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Spatio-temporal variation of climatic factors generally contains spatial and temporal
components that have different frequencies, which may significantly affect the overall
variance structure of vegetation growth at the original scale. The objective of the study
was to explore the temporal- and spatial-scale-specific relationships between vegetation
growth and climatic factors based on the data of half-monthly normalized difference
vegetation index (NDVI), half-monthly averaged daily mean temperature (DMT), half-
monthly averaged daily range of temperature (DRT), and half-monthly accumulated
precipitation (AP). The complete ensemble empirical mode decomposition (CEEMD) was
used to decompose the temporal series of NDVI and climatic factors, and their temporal-
scale-specific relationships were examined based on the original half-month scale.
Two-dimensional empirical mode decomposition (2D-EMD) was used to decompose
the spatial distributions of temporally averaged NDVI and climatic factors, and their
spatial-scale-specific relationships were tested based on the original resolution of 1 km.
The dominant temporal scales of NDVI were around 3, 15, and >15 years, while the
dominant spatial scales of NDVI were around 2 × 104 and >10 × 104 km2. The
temporal-scale-specific effects of climatic factors on NDVI were the strongest under
mixed forest and were the weakest under broadleaf forest. On a 15-year time scale,
NDVI was positively affected by DMT and AP at the 200–1,000 mm precipitation region
and negatively affected by DRT at the 200–600 mm precipitation region. Temporal
effects of climatic factors had the greatest effects on NDVI in the precipitation region
of 200–600 mm and in Yunnan province, and 98.08% of the study area included
multi-temporal scale effects. Relationships between NDVI and climatic factors at the
half-month scale and other temporal scales were different under different elevation,
latitude, longitude, land types, climatic regions, and precipitation. The spatial-scale-
specific effects of climatic factors on NDVI were also differed, and the area with effects
of the multi-spatial scale was about 64.38%. This indicated that multi-temporal scale
and multi-spatial scale analysis could help to understand the mechanisms of effect of
climatic factors on vegetation growth and provide the foundation for future vegetation
restoration in fragile ecosystems.

Keywords: multiple temporal scale, multiple spatial scale, complete ensemble empirical mode decomposition
(CEEMD), two-dimensional empirical mode decomposition (2D-EMD), scale component

Frontiers in Ecology and Evolution | www.frontiersin.org 1 November 2021 | Volume 9 | Article 730673

https://www.frontiersin.org/journals/ecology-and-evolution
https://www.frontiersin.org/journals/ecology-and-evolution#editorial-board
https://www.frontiersin.org/journals/ecology-and-evolution#editorial-board
https://doi.org/10.3389/fevo.2021.730673
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3389/fevo.2021.730673
http://crossmark.crossref.org/dialog/?doi=10.3389/fevo.2021.730673&domain=pdf&date_stamp=2021-11-11
https://www.frontiersin.org/articles/10.3389/fevo.2021.730673/full
https://www.frontiersin.org/journals/ecology-and-evolution
https://www.frontiersin.org/
https://www.frontiersin.org/journals/ecology-and-evolution#articles


fevo-09-730673 November 6, 2021 Time: 12:30 # 2

Jing et al. Temporal- and Spatial-Scales Effects on Vegetation

INTRODUCTION

Increasing temperatures and changes to precipitation patterns
caused by climate change will affect variation in vegetation
distribution (IPCC, 2013), and exploring the climatic controls
on vegetation growth is critical for future vegetation restoration,
ecological conservation, and environmental sustainability
(Buitenwerf et al., 2015). Many previous studies have explored
vegetation variation and its interactions with climatic factors
(Jiang et al., 2019; Zheng et al., 2019; Qu et al., 2020). However,
most of these studies have focused on a single temporal scale
or a single spatial scale and have used traditional analysis,
such as linear regression (Tong et al., 2016; Jiang et al., 2019),
correlation analysis (Sun et al., 2020), or piecewise regression
(Kong et al., 2017).

Single temporal or spatial scale cannot comprehensively
capture the temporal or spatial response of vegetation to
climate change and may ignore some important information
on other temporal or spatial scales (Liu et al., 2018). Temporal
relationships between vegetation and climatic factors have been
explored using methods, such as wavelet analysis (Peng et al.,
2019; Rathinasamy et al., 2019) and ensemble empirical mode
decomposition (EEMD) (Liu et al., 2018). However, few studies
have focused on the spatial effects of climatic factors on
vegetation growth.

The overall variability of vegetation is controlled by a number
of processes that occur together at different temporal and
spatial scales with different intensities (Goovaerts, 1998), and
the relationships with climatic variables are generally non-
stationary (Yin et al., 2017). Thus, a linear and stationary
assumption is not optimal for analyzing the relationships between
vegetation and climatic variables at multiple spatial or temporal
scales. Empirical mode decomposition (EMD) was introduced
to analyze non-linear and non-stationary signals (Huang et al.,
1998). However, EMD can result in an overestimation of the
noise in a temporal series due to mode mixing (Wu and Huang,
2009). Although EEMD can avoid the problem of mode mixing
(Wu and Huang, 2009), this method can produce some new
mode mixing, and the computational cost is higher. The complete
ensemble empirical mode decomposition (CEEMD) method is
an adaption by Torres et al. (2011) of the original method, and
it adds Gaussian white noise to the original series. For two-
dimensional (2D) spatial datasets, two-dimensional empirical
mode decomposition (2D-EMD) was introduced in a previous
study (Huang et al., 2017).

Previous studies demonstrated that temporal variation of
climatic variables on vegetation growth occurs at multiple scales
regardless of the environmental conditions (Liu et al., 2018;
Peng et al., 2019; Rathinasamy et al., 2019). However, it is
unclear at what spatial and temporal scales climatic factors
affect vegetation growth and distribution. We hypothesize that
the factors controlling vegetation growth differ greatly under
different temporal or spatial scales because of the differences in
location-associated bioclimatic processes. The objectives of this
study were to evaluate the relationships between climatic factors
and normalized difference vegetation index (NDVI) to determine
which temporal and spatial scales most accurately predict NDVI.

MATERIALS AND METHODS

Study Area
China has a landmass of approximately 960 × 104 km2 covering
approximately 50◦ of latitude and 62◦ of longitude and has
extremely diverse climatic conditions (Bai et al., 2020). The
elevation map of China is shown in Figure 1A. Based on the
climatic indexes of active accumulated temperature, aridity index,
and frost-free period, China can be divided into six climatic
regions (Zhao, 1983), as shown in Figure 1B. The land cover-type
product of MODIS (MCD12Q1) from 2001 for China is shown in
Figure 1C, and the spatial distribution of averaged accumulated
precipitation (AP) during 1982–2013 is presented in Figure 1D.

Data Sources
Daily precipitation and temperature were collected from
2,474 meteorological stations across China from 1982 to
2013 from Climatic Data Center, National Meteorological
Information Center1. The half-monthly averaged values of
daily mean temperature (DMT), daily range of temperature
(DRT), and half-monthly AP were calculated as the three major
influencing climatic factors, and some meteorological stations
with incomplete datasets were eliminated.

The NDVI was derived from the Global Inventory Modeling
and Mapping Studies (GIMMS) obtained from the National
Oceanic and Atmospheric Administration (NOAA) satellites
boarded on the Advanced Very High Resolution Radiometer
(AVHRR) sensor2. The 15-day NDVI value from 1982 to 2013
at the meteorological stations was extracted after selecting
the stations with good NDVI quality (NDVI quality >85%).
Finally, 1,029 time series from these meteorological stations were
obtained to analyze for variations in NDVI at multiple temporal
scales. The temporal-averaged spatial distributions of NDVI,
DMT, DRT, and AP were calculated to analyze NDVI variations
at multiple spatial scales.

Complete Ensemble Empirical Mode
Decomposition
Empirical mode decomposition is an intuitive, posterior, and
adaptive method to analyze non-stationary and nonlinear
temporal data series (Huang et al., 1998). CEEMD was introduced
to solve the problem of incomplete decomposition with a
lower computational cost. The CEEMD method decomposes an
original temporal series x(t) (t = 1, 2, . . ., N) into n components
called intrinsic mode functions (IMFs) and a corresponding
residue. Decomposition can be done as follows:

(1) Obtain two noisy temporal series [m+i (t), m−i (t)] by
adding positive and negative Gaussian white noise n+i (t)
and n−i (t) with the same amplitude, respectively.

m+i (t) = x (t) + n+i (t) (1)

m−i (t) = x (t) + n−i (t) (2)

1http://data.cma.cn/
2https://data.tpdc.ac.cn/en/data
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FIGURE 1 | (A) Digital elevation model (DEM), (B) geographic distribution of selected meteorological stations and natural climatic regions, (C) land cover types, and
(D) accumulated precipitation in China.

(2) Apply the EMD method to the noisy temporal series of
m+i (t) and m−i (t) to obtain two IMFs of IMF+i and
IMF−i . A detailed description of EMD can be found in a
previous publication (Huang et al., 1998).

(3) The i-th CEEMD IMFs of IMFi(t) are obtained by
averaging the corresponding IMF+i (t) and IMF−i (t) of the
noisy temporal series as follows:

IMFi(t) =
1
2
[IMF+i (t) + IMF−i (t)] (3)

The residue of r(t) is obtained by averaging the corresponding
r+ (t) and r−(t) of the noisy temporal series as follows:

r(t) =
1
2
[r+ (t) + r−(t)] (4)

An original time series could produce a finite number of
IMFi(t) and a residue r(t) using CEEMD.

Each component of IMFi(t) stands for the oscillation of the
original time series at one temporal scale, and its temporal scale

could be calculated through the number of local maxima (peaks)
divided by the length of time (n). The residue of r(t) represents a
longer scale of the original time series. The relative importance of
IMFi(t) or r(t) can be represented by the percentage of variance
contribution as follows:

Variance (%) =
Variance of each IMFi (t) [or r(t)]
Variance of original time series

× 100

(5)

Two-Dimensional Empirical Mode
Decomposition
Two-dimensional empirical mode decomposition has been used
to separate the overall variation of the spatial distribution
of NDVI or climatic factors into different scale components
called bi-dimensional intrinsic mode functions (BIMFs) (Biswas,
2018). Unlike EMD, which finds the overall extrema, 2D-EMD
determines the local extrema (maxima and minima) of the spatial
dataset. The minima and maxima points of each location have to
be interpolated, and the mean values of the interpolated minima
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and maxima points have to be calculated. The 2D-EMD for a 2D
spatial dataset of z(x, y) is defined as:

z
(
x, y

)
=

N∑
i = 1

BIMFi
(
x, y

)
+ r(x, y) (6)

Where BIMFi
(
x, y

)
is the i-th BIMF, and r(x, y) is the

corresponding residue. In the present study, 2D-EMD was
performed by the “spemd” package of R software (Roudier, 2016).
2D-EMD can be expressed as follows:

(1) Triangulate to create an irregular spatial dataset using the
tri.mesh function in the “tripack” package of R;

(2) Find local minima and maxima of the spatial dataset,
which is the value that is either smaller or larger than its
neighbors;

(3) Interpolate the minima and maxima points of each location
in the input dataset through multi-level B-splines from the
“MBA” package of R;

(4) Define the mean values of the interpolated minima and
maxima points as the envelop (E) and extract the detail as
d
(
x, y

)
= z

(
x, y

)
− E;

(5) Replace z(x, y) with d(x, y), repeat 2–4 until d(x, y) satisfied
BIMF criteria and then define d(x, y) as BIMFi

(
x, y

)
;

(6) Replace z(x, y) with z
(
x, y

)
−
∑N

i =1 BIMFi(x, y), and go
to (2) until a monotonic residue is obtained.

An original spatial dataset could produce a finite number
of BIMFi(x, y) and a residue r(x, y) using 2D-EMD. Each
component of BIMFi(x, y) represents the oscillation of the
original spatial dataset at one spatial scale, and its spatial scale
could be calculated through the number of local maxima (peaks)
divided by the spatial area. The residue of r(x, y) represents
longer scales of the spatial dataset. The relative importance of
BIMFi(x, y) or r(x, y) could be represented by the percentage of
variance contribution as follows:

Variance (%)

=
Variance of each BIMFi(x, y) [or r(x, y)]

Variance of original spatial dataset
× 100 (7)

RESULTS

Multi-Temporal Scale Effects of Climatic
Factors on Vegetation
The NDVI, DMT, DRT, and AP time series from 1982 to 2013
from the 1,029 meteorological stations were decomposed into
four temporal IMFs and residue. The averaged temporal scales
and percentage of variance contribution by each IMF are shown
in Table 1. The NDVI, DMT, DRT, and AP scales were close to
3, 5, and 7 for IMF1, IMF2, and IMF3, respectively. Thus, NDVI
showed variation at 3-, 5-, 7-, 15-, and >15-year time scales.

The IMF1, IMF4, and residue had the most temporal variance
for NDVI and climatic factors, which suggests the variance of
vegetation was mainly captured at temporal scales of 3, 15,
and >15 years.

TABLE 1 | The averaged temporal scales and percentage of variance are
explained by each intrinsic mode function (IMF) of NDVI, daily mean temperature
(DMT), daily range of temperature (DRT), and accumulated precipitation (AP).

Factor IMF1 IMF2 IMF3 IMF4 Residue

Temporal scales (year) NDVI 2.84 4.83 7.11 14.77 >14.77

DMT 2.75 4.39 5.91 17.73 >17.73

DRT 2.95 4.54 6.68 17.07 >17.07

AP 2.84 4.63 6.68 13.96 >13.96

Percentage of variance (%) NDVI 10.89 1.28 5.86 43.88 10.36

DMT 11.49 5.04 5.58 53.29 11.39

DRT 36.25 6.97 7.10 21.97 14.65

AP 34.74 8.15 7.47 15.70 15.10

NDVI, normalized difference vegetation index.

The correlations between NDVI and climatic factors at the
half-month, 3-, 15-, and >15-year time scales were calculated
and are shown in Figure 2. At the original scale of 15 days,
the temporal relationships between NDVI and DMT were
generally positive. However, the relationships between NDVI
and DRT at the half-month scale were negative in the 200–
600 mm precipitation zone, and their temporal relationships were
positive at other zones. Conversely, the temporal relationships
between NDVI and AP at the half-month scale were positive
in the 200–1,000 mm precipitation zone, and their relationships
were negative at other zones. The results indicated that the
relationships between NDVI and DRT (or AP) in the 200–
600 mm precipitation zone differed compared with other zones.
This might be attributed to the distinction between grassland
and forest and the distinction between semi-arid and humid (or
arid) areas. At the 3-year scale, there were significant temporal
correlations between NDVI and DMT (or DRT) except in
the temperate and warm-temperate grassland (TWG) climatic
regions. However, the temporal relationships between NDVI and
AP were only significant in the south and northeast of China.

At the 15-year timescale, NDVI and DMT were significantly
and positively correlated throughout the China. The temporal
relationships between NDVI and DRT were significantly negative
in the 200–600 mm precipitation zone and were significantly
positive in the other areas. However, the temporal relationships
between NDVI and AP were positive in the 200–1,000 mm
precipitation zone and were significantly negative in the other
areas. At the >15-year scale, the positive relationships between
NDVI and DAT were greater. In the 200–600 mm precipitation
region, the relationships between the NDVI and DRT time series
were negative, and in the 200–1,000 mm precipitation region,
the relationships between the NDVI and AP time series were
positive. The adjusted R2 values of the stepwise multiple linear
regression (SMLR) for climatic factors are shown in Figure 3. The
greatest R2 was located in the 200–600 mm precipitation zone.
The adjusted R2 values of the SMLR from the climatic factors at
the selected temporal scales were generally greater than those at
the original scale of 15 days. The climate factors affected NDVI
on multiple time scales, and the effects were strong in most areas
of China, as shown by the R2 values up to 98.08%. The adjusted
R2 values of the SMLR based on climatic factors under different
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FIGURE 2 | Spatial distribution of correlation coefficients between NDVI and climatic factors (daily mean temperature, daily range of temperature, and accumulated
precipitation) during 1982–2013 at different temporal scales, including (A) original scale, (B) 3-year scale, (C) 15-year scale, and (D) >15-year scale. NDVI,
normalized difference vegetation index.

land types are shown in Table 2. The adjusted R2 values for the
multiple temporal-scaled effects were greatest under mixed forest
(0.15) and lowest under broadleaf forest (0.03). The mean R2

of the SMLR at the half-month scale was 0.57 for all of China,
while the mean R2 of the SMLR from the multi-temporal scales
was 0.63. The multi-temporal scale effect improved the NDVI
prediction from climatic factors at the half-month scale by about
0.06 across all of China.

Temporal Relationships Between
Climatic Factors and Vegetation Under
Different Regions
The temporal relationships between NDVI and DMT under
different regions are shown in Figure 4. Notably, their
relationships at the half-month scale were similar to those at
the 15-year temporal scale, while their relationships at the 3-
year scale were generally insignificant. The relationship between
DMT and NDVI was weakest at elevations of 1,300–2,500 m. The

influence of DMT on NDVI was increased with the increased
latitude. At 95–105◦ longitude, there were weak relationships
between DMT and NDVI. Among the six land types, the effect
of DMT on NDVI was the lowest under mixed forest at the half-
month scale and the multi-temporal scales. The relationships
between DMT and NDVI were the weakest in southeast China
and weakest in the <200 mm precipitation zone at the half-
month scale, the 15-year scale, and the >15-year scale.

The temporal relationships between NDVI and DRT under
different climatic regions are shown in Figure 5. Relationships
under different regions at the half-month scale differed greatly
from those at multi-temporal scales. The correlations between
NDVI and DRT were generally positive at the 15-year scale and
>15-year scale, while correlations under different regions were
unstable at the half-month scale or 3-year scale. At the multi-
temporal scales, the effect of DRT on NDVI at the 3-year scale
may neutralize the significant effect at the 15-year or >15-year
scale. The effect of DRT on NDVI at the 15-year scale was the
same at different elevations (or different longitude regions or
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FIGURE 3 | Spatial distribution of adjusted multiple coefficients of determination (adjusted-R2) for multivariate regression analysis based on the climatic factors (A) at
the original scale, (B) at multi-temporal scales, and (C) the difference between (A,B).

TABLE 2 | Adjusted R2 of stepwise multiple linear regression (SMLR) based on climatic factors at the half-month scale (R2
HM ) and multi-spatial scales (R2

m).

Broadleaf forest Mixed forest Woody savannas Savannas Grassland Cropland Mean

R2
HM 0.73 0.43 0.49 0.41 0.65 0.58 0.57

R2
m 0.76 0.58 0.54 0.48 0.71 0.63 0.63

R2
m–R2

HM 0.03 0.15 0.05 0.07 0.07 0.05 0.06

FIGURE 4 | Temporal correlation between NDVI and daily mean temperature (DMT) under different (A) elevation, (B) latitude, (C) longitude, (D) land type, (E) climatic
regions, and (F) precipitation at the original scale and multiple temporal scales. NDVI, normalized difference vegetation index.

different land types), while the effect of DRT on NDVI was
increased gradually with increased latitude. DRT had the lowest
effect on NDVI at the half-month, 15-year, and >15-year scales

under the Topic Humid South China (THSC) of southeast China.
Under different precipitation regions, the effect of DRT on NDVI
was weakest under the 200–600 mm precipitation zone.
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FIGURE 5 | Temporal correlation between NDVI and daily range of temperature (DRT) under different (A) elevation, (B) latitude, (C) longitude, (D) land type, (E)
climatic regions, and (F) precipitation at the original scale and multiple temporal scales. NDVI, normalized difference vegetation index.

The temporal relationships between NDVI and AP under
different regions are shown in Figure 6. Relationships under
different regions at the half-month scale were generally positive
and significant and greater than the other multi-temporal scale.
At >1,300 elevation, correlations between NDVI and AP were
significantly negative at 15 years and >15-year time scales. The
strength of the correlation between NDVI and AP was increased
with the increased latitude, and their correlations varied greatly
under different latitudes at the 3-, 15-, or >15-year scales. At
different longitudes, the correlations were similar at the half-
month scale, but varied greatly at multi-temporal scales. At
different land types, the correlations between NDVI and AP at
the half-month and >15-year scales were the weakest under
mixed forest, and at the 3- or 15-year scales, the correlations
were weakest under cropland. The correlations between NDVI
and AP in southeast China were weakest in different climates at
the half-month, 15-year, and >15-year scales. The effects of AP
on NDVI were weakest in the 200–600 mm precipitation region
at the half-month scale.

Multi-Spatial Scale Effects of Climatic
Factors on Vegetation
The temporal-averaged NDVI, DMT, DRT, and AP across China
were decomposed into three IMFs and residue, and the averaged

spatial scales and variance explained by each scale component
are shown in Table 3. The dominant variation of the original
dataset occurred in IMF1 and the residue, which covered spatial
scales of 2 × 104 and >10 × 104 km2, respectively. The spatial
distributions of local correlation coefficients between NDVI and
climatic factors at the original scale or spatial scales of 2 × 104

and >10 × 104 km2 are shown in Figure 7. At the large
scale of >10 × 104 km2, the correlation between NDVI and
DMT was negative in TWG and was positive in other land-use
types. However, the correlation between NDVI and DRT was
positive across all of China except for the warm-temperature
humid and subhumid north China (WHSNC) region. The type of
relationship between NDVI and AP was mainly positive except in
the regions of the northeast and southeast China.

The spatial distributions of SMLR-predicted error based on
climatic factors at the original scale and multi-spatial scales are
shown in Figure 8. For the predicted NDVI from climatic factors
at the original scale, 57.13% of the area had low predictive
values, and 42.87% of the area had high predictive values. The
high predictive values were mainly located in the TWG. For the
predicted NDVI from climatic factors at the multi-spatial scale,
55.24% of the area had low predictive values, and 44.76% of the
area had high predictive values. However, the original scale and
the multi-spatial scale predicted errors showed different spatial
patterns, as shown in Figure 8C. Based on climatic factors at the
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FIGURE 6 | Temporal correlation between NDVI and accumulated precipitation (AP) under different (A) elevation, (B) latitude, (C) longitude, (D) land type, (E) climatic
regions, and (F) precipitation at the original scale and multiple temporal scales. NDVI, normalized difference vegetation index.

multi-spatial scales, 64.38% of the area had low predictive values
and 35.28% had high predictive values. Thus, the accuracy of
predictions based on the climatic factors at the multi-spatial scale
was generally higher and was mainly located in the northwest
and south of China.

Scatter plots between measured and predicted NDVI using
SMLR based on climatic factors at the original scale or the
multi-spatial scale are shown in Figure 9. The overall predicted
accuracy from climatic factors at the multi-spatial scale was
better than those predicted from climatic factors at the original

TABLE 3 | The averaged spatial scales and percentage of variance are explained
by each intrinsic mode function (IMF) of NDVI, daily mean temperature (DMT), daily
range of temperature (DRT), and accumulated precipitation (AP).

Factor IMF1 IMF2 IMF3 Residue

Spatial scales (104 km2) NDVI 2.09 4.34 9.56 >9.56

DMT 1.68 4.08 10.94 >10.94

DRT 1.56 4.48 9.60 >9.60

AP 2.39 5.80 11.65 >11.68

Percentage of variance (%) NDVI 60.53 4.22 4.07 34.68

DMT 29.36 2.39 12.27 38.43

DRT 15.81 7.20 6.13 71.98

AP 26.14 2.87 9.88 52.67

NDVI, normalized difference vegetation index.

scale. This indicated that considering multi-spatial scale effects
improved predictions.

DISCUSSION

Relationships Between Normalized
Difference Vegetation Index and Climatic
Factors at Multi-Temporal Scales
The vegetation temporal data were divided into the oscillations
at 3-, 5-, 7-, 15-, and >15-year scales and showed an increasing
trend using the CEEMD. The 3-, 15-, and >15-year oscillations
contributed more variation than the other time scales. Vegetation
dynamics were dominated by the 3-, 15-, and >15-year scales.
The dominant oscillations at these temporal scales showed
spatial variability, which could lead to spatial heterogeneity
of the relationships between vegetation and climatic factors.
The relationships between NDVI and climatic factors at the 3-
year scale were generally not significant in north China, which
might be attributed to the difference in climatic conditions. The
correlations between NDVI and DRT, and NDVI and AP in the
200–600 mm precipitation zone were differed compared with
other areas at the 15 and >15-year temporal scales. This might
be attributed to the difference in vegetation types because the
transition zones between agriculture and animal husbandry, and
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FIGURE 7 | Spatial distribution of local correlation coefficients between mean annual-maximum NDVI and mean annual climatic factors at different spatial scales,
including (A) original scale, (B) 2.09 × 104 km2 scale, and (C) >9.56 × 104 km2 scale. NDVI, normalized difference vegetation index.

FIGURE 8 | Spatial distribution of predicted error based on climatic factors using SMLR (A) at the original scale, (B) at multi-spatial scales, and (C) error difference
between (A,B). SMLR, stepwise multiple linear regression.

the transition zone between grassland and cultivated land, are
located in the 200–600 mm precipitation zone (Li et al., 2019).

Previous studies have reported a positive relationship between
vegetation and temperature (Hou et al., 2015; Liu et al.,
2018), which is consistent with the results at the half-month
scale and 15-year scale. However, the spatial heterogeneity
of the relationships between NDVI and AP and NDVI and
DRT in the 200–600 mm precipitation zone was not captured
in previous studies. Moreover, the correlation coefficients at
different latitude, longitude, climatic regions, and precipitation
were varied at different temporal scales showing that factors
affecting NDVI occur at many scales. Previous studies have
indicated that spatial heterogeneity of relationships is driven by

the spatial variation in climatic conditions, vegetation types, and
topography (Hou et al., 2015; Liu et al., 2018). Consistent with
this, our results suggest that the relationships between vegetation
and climatic factors were varied at different temporal scales, and
these relationships were largely driven by variation in climatic
conditions, vegetation type, and topography.

The spatial patterns of NDVI prediction accuracy from
climatic factors at the half-month scale and at the multi-temporal
scale were similar and had the highest R2 in the 200–600 mm
precipitation zone. This might be due to variation in vegetation
in the transition zone. Although spatial patterns of the half-
month scale and multi-temporal scale were the same, predictions
were more accurate when the multi-temporal scale data were
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FIGURE 9 | Scatter plots between NDVI and predicted NDVI using SMLR based on climatic factors (A) at the original scale, and (B) at multi-spatial scales. NDVI,
normalized difference vegetation index; SMLR, stepwise multiple linear regression.

used instead of the original scale. This suggests the multi-
temporal scale should be considered for NDVI prediction in
most areas of China.

Relationships Between Normalized
Difference Vegetation Index and Climatic
Factors at the Multi-Spatial Scales
The spatial distribution of temporal-averaged vegetation could
be divided into oscillations of 2 × 104, 4 × 104, 10 × 104, and
>10 × 104 km2 scales using the 2D-EMD. The 2 × 104 and
>10 × 104 km2 oscillations contributed the most variance and
were considered the dominant spatial scales.

At the 9.56 × 104 km2 spatial scale, vegetation and climatic
factors demonstrated the spatial trends of their relationships.
The relationship between NDVI and DMT was positive in
the south and middle of China and negative in the north of
China. This indicated the positive effect of DMT on NDVI in
areas with high temperature and the negative effect of DMT
on NDVI in areas with low temperature. The relationships
between NDVI and DRT were mainly positive except in the
WHSNC, demonstrating the positive effect of DRT on NDVI
in regions with greater ranges in temperature. The relationships
between NDVI and AP were mainly negative in the northeast
and southeast China, which indicated the negative effect of AP
on NDVI in regions with higher precipitation and part of the
<200 mm precipitation region.

Comparing the predicted error based on climatic factors at
the original scale with that at the multi-spatial scale, the spatial
patterns showed the effect of multi-spatial scale climatic factors
on NDVI. When predicting NDVI, our results suggest 35.28%
of China should use the original data scale while the remaining

64.38% should consider using multi-spatial scale data. The multi-
temporal scale effect was more universal than the multi-spatial
scale effect on the vegetation indicators.

CONCLUSION

The multi-temporal scale effects of climatic factors on NDVI were
analyzed using the CEEMD method, and their multi-spatial scale
effect was analyzed using the 2D-EMD method.

(1) The temporal variation of vegetation was dominated by 3-,
15-, and >15-year time scales, and the spatial variation of
vegetation was controlled by spatial scales of 2 × 104 and
>10× 104 km2.

(2) At the 15-year time scale, there were pronounced spatial
patterns for the relationships between NDVI and climatic
factors. The correlations between DMT and NDVI were
mostly positive, the correlations between DRT and NDVI
were mainly negative in the 200–600 mm precipitation
zone, and the correlations between AP and NDVI were
mainly positive in the 200–1,000 mm precipitation zone.
The temporal relationships between NDVI and DMT and
NDVI and AP were gradually increased with increasing
latitude at the 15-day scale, and the temporal relationships
between DRT and NDVI were gradually increased with
increasing latitude at the 15-year scale. The multi-temporal
scale effect was the greatest under mixed forest and the
weakest under broadleaf forest. Moreover, 98.08% of the
study area included multi-temporal scale effects.

(3) The spatial relationships between NDVI and climatic
factors were pronounced at a spatial scale of
>10 × 104 km2. The spatial relationship between DMT
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and NDVI was strongly positive across China except in
the TWG region, and the relationship between AP and
NDVI was strongly negative in the northeast and southeast
regions of China. The area with multi-spatial scale effects
was about 64.38%, and regions that were less affected by
multi-spatial scales were mainly located in the Xinjiang and
Yunnan Provinces.
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