined significantly, and the ecosystem has
degraded under human drainage disturbance and global change.
Yet, research into the relationships between climate change
and vegetation coverage, phenology, NDVI (the Normalized
Difference Vegetation Index), and the carbon budget of the
Sanjiang Plain is limited (Liu et al., 2019; Shen et al., 2019a,b;
Zhang et al., 2019). There is also insufficient research into
the potential impact of climate warming and drainage on soil
microarthropods in the marsh of the Sanjiang Plain.

In this study, we conducted a 5-month simulation experiment
of warming and drainage on the marsh of the Sanjiang Plain.
We examined the influence of warming and wetland drainage
on soil microarthropod community composition, diversity,
and vertical distribution. The influence of mild drainage on
the wetland soil ecosystem provides a theoretical basis for
further understanding how these important and fluctuating
abiotic effects can influence wetland soil ecosystems. We
also screened soil microarthropod communities for species
sensitive to climate change and wetland drainage to enrich
the existing wetland evaluation index system. Wetlands
are flooded or seasonally flooded areas with higher water
content. As a result, we hypothesize that continued drainage
will significantly reduce the density and abundance of soil
microarthropods, while warming had a positive effect on it.
This article mainly focuses on mites and springtails in this
article because they are two critical classes of soil fauna and
were the most dominant microarthropod groups collected
across all treatments.

MATERIALS AND METHODS

Sample Collection and Processing
Field samples were collected in August, September, and
November of 2018, and data were averaged for these analyses.
One soil column was taken from each subplot at each sampling
time, immediately wrapped with plastic, and then transported
to the laboratory. The soil samples were then placed in a
Tullgren-type extractor (Yin, 1992) for 72 h to extract the soil
arthropods. The extracted arthropods were preserved in 70%
ethanol and identified to taxonomic species or morphospecies
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using applicable keys (Balogh and Balogh, 1992; Bellinger et al.,
1996-2019; Yin, 1998; Krantz and Walter, 2009).

Site and Plot Description
The field study was conducted from June 2018 to November
2018, in the marshes at the Sanjiang Mire Wetland Experimental
Station (47◦13′′50′N, 133◦13′′10′E, 55 m above the sea level),
Chinese Academy of Sciences. The marshes are located in
the Sanjiang Plain, a low-lying floodplain, in the Heilongjiang
Province, Northeast China. This region has a temperate moist
monsoon climate, with a mean annual temperature of 1.9◦C
(−21◦C in January and 22◦C in July) and mean annual
precipitation of 600 mm (≥60% between July and September).
Carex lasiocarpa, Carex pseudocuraica, and Carex meyeriana
are the dominant grass species, often grown with co-occurring
Deyeuxia angustifolia and Glyceria spiculosa.

In this study, the dominant vegetation in our experiment is
C. lasiocarpa, and the water depth in this study area usually
fluctuated up and down by 10 cm. Our main purpose was
to simulate the fluctuation and the same of water level and
found their different impacts on soil fauna communities. So we
chose the fluctuation water level of natural wetlands and the
constant water level of 0 and −10 cm. The water levels could be
controlled independently, and the specific design and operation
of the experiment have been previously described in detail (Tan
et al., 2018). In brief, this set of automatic water level control
equipment was able to realize the multi-loop automatic control
and the function of replenishing and draining simultaneously,
consisting of control center, horizontal self-priming centrifugal
pump, water ring vacuum pump, electrode hydraulic gauge, water
refill solenoid valve, drainage solenoid valve, remote pressure
gauge, air compressor, vacuum tank, pneumatic valve, water refill
diverters, drainage diverters, water refill pipes, and drainpipes
(Figure 1). When the actual water level is lower than the set
water level, the water supply system starts to work. Otherwise,
the control center will start the drainage system.

Besides, a method of open-top chambers (OTC) was used for
the calefaction treatments. The basic function of the OTCs is to
increase the air temperature and soil temperature by passively
trapping the long wavelength solar radiation. It is also common
method for soil fauna researches (Kardol et al., 2011; Makkonen
et al., 2011; Yan et al., 2015). In a hexagon-based pyramid
shape, the OTC was made of polymethyl-methacrylate sheet
[length: width: height = 100: 65 (top) or 280 (bottom): 230 cm].
Each chamber had a door (100 cm width and 180 cm height)
to ensure access. The control treatment contained only frame
without polymethyl-methacrylate sheet. The air temperature was
measured minutely using air temperature sensors (HMP155,
Vaisala, Helsinki, Finland), and the results showed an average
increase of 2.5◦C in atmospheric temperature during the
sampling period (see Supplementary Figure 1). All measured
temperatures were stored in data loggers (CR1000, Campbell, NY,
Untied States) throughout the plant growing season from June
to December 2018. Thus, the 12 subplots were split into four
treatments; namely, the natural water level (CK), warming under
the natural water level (OTC), warming under the reference water
level (the constant water level, about 20–40 cm, based on the

suitable water level of the dominant vegetation) (0 cm × OTC),
and warming under 10 cm below the reference water level (the
constant water level) (−10 cm × OTC), including interaction
designs of water-level and warming (Table 1 and Figure 2).

Before the experiment, 36 soil columns were collected using
a PVC pipe (diameter = 110 mm, length = 200 mm) in a
relatively flat wetlands outside the plots to avoid the original
differences between plots and to reduce the direct collection of
soil samples that could influence our treatments. To prevent
species loss during collection, we carefully and immediately
wrapped the soil samples with plastic wrap after obtaining them,
marked the soil surface, placed the soil columns according to
the direction of collecting soil columns, and transported them to
the study site. Three soil column samples were placed into one
subplot with their plastic wrap removed. The sampling design
excluded the dispersal ability of these animals and the possibility
of species turnover.

Statistical Analysis
Abundance data were expressed as numbers per square
meter. Diversity indices (Margalef Richness, Pielou Evenness,
and Shannon–Wiener index) were calculated in Primer 7.0
to characterize arthropod communities and the influence
of warming and water level. The specific formula is as
follows: Margalef Richness (M = (s−1)

lnN ), Shannon–Wiener index
(H = −

∑s
i = 1 Pi ln Pi), and Pielou Evenness (E = H/ln S ),

where S, total number of species; N, total number of individuals
in the sample; Pi, the proportion of the entire community
made up of species. Dominance (%) of a species was expressed
as its proportion in the community (dominant, common, and
rare species), and the number of individuals of a species was
accounted for >10, 1–10, and <1% of the total numbers,
respectively. One-way ANOVA analyses were performed to
determine the statistical significance of the warming treatment
on density measures, the number of species and to test for
differences in the diversity indexes between treatments using
Tukey’s Studentized Range (HSD) test (p < 0.05). Figures
were created by using Origin 2018 (Origin Lab, Northampton,
MA, United States).

Indicator species analysis was based on the abundance of soil
springtails and mites under four treatments (n = 3) in PCORD
Version 5.0, using Dufrene and Legendre’s (1997) indicator value
method (IVM) (Dai et al., 2006; Iqbal et al., 2018; Kamran
et al., 2020). The equations for determining the indicator species
were presented in Supplementary Material. Indicator value (IV),
ranging from 0 (no indication) to 100 (perfect indication), were
tested for statistical significance using a Monte Carlo technique.
Only significant species were list (p < 0.05) in the results.

RESULTS

Springtails
Community Composition and Structure
The community structure of soil collembola varied significantly
across our treatments, with increasing temperature under two
constant water level significantly reducing the number of species
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FIGURE 1 | Sketch of automatic water-level control equipment in one subplot (modified from Tan et al., 2018).

TABLE 1 | The design of this experiment.

Treatments Water level Warming or not Replicates Soil columns Sampling times

CK The natural water level No 3 9 3

OTC The natural water level Yes 3 9 3

0 cm × OTC The constant water level Yes 3 9 3

−10 cm × OTC The constant water level Yes 3 9 3

Treatment codes: CK, control (the natural water level); OTC, warming under the natural water level; 0 cm × OTC, warming under the reference water level (the constant
water level, about 20–40 cm, based on the suitable water level of the dominant vegetation); and −10 cm × OTC, warming under 10 cm below the reference water level
(the constant water level). Soil columns were collected in August, September, and November of 2018, and data were averaged for these analyses.

of collembola (Table 2). There were 20 species identified
in the natural water level treatment (CK); the dominant
species was Folsomia octoculata, which accounted for 41.86%
of all individuals, while the most common species included
Lepidocyrtus szeptyckii, Desoria infuscata, and Anurida maritima.
Overall a total of 12 species accounted for 53.02%, with only 7
species accounting for 4.27%. There were also 20 species in the
warming treatment (OTC); the dominant species were Desoria
olivacea and F. octoculata, accounting for 10.25 and 54.81%,
respectively. The common species included Desoria tigrina and
Parisotoma ekmani, and an additional seven species accounted
for 20.63%. There were 11 rare species, accounting for only 3.85%.
There were eight species in total in the warming under 0 cm
water level treatment (0 cm × OTC). D. olivacea, F. octoculata,
and Tomocerus nigrus were the dominant species, accounting
for 51.65%; there were four common species, accounting for
23.99%; and D. infuscata was the rarest species, accounting for
0.37%. Finally, there were 13 species in the warming treatment
at −10 cm water level (−10 cm × OTC). D. olivacea and

F. octoculata were the dominant species, accounting for 18.36
and 63.99%, respectively; common species (14.68%) included
D. tigrina, Vertagopus laricis, and A. maritima, while five rare
species accounted for 2.96%.

The Density and Diversity Dynamics of Springtails
The results of the one-way analysis of variance revealed that the
soil collembola density (F = 14.064, p = 0.034) and the number
of species under different treatments (F = 3.832, p = 0) were
significantly different (Figure 3). During warming at the natural
water level, the density and number of species were consistently
higher than other treatments, with the lowest abundances always
present in the warming treatment at the 0 cm water level.
At the same time, the Margalef richness index (F = 10.801,
p = 0.001) of collembola was significantly different under the four
treatments, with higher abundances in the natural water level
and its warming treatment (Figure 4). Warming at 0 cm water
level treatment had a high uniformity, and the natural water level
had high diversity.
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FIGURE 2 | The study site, experimental design, and some kinds of soil microarthropods.

Analysis of Indicator Species
The indicator species analysis of the four treatments (Table 3)
exhibited two indicator species: A. maritima (p = 0.0196) in the
natural water level and V. laricis (p = 0.0172) in the warming
treatment. Collembola A. maritima existed under the natural
water level, warming and warming treatment at −10 cm water
level (densities were 912 ± 228, 614 ± 162, and 246 ± 35
ind./m2, respectively), but was not present at 0 cm water level
in the warming treatments. The density of V. laricis increased
significantly after warming (4069 ± 1187/m2), significantly
higher than in the other three treatments were 1789 ± 914,
561± 246, and 316± 0 ind./m2, respectively.

Mites
Community Composition and Structure
A total of 1290 mites were captured in three samplings in
2018, belonging to nine families and ten genera (Table 1).
The dominant species were Geolaelaps praesternaliodes,
Malaconothrus tardus, and Zetomimus furcatus, which accounted
for 32.48, 37.52, and 13.72% of all individuals, respectively.
Common species include Cheiroseius sinicus and Geolaelaps
dailingensis, accounting for 15.12% of the total catch, while four
rare species accounted for only 1.16%.

There were also significant differences in the community
composition of soil mites under various treatments (Table 2).
There were nine species identified under the natural water level.
The dominant species were G. praesternaliodes, M. tardus, and
Z. furcatus, accounting for 37.25, 33.04, and 10.20%, respectively;
five common species accounted for 19.24%; Belba compta was
a rare species that only accounted for 0.44%. After warming
treatment, there were eight species. The dominant species were
consistent with the natural water level plots, but the proportions
varied, respectively, 33.33, 29.17, and 24.56%; there were three

common species, accounting for 11.84%. The other two species
were rare, accounting for 1.10%. There were eight kinds of
warming treatments under 0 cm water level. Compared with
the first two treatments, the dominant species (Z. furcatus)
was significantly reduced; there were three common taxa,
accounting for 19.74%, and the remaining two species were rare,
accounting for 0.86%. There were eight species after warming
at −10 cm water level. Compared with the dominant species at
0 cm water level, the dominant species accounted for 52 and
31.33%, respectively; common species included C. sinicus and
Banksinoma akhtyamovi. Four species accounted for 15.33% of
the total catch, and two rare species accounted for 1.16% of
the total catch.

The Density and Diversity Dynamics of Mites
According to the Shannon–Wiener diversity index (F = 3.904,
p = 0.032), there were also significant differences across
treatments, with a significantly higher diversity of mites under
natural water level and warming treatment, than under warming
at 0 cm water level (Figure 5). Although, the soil mites density
(F = 0.387, p = 0.764), number of species (F = 1.379, p = 0.290),
Pielou evenness index (F = 2.532, p = 0.099), and Margalef
richness index (F = 1.062, p = 0.397) did not significantly differ
(Figures 5, 6). The natural water level had higher uniformity and
diversity than increasing temperatures under the 0 cm water level.

Indicator Species Analysis
There were two indicator species of mites, C. sinicus (p = 0.0426)
and M. tardus (p = 0.0022) (Table 3). The density of C. sinicus
under the four treatments were 631± 192, 263± 71, 1052± 219,
and 281 ± 126 ind./m2. The density of M. tardus under the
four treatments was 2613 ± 562, 2333 ± 596, 5437 ± 345, and
1649± 345 ind./m2.
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TABLE 2 | Soil microarthropod community composition and dominance in four treatments (n = 3) in the Sanjiang Plain.

CK OTC 0 cm × OTC −10 cm × OTC Total

Order/family Specie Dominance Dominance Dominance Dominance Dominance

Collembola Arthropleona

Entomobryinae Homidia phjongiangica (Szeptycki, 1973) – 0.09 + – – 0.05 +

Lepidocyrtus szeptyckii (Rusek, 1985) 2.23 ++ 0.45 + – 0.7 + 0.9 +

Isotominae Desoria choi (Lee, 1977) 0.1 + 0.36 + – – 0.22 +

Desoria infuscata (Murphy, 1959) 2.33 ++ 0.4 + 0.37 + – 0.83 +

Desoria olivacea (Tullberg, 1871) 8.43 ++ 10.25 +++ 25.09 +++ 18.36 +++ 11.91 +++

Desoria tigrina (Nicolet, 1842) 7.27 ++ 4.27 ++ 9.23 ++ 7.17 ++ 5.76 ++

Desoria violacea (Tullberg, 1877) 0.97 + 0.76 + – 0.35 0.71 +

Folsomia octoculata (Handschin, 1925) 41.86 +++ 54.81 +++ 37.27 +++ 63.99 +++ 51.67 +++

Parisotoma ekmani (Fjellberg, 1977) 5.91 ++ 5.44 ++ – 0.35 + 4.49 ++

Pseudisotoma sensibilis (Tullberg, 1877) 0.19 + 0.18 + – – 0.15 +

Vertagopus laricis (Martynova, 1975) 9.88 ++ 10.43 ++ 5.9 ++ 1.57 ++ 8.76 ++

Neanurinae Anurida maritima (Guérin-Méneville, 1836) 5.04 ++ 1.57 ++ – 1.22 ++ 2.29 ++

Lobellina decipiens (Yosii, 1965) 0.78 + 0.45 + 7.01 ++ 2.1 ++ 1.2 ++

Onychiurinae Allonychiurus songi (Sun & Wu, 2012) 1.07 ++ 2.2 ++ – – 1.46 ++

Poduridae Podura aquatica (Linnæus, 1758) 1.65 ++ 0.63 + – – 0.76 +

Tomoceridae Tomocerina varia (Folsom, 1899) 0.58 + 0.04 + – – 0.17 +

Tomocerus nigrus (Sun, Liang & Huang, 2006) 8.14 ++ 5.8 ++ 13.28 +++ 2.62 ++ 6.44 ++

Tomocerus sp. 1 0.68 + – – – 0.17 +

Collembola Symphypleona

Sminthurididae Arrhopalites minor (Park & Kang, 2007) 1.07 ++ 0.36 + – 0.52 + 0.54 +

Sminthurides aquaticus (Bourlet, 1842) 0.97 ++ 0.13 + – 0.52 + 0.39 +

Sminthurides malmgreni (Tullberg, 1877) 0.87 + 1.35 ++ 1.85 ++ 0.52 + 1.15 ++

The number of species (dominant, common and rare species) 20 (1:12:7) 20 (3:6:11) 8 (3:4:1) 13 (2:5:6) 21 (2:8:11)

Parasitiformes Mesostigmata

Blattisociidae Cheiroseius sinicus (Yin & Bei, 1991) 7.98 ++ 3.29 ++ 12.88 +++ 5.33 ++ 6.9 ++

Laelapidae Geolaelaps dailingensis (Ma and Yin, 1998) 2.22 ++ – 1.29 ++ – 1.01 ++

Geolaelaps praesternaliodes (Ma & Yin, 1998) 37.25 +++ 33.33 +++ 9.01 ++ 52 +++ 32.48 +++

Acariformes Oribatida

Banksinoma Banksinoma akhtyamovi (Rjabinin, 1993) 1.77 ++ 4.61 ++ 0.43 + 1.33 ++ 2.48 ++

Bellidae Belba compta (Kulczynski, 1902) 0.44 + – – 0.67 + 0.23 +

Malaconothridae Malaconothrus tardus (Michael, 1888) 33.04 +++ 29.17 +++ 66.52 +++ 31.33 +++ 37.52 +++

Scheloribatidae Scheloribates latipes (C.L. Koch, 1844) 5.99 ++ 3.95 ++ 5.58 ++ 2 ++ 4.73 ++

Suctobelbidae Suctobelbella longidentata (Chinone, 2003) 1.11 ++ 0.88 + – – 0.7 +

Tectocepheidae Tectocepheus velatus (Michael, 1880) – 0.22 + 0.43 + 0.67 + 0.23 +

Zetomimidae Zetomimus furcatus (Warburton & Pearce, 1905) 10.2 +++ 24.56 +++ 3.86 ++ 6.67 ++ 13.72 +++

The number of species (dominant, common and rare species) 9 (3:5:1) 8 (3:3:2) 8 (2:4:2) 8 (2:4:2) 10 (3:4:3)

The dominance of the Collembola and Oribatida was calculated separately.
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FIGURE 3 | Soil springtail density (A) and number of species (B) in different treatments. Data are means ± SE (n = 3) and different letters indicate significant
differences between treatments (a, b, and c) at p < 0.05.

FIGURE 4 | Soil springtail diversity indexes in different treatments: (A) Margalef richness, (B) Pielou evenness, and (C) Shannon–Wiener index. Data are means ± SE
(n = 3) and different letters indicate significant differences between treatments (a and b) at p < 0.05.

TABLE 3 | Indicator species analysis of four treatments in the Sanjiang Plain marshlands.

Treatments Indicator species Indicator value p

OTC Vertagopus laricis (Martynova, 1975) (Springtails) 60.4 0.0172

CK Anurida maritima (Guérin-Méneville, 1836) (Springtails) 51.5 0.0196

0 cm × OTC Cheiroseius sinicus (Yin & Bei, 1991) (Mites) 47.2 0.0426

0 cm × OTC Malaconothrus tardus (Michael, 1888) (Mites) 45.2 0.0022

Only significant species were list, p < 0.05.

DISCUSSION

Our results demonstrate that single and combined effects of
warming and drainage can influence soil microarthropod’s
abundance and community structure, which are important
regulators of ecosystem processes. Further, we found that the
major taxonomic groups of soil microarthropods, i.e., collembola
and mites, differed in their response to our climate change
treatments, which appears to be more complex than we assumed.
Besides, the results confirmed our hypothesis that warming alone

slightly increased the density and abundance of springtails (CK
vs. OTC). It supports the view that warming in humid areas has
a positive effect or no effect on soil fauna. And the synergistic
effect of warming and drainage also increased the density and
abundance of springtails (0 cm× OTC vs.−10 cm× OTC).

Previous studies have identified that 3 years of temperature
increases have significantly increased the abundance of total
collembola and its dominant species Orchesellides sp1 in
the Songnen Grasslands (Yan et al., 2015). In this study,
warming under different water levels impacted the community
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FIGURE 5 | Soil mites density (A) and number of species (B) in different treatments. Data are means ± SE (n = 3), and the same letter indicate insignificant
differences between treatments (a) at p < 0.05.

FIGURE 6 | Soil mites diversity indexes in different treatments: (A) Margalef richness, (B) Pielou evenness, and (C) Shannon–Wiener index. Data are means ± SE
(n = 3) and different letters indicate significant differences between treatments (a and b) at p < 0.05.

composition of soil microarthropods in the marsh of the Sanjiang
Plain, which may influence ecosystem functioning. Warming
has also increased the density of collembola under the natural
water levels. Conversely, other studies found that increasing
temperatures can result in decreasing population densities of
Prostigmata (Briones et al., 2009), nematodes (Simmons et al.,
2009; Mueller et al., 2016), and springtails (Holmstrup et al.,
2017). However, variation in these ecosystems could explain
these differences. Compared with the natural water level, the
number of collembola species decreased from 20 to 8 species
under the temperature increase at 0 cm water level. Makkonen
et al. (2011) also found that increased temperature reduced the
number of collembola species in subarctic regions, decreasing
from 14 species to 12. This may result from some species of
springtails being unable to adapt to the changing environment
when faced with temperature change, inducing the migration or
death of species. Many previous studies have also shown that
the adverse effects of warming on soil fauna may be caused

by decreased soil moisture concentrations (Xu et al., 2012;
Chang et al., 2019). Due to the increase in vegetation and soil
surface evaporation, the increase in temperature usually leads
to a dry environment, resulting in shifts in the composition of
the collembola community to a low-water preference species.
Compared with springtails, the number of species of oribatid
varied less after treatment exposure, displaying a greater ability
to adapt. In the context of warming, it often appears that
springtails are more influenced by warming than mites in some
ecosystems, but the opposite is also apparent in other ecosystems
(Blankinship et al., 2011; Bokhorst et al., 2017).

Soil fauna can represent suitable indicator organisms
for evaluating soil quality, soil biological effects, ecosystem
succession, or the degree of disturbance (David and Gillon, 2009;
Shao et al., 2015; Venuste et al., 2018; Srut et al., 2019). Indicator
species analysis based on the abundance of soil springtails
and mites under four treatments helped us to screen out four
indicator species. The density of A. maritima (springtail) was
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significantly reduced at the constant water level. A. maritima
(springtail) had the highest density after the warming at the
natural fluctuating water levels, demonstrating adaptability to
warming. Two species of mites, C. sinicus and M. tardus, were
indicators in the 0 cm water level warming treatment. Their
densities were significantly higher than in the other treatment
groups, exhibiting tolerance to warming and constant water level.

Drainage and water level fluctuation impact the community
composition and diversity of plants and soil fauna. The
relationship between water level change and plant population
characteristics, species diversity and life history have been
studied. Researches showed that fluctuation and its frequency
are important factors affecting the growth, reproduction, and
population distribution of wetland plants (Gattringer et al., 2018;
Yao et al., 2021). Water fluctuation increased number of shoot
nodes and shoot length of the communities, and may increase the
vegetative spread of submerged macrophyte communities (Wang
et al., 2016), and biomass accumulation in roots rather than in
shoots and the ability to asexually propagate were important for
the survival of these species during water fluctuation (Wei et al.,
2019). Short-term decline of the water table may increase the
primary productivity by shifting dominant species of hygrophytes
to mesophytes in the Zogie wetlands (Cao et al., 2017).
Meanwhile, plant diversity or functional characteristics often
lead to changes in soil fauna resources and habitat environment.
Collembola density and diversity significantly increased with
plant species and plant functional group richness (Eisenhauer
et al., 2011; Sabais et al., 2011). In forest area, the mean species
richness of the collembolan communities increased by 47%, when
the number of plant species increased from one (spruce) to three
(spruce beech and fir) (Chauvat et al., 2011). In this study, the
density, species number and abundance of springtails under the
natural water level and its warming treatment were significantly
higher than the warming treatment under the constant water
level. This increase was also observed in the diversity of mites.
This phenomenon were likely due to increased root and microbial
biomass in the natural water level, and elevated quantity and
quality of plant residues serving as food resources for springtails
and mites. It is also recommended that the natural water level
fluctuations of the wetland should be maintained, when wetland
restoration is conducted under the influence of future warming.
Otherwise, we were aware of this study also had deficiencies.
A long-term, comprehensive research is needed for indicating the
effect of warming and water level on wetland plants, soil fauna,
and soil properties.

CONCLUSION

After the wetlands, under different water levels, in the Sanjiang
Plain were warmed, the composition of the soil microarthropod
community was significantly changed. Warming increased the
density and richness of collembola under the natural water level,
but decreased the density and richness of springtails under the
constant water level. The diversity of mites under the natural
water level and its warming treatment was significantly higher
than that of the warming treatment at the 0 cm water level.

Besides, A. maritima and V. laricis, two indicators for the
natural water level, had the highest densities in the natural water
level and warming under the natural water level, respectively.
C. sinicus and M. tardus had the highest densities in warming
under the 0 cm water level, significantly higher than the other
three treatments. We have also shown that in the context of
global warming, maintaining natural water level fluctuations is
of great significance to the composition and diversity of soil
microarthropod communities.
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