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The functional response (trophic function or individual ration) quantifies the average
amount of prey consumed per unit of time by a single predator. Since the seminal
Lotka-Volterra model, it is a key element of the predation theory. Holling has enhanced
the theory by classifying prey-dependent functional responses into three types that
long remained a generally accepted basis of modeling predator-prey interactions.
However, contradictions between the observed dynamics of natural ecosystems and
the properties of predator-prey models with Holling-type trophic functions, such as
the paradox of enrichment, the paradox of biological control, and the paradoxical
enrichment response mediated by trophic cascades, required further improvement of
the theory. This led to the idea of the inclusion of predator interference into the trophic
function. Various functional responses depending on both prey and predator densities
have been suggested and compared in their performance to fit observed data. At the
end of the 1980s, Arditi and Ginzburg stimulated a lively debate having a strong impact
on predation theory. They proposed the concept of a spectrum of predator-dependent
trophic functions, with two opposite edges being the prey-dependent and the ratio-
dependent cases, and they suggested revising the theory by using the ratio-dependent
edge of the spectrum as a null model of predator interference. Ratio-dependence
offers the simplest way of accounting for mutual interference in predator-prey models,
resolving the abovementioned contradictions between theory and natural observations.
Depending on the practical needs and the availability of observations, the more detailed
models can be built on this theoretical basis.

Keywords: functional response, trophic function, non-adaptive selection, predator interference, ratio-
dependence, predator-dependence, Arditi–Ginzburg functional response

INTRODUCTION

Since the first predator-prey model (Lotka, 1925; Volterra, 1926), classical trophic functions ignored
interactions (i.e., interference) among predators, depending only on prey density, g(N) (refer to
the examples in Table 1). Due to this, the Lotka-Volterra (LV)-type models demonstrate either
structural instability (Svirezhev and Logofet, 1983; Bazykin, 1989) or large-amplitude oscillations
with periodic drops of population abundances to extremely low levels in scenarios when the
coexistence of more stable species is expected (Rosenzweig, 1971; Arditi and Ginzburg, 1989;
Luck, 1990; Arditi and Berryman, 1991; Berryman, 1999; Sapoukhina et al., 2003). In a stochastic

Frontiers in Ecology and Evolution | www.frontiersin.org 1 December 2021 | Volume 9 | Article 725041

https://www.frontiersin.org/journals/ecology-and-evolution
https://www.frontiersin.org/journals/ecology-and-evolution#editorial-board
https://www.frontiersin.org/journals/ecology-and-evolution#editorial-board
https://doi.org/10.3389/fevo.2021.725041
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3389/fevo.2021.725041
http://crossmark.crossref.org/dialog/?doi=10.3389/fevo.2021.725041&domain=pdf&date_stamp=2021-12-07
https://www.frontiersin.org/articles/10.3389/fevo.2021.725041/full
https://www.frontiersin.org/journals/ecology-and-evolution
https://www.frontiersin.org/
https://www.frontiersin.org/journals/ecology-and-evolution#articles


fevo-09-725041 December 1, 2021 Time: 14:11 # 2

Tyutyunov and Titova Ratio-Dependent Edge of Interference

TABLE 1 | Examples of trophic functions without and with mutual
interference of predators.

Name Expression Source

Lotka-Volterra (LV) g (N) = aN Lotka, 1925; Volterra, 1926

Ivlev-Gause (IG) g (N) = R
(
1− e−ξN) Gause, 1934; Ivlev, 1955,

1961

Holling type I (H-I) g (N) = min {aN,R} Holling, 1959a; Bazykin,
1985, 1989

Holling type II (H-II) g (N) = aN
1+ahN Holling, 1959a,b

Holling type III (H-III) g (N) = aNn

1+ahNn ; n > 1 Holling, 1959a; Real, 1977

Ivlev (IRD) g (N/P) = R
(
1− e−ξN/P) Ivlev, 1947, 1955, 1961

Hassell-Varley (HV) g (N,P) = αN/Pm Hassell and Varley, 1969

Hassell-Varley-Holling
(HVH)

g (N,P) = αN/Pm

1+αhN/Pm Sutherland, 1983; Arditi
and Akçakaya, 1990

Beddington-DeAngelis
(BDA)

g (N,P) =
aN/ (1+ awP+ ahN)

Beddington, 1975;
DeAngelis et al., 1975

Arditi-Ginzburg donor
control (AG-DC)

g (N/P) = min {aN/P,R} Arditi et al., 1978

Arditi-Ginzburg-Contois
(AGC)

g (N/P) = αN/P
1+αhN/P =

αN
P+αhN

Ginzburg et al., 1971; Arditi
et al., 1978; Arditi and

Ginzburg, 1989

Bazykin-Crowley-Martin
(BCM)

g (N,P) = aN
1+ahN ·

1
1+βP Bazykin et al., 1981;

Bazykin, 1989; Crowley
and Martin, 1989

Bazykin-Harrison (BH) g (N,P) = g (N) / (1+ βP) Bazykin et al., 1981;
Harrison, 1995

Trân hybrid model of
prey sharing (Tr-Sh)

g (N,P) =
N
P

[
1− (1− ετ)

P
τ

] Trân, 2008

Trân hybrid model of
prey depletion (Tr-Dp)

g (N,P) = N
P

(
1− e−εP) Trân, 2008

General RD model 1
(GRD-1)

g (N,P) = aN
P/P0+e−P/P0+ahN

Tyutyunov et al., 2008

General RD model 2
(GRD-2)

g (N,P) =
aN

P/P0+1/(1+P/P0)+ahN

Tyutyunov et al., 2010

environment, such large fluctuations should cause the extinction
of the consumer (Arditi et al., 2004; Jensen and Ginzburg,
2005; Hastings et al., 2018). The use of predator-dependent
trophic functions (Table 1) corrects the models, enabling
them to reproduce stable dynamic patterns that more closely
approximate nature.

Arditi and Ginzburg (1989) proposed the idea of a spectrum
of every possible predator-dependent trophic functions, with
two opposite edges being the prey-dependent and ratio-
dependent cases:

g (N)← g (N, P)→ g (N/P) . (1)

Spectrum (1) ranks trophic functions from one extreme case of
non-sharing to the other extreme case of perfect sharing of food
among predators. Having highlighted the contradictions between
the observed dynamics of natural ecosystems and the qualitative
properties of predator-prey models with prey-dependent trophic
functions, Arditi and Ginzburg (1989) suggested revising
theoretical models by means of ratio-dependent functions
providing the most parsimonious way of accounting for predator
interference (Arditi et al., 1992). Their ideas inspired a lively
debate stimulating great interest in justifying criteria for realistic
functional response. The study by Arditi and Ginzburg (2012)
summarizes their view on the current results of the long-
lasting debate.

Some theoretical models with variable interference allow a
much stronger (overcompensating) level of mutual interference
than ratio-dependence. The analysis of these models (Arditi
et al., 2004) showed that only moderate interference has the
stabilizing effect on large oscillations, i.e., both low and strong
interference levels increase the risk of predator extinction
in a stochastic environment. Thus, the overcompensating
interference should be rare in natural trophic systems subjected
to non-adaptive selection (Borrelli et al., 2015), although
observations reveal the cases of predator interference beyond
ratio-dependence (Arditi and Akçakaya, 1990; Arditi and
Ginzburg, 2012; Hossie and Murray, 2016; Novak and Stouffer,
2021a). Notably, both low and overcompensating interferences
imply imperfect sharing of prey, thus falling inside the domain of
spectrum (1). Unfortunately, opponents of the ratio-dependent
theory misinterpret the meaning of the spectrum, alleging
that it includes only functional responses reducible to ratio-
dependence, excluding cases with interference stronger than
ratio-dependence (Abrams, 1994, 2015).

The fundamental question of the ratio-dependent theory
is which of the two ends of the spectrum (1) better
describes predator-prey systems. Seeking for the simplest model
providing qualitatively realistic predator-prey dynamics, Arditi
and Ginzburg (1989, 2012, 2014) suggested using the ratio-
dependent trophic function as a null model of predator
interference. The concept of a minimal model that can be
a starting point for building a more detailed description of
a studied system is highly important. Such basic model is a
compact mathematical formulation of theory providing general
predictions over a set of different models for specific situations
(Ginzburg and Colyvan, 2004; Ginzburg and Jensen, 2008;
Batterman and Collin, 2014). Solving particular problems may
require more detailed descriptions of a trophic system and
elaborating the basic ratio-dependent model into a more general
predator-dependent model if necessary.

TRANSFERRING THE BASIS OF
PREDATION THEORY FROM PREY- TO
RATIO-DEPENDENCE

Historical Primacy of Prey-Dependent
Models
The LV model, ignoring the intraspecies competition of prey,
implies unlimited Malthusian growth of prey in the absence
of predator. Being sensitive to initial conditions, the model
is structurally unstable (Kostitzin, 1937; Kolmogorov, 1972;
Svirezhev and Logofet, 1983; Begon et al., 1986; Bazykin, 1989).
Replacing Malthusian prey growth with logistic law stabilizes the
model. However, this does not solve the problem of unlimited
consumption rates by an individual predator. Such consumption
is an unrealistic hypothesis because a predator does not consume
all encountered prey (Nicholson, 1933). The fate of prey depends
on the satiety of the predator. Making the same assumptions,
Gause (1934) has proposed and experimentally validated an
exponential trophic function saturating with prey density. This

Frontiers in Ecology and Evolution | www.frontiersin.org 2 December 2021 | Volume 9 | Article 725041

https://www.frontiersin.org/journals/ecology-and-evolution
https://www.frontiersin.org/
https://www.frontiersin.org/journals/ecology-and-evolution#articles


fevo-09-725041 December 1, 2021 Time: 14:11 # 3

Tyutyunov and Titova Ratio-Dependent Edge of Interference

dependence [Ivlev-Gause (IG), Table 1] well describes the
individual food ration of fish (Ivlev, 1961) and crustaceans
(Sushchenya, 1975).

Holling (1959a,b, 1965) has identified three types of functional
responses accounting for two kinds of predator activity, namely,
searching for and handling prey. All types of the functional
responses of Holling (1959a) are bounded monotonically
increasing prey-dependent functions. The Holling type I function
increases linearly for small N and is limited from above for
large N. Although in his illustration, Holling (1959a) smoothly
connected the linear growth phase with a horizontal line of the
saturation phase, the piecewise-linear function (H-I, Table 1)
provides a convenient approximation (Svirezhev and Logofet,
1983; Bazykin, 1989; Jeschke et al., 2004). Type I trophic functions
are typical for non-selective filter feeders (Jeschke et al., 2004) and
for some parasitoids (Kaçar et al., 2017).

The type II functional response is a concave saturating
function. Thus, the Ivlev trophic function IG belongs to type
II (Holling, 1965). The most popular parameterization of the
Holling type II trophic function is the famous “disk-equation”
of Holling (1959b) accounting for the handling time h (H-II,
Table 1). It coincides with a microbial population growth model
by Monod (1949) and with the Michaelis–Menten model of
enzyme kinetics (Michaelis and Menten, 1913). Its modification
gives the sigmoid Holling type III (H-III, Table 1) functional
response (Real, 1977).

Contrary to the constant searching efficiency a in H-II, the
searching efficiency in H-III depends on the prey density: ã (N) =
aNn−1. The most practical value of n used in empirical and
theoretical studies is n = 2 (Bazykin, 1989; Sarnelle and Wilson,
2008; Svirezhev, 2008; Prokopenko et al., 2017). Sigmoid trophic
functions are suitable for predators that increase their searching
efficiency with prey density and for polyphagous predators
that switch to more abundant alternative prey (Holling, 1959a;
Murdoch, 1969; Jeschke et al., 2004). Sarnelle and Wilson (2008)
demonstrated evidence of a type III response for Daphnia.

The Fallacies of Conventional Models
and Their Correction With
Predator-Dependence
With logistic prey growth and constant predator mortality,
the considered predator-prey model is a system of differential
equations as follows:{

dN
dt = N (r − cN)− Pg (·) ;
dP
dt = εPg (·)− µP,

(2)

where g (·) denotes a trophic function with the
appropriate argument(s).

The classical predation theory assumes that predators
encounter prey at random and the trophic function depends
on prey density only, g (·) = g (N). This leads to paradoxical
contradiction noted by Arditi and Ginzburg (1989). On the
one hand, classical trophic functions fit data collected from the
laboratory trophic systems (Gause, 1934; Holling, 1959a,b, 1965;
Ivlev, 1961; Veilleux, 1979; Arditi and Saïah, 1992; Bohannan and
Lenski, 1997; Jeschke et al., 2004; Tully et al., 2005). On the other

hand, attempts to apply the prey-dependent model (2) to describe
the dynamics of large-scale ecosystems often fail. The unrealistic
dynamic patterns of conventional models include the paradox
of enrichment demonstrated by the Rosenzweig-MacArthur
predator-prey model [system (2) with trophic function H-II]
(Rosenzweig and MacArthur, 1963; Rosenzweig, 1971) and the
closely related paradox of biological control (Luck, 1990; Arditi
and Berryman, 1991; Berryman, 1999; Sapoukhina et al., 2003),
as well as the absurd divergently directed reaction of “trophic
cascade” levels to bottom-up biomanipulation, called enrichment
response (Jensen and Ginzburg, 2005; Arditi and Ginzburg, 2012).
Jensen and Ginzburg (2005) opine that all known attempts to find
natural observations of such dynamics involve either inaccurate
processing or erroneous interpretation of the data (Akçakaya
et al., 1995). The fundamental cause of the abovementioned
contradictions is the verticality of zero-isocline of the predator
equation IsoP in models with prey-dependent trophic function
g(N) (Arditi and Ginzburg, 1989). The verticality of IsoP in
Figure 1A implies that it is enough to have a constant number
of prey to maintain any abundance of a predator population.
A hypothesis of mutual interference among the predators is
more realistic (Begon et al., 1986): “individual consumption
rates decline with predator abundance, and additional prey
are required to maintain a predator population of any given
size.” In this case, the slanting line of predator zero-isocline
stabilizes the system dynamics (Figure 1B). Nowadays, most
researchers admit that for resolving the contradictions at a large
spatiotemporal scale, the functional response should take into
account the mutual interference of predator, being a function of
both prey and predator densities (DeAngelis et al., 1975, 2021;
Berdnikov et al., 1999; Cosner et al., 1999; Abrams and Ginzburg,
2000; Arditi and Ginzburg, 2012). Experiments with appropriate
variation in predator densities also show evidence of predator
dependence (Skalski and Gilliam, 2001; DeLong and Vasseur,
2011; Novak and Stouffer, 2021a). However, choosing a particular
form of the predator-dependence remains a point of controversy
(Abrams and Ginzburg, 2000).

Having suggested transferring the basis of the predation
theory from the prey-dependent to the ratio-dependent edge
of the spectrum (1), Arditi and Ginzburg (1989) proposed
the simplest ratio-dependent modification of the H-II trophic
function that assumes that predator interference diminishes
the predator searching efficiency: a = a (P) = α/P. The Arditi–
Ginzburg trophic function (AGC, Table 1) coincides with the
Contois (1959) model describing the per capita growth rate of
bacteria. The joint article of Arditi and Ginzburg (1989) followed
the studies of the two authors on the ratio-dependence (Ginzburg
et al., 1971, 1974; Ginzburg, 1975, 1986; Arditi et al., 1978; Arditi,
1983) and the results of other authors on predator interference.
Table 1 represents examples and references from the review
(Tyutyunov and Titova, 2020).

Underlying Mechanisms and Minimal
Model of Predator Interference
Some predator-dependent trophic functions in either particular
or asymptotic case approach the ratio-dependence. Moreover,
the identification of the Hassel-Varley-Holling (HVH) function
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FIGURE 1 | Responding to prey enrichment, the prey zero-isocline in the predator-prey model changes its shape and position from I to II. Due to the verticality of the
predator isocline in the prey-dependent models (A), enrichment increases the predator equilibrium abundance but not the prey equilibrium; the initially stable
equilibrium can become unstable. Slanted predator isoclines preserve the stability of the initially stable equilibrium in various predator-dependent models (B). Lines 1,
2, and 3 show the predator zero-isoclines for the Beddington-DeAngelis, ratio-dependent, and gradual interference trophic functions, respectively. Solid and hollow
points mark stable and unstable equilibria, respectively. Refer to the text for further details.

(Table 1) from the experimental data (Arditi and Akçakaya,
1990) has established that parameter m was often close to 1
(i.e., to ratio-dependence). Later, Novak and Stouffer (2021a)
revealed that the estimates of interference strength in HVH
model could be statistically biased upward by low sample
sizes. In general, observations suggest that predator-dependence
is widespread, more frequent than prey-dependence, and the
most common values of m in HVH function are slightly less
than 1 (DeLong and Vasseur, 2011, 2013). This agrees with
the analytical results of Arditi et al. (2004) who provided
evolutionary arguments in favor of a ratio-dependent pattern
of consumption: both small and extremely large values of
parameters characterizing mutual interference in the Hassel-
Varley (HV), HVH, and Beddington-DeAngelis (BDA; Table 1)
trophic functions destabilize the model, increasing the chances
of predator extinction due to the accidental drop of population
abundances. Some authors interpret the deviation of m from 1
as an argument against ratio-dependence, asserting that having a
variety of predator-dependent trophic functions is more practical
than a simple ratio-dependent model (Barraquand, 2014;
Abrams, 2015). Replying to this criticism, Arditi and Ginzburg
(2014) emphasized that their model is not an alternative to
other existing models but rather a reasonable null model, i.e.,
a starting theoretical point for building a description of a
predator-prey system. The AGC function is a minimal extension
of the H-II dependence, which greatly widens the dynamical
spectrum of model (2) and eliminates the shortcomings of the
classical theory without adding extra parameters (Arditi and
Berryman, 1991; Arditi et al., 1991; Ginzburg and Akçakaya,
1992; Akçakaya et al., 1995; Berezovskaya et al., 2001, 2007,
2021; Ginzburg and Colyvan, 2004; Arditi and Ginzburg, 2012).
Zero-isocline IsoP for model (2) with the ratio-dependent
AGC function is a straight line starting at the origin (line 2,
Figure 1B). Thus, formally, similar to other predator-dependent
trophic functions, the AGC relationship stabilizes the model
due to the slant of IsoP. Problems with the behavior of
ratio-dependent systems near the origin (Oksanen et al., 1992;

Freedman and Mathsen, 1993; Abrams, 1994, 2015; Barraquand,
2014) can be overcome by applying the blow-up technics in
the analysis (Berezovskaya et al., 2001, 2007, 2021) or by
adding the Allee effect to make the models more realistic by
introducing the deterministic extinction of species at low density
(Sen et al., 2012).

Plots of IsoP in the predator-dependent models can have
different forms or layouts, e.g., line 1 in Figure 1 corresponds
to the BDA model. However, the HV, HVH, BDA, Bazykin-
Crowley-Martin (BCM), and Bazykin-Harrison (BH) functions
have common shortcomings: there is a special parameter
regulating the strength of predator interference (m, w, or
β, respectively). The gradual interference hypothesis (Arditi
and Ginzburg, 2012) consists in the use of some universal
trophic function g(N, P) exhibiting density-dependence for the
high population abundances but weakening interference for
the low population densities (zero-isocline 3, Figure 1). This
conception allows synthesizing prey-dependent and predator-
dependent models (Abrams and Ginzburg, 2000; Ginzburg
and Jensen, 2008). Table 1 represents the examples of such
hybrid trophic functions, allowing transition between prey-
and ratio-dependence: non-saturating (Trân hybrid model
of prey sharing and Trân hybrid model of prey depletion)
and saturating [General RD model 1 (GRD-1) and General
RD model 1 (GRD-2)] models of individual ration. Such
universal functions can explain why Monod (1949) and
Contois (1959), studying bacteria growth, came to different
models coinciding with the dependences H-II and AGC,
respectively. Monod was working with low concentrations of
bacteria, while Contois experimented with high concentrations
(Arditi and Ginzburg, 2012). Nevertheless, compared to
AGC, HVH, and BDA trophic functions, universal GRD
functions do not demonstrate far superior performance
and flexibility in fitting the observed data (Tyutyunov
et al., 2010; Prokopenko et al., 2017; Novak and Stouffer,
2021b). Accordingly, simpler models provide just as good
approximations to reality.
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Finally, the functional response depends on the
spatiotemporal scale. DeAngelis et al. (2021) stressed that
the ratio-dependent functional response focuses on accurately
capturing dynamics emerging at the coarse landscape scale and
is not derivable in following the assumptions of the Holling-type
responses. DeAngelis et al. (2021) suggested a conceptual
approach of hierarchical patch-centered functional response
models functioning as a bridge to scale up from local to landscape
scale. This conception agrees with the idea that while prey-
dependent trophic functions g(N) are suitable to model small
microcosms with low consumer density, choosing an appropriate
tool for studying large-scale heterogeneous ecosystems, one
should select some predator-dependent function. Within the
frameworks of non-spatial (point) predator-prey systems, taking
the AGC function as a null model of mutual interference can be
a good decision (Ginzburg and Colyvan, 2004). This function
provides a modeler with the simplest possibility to implicitly
include the various effects of the environmental heterogeneity
and the spatial behavior of consumers into a non-spatial model.
Recent studies emphasize the importance of spatial effects
in predator-prey systems, in particular, the mechanisms of
pattern formation and dynamic properties emerging at a large
spatiotemporal scale (Tyutyunov et al., 2020; Frank et al., 2021;
Sun et al., 2021; Xue et al., 2021; Wang et al., 2022). Modeling
gives a mechanistic explanation for the emergence of mutual
interference. With a model that considers prey refuges, Poggiale
et al. (1998) explained the emergence of donor control, i.e., a
special case of ratio-dependence. Spatially explicit continuous
(Arditi et al., 2001; Tyutyunov et al., 2002) and individual-based
(Tyutyunov et al., 2008, 2013) models revealed that the motility
of predator and its ability to move directionally in response to
the heterogeneity of prey distribution (prey-taxis) is a key factor
causing the emergence of the predator- and ratio-dependence at
the population level. These results agree with feeding patterns
observed in the laboratory cascade of reservoirs, demonstrating
the emergence of consumer interference caused by the spatial
clustering of cladocerans (Arditi and Saïah, 1992). They confirm
also the theoretical conjectures by Cosner et al. (1999) and
Arditi and Ginzburg (1989, 2012) about different behaviors
corresponding to different functional responses: passive
consumption leads to prey-dependence, and active predation
leads to predator- and ratio-dependence (see also Ginzburg and
Jensen, 2008). Unfortunately, opponents of the ratio-dependent
theory did not acknowledge justification for ratio-dependence
obtained with the prey-taxis models. Arguing against the spatial
heterogeneity justification, they refer to a simple two-patch
model (Abrams, 1994) and to spatial models (Barraquand, 2014;
Abrams, 2015) that ignore directed movements of predators,
and thus cannot demonstrate the emergence of predator- or
ratio-dependence at the population level. Predator-prey models
with prey-taxis show that the active movements of predators
generate spatially heterogeneous dynamics, stabilizing trophic
systems at both local and landscape scales (Sapoukhina et al.,
2003; Tyutyunov et al., 2019). Emerging population clustering
induces predator interference at the population level. Besides,
the movements of the predator density patches create temporal
refuges for the prey, providing an advantage for both predator

(increasing consumption) and prey (increasing abundance)
(Arditi et al., 2001; Sapoukhina et al., 2003; Tyutyunov et al.,
2017, 2020).

CONCLUSION

Interestingly, the first trophic function taking into account the
mutual interference of predators was ratio-dependent. Ivlev
(1947, 1961) suggested this function (IRD, Table 1) to describe
the phenomenon of “complicated competition” of fed individuals,
which he discovered empirically in experiments with fish. Later,
Park (1954) termed this phenomenon as “mutual interference.”
Designing his experiments, Ivlev devoted much attention to
the spatial distribution of food and jointly foraging consumers,
reproducing natural conditions in detail. Since then, models
assuming the dependence of predator ration on ratio N/P
were based on the natural and laboratory observations, which
provided evidence for ratio-dependence (Arditi and Saïah, 1992;
Vucetich et al., 2002; Jost et al., 2005; Tyutyunov et al., 2010;
DeLong and Vasseur, 2011; Arditi and Ginzburg, 2012; Spataro
et al., 2012; Hebblewhite, 2013; Médoc et al., 2013, 2015;
Hossie and Murray, 2016; Prokopenko et al., 2017; De Troyer
et al., 2021). While predator interference can be overestimated
due to systematic bias arising at a low sample size (Novak
and Stouffer, 2021a), the parsimonious ratio-dependent model
could satisfactorily describe the predation process, providing
a reasonable trade-off between complexity and performance,
particularly in such cases of scarce data (Ginzburg and Colyvan,
2004; Weijs and Ruddell, 2020).

The “alternative” approach to the mathematical description
of the trophic relationship between species, proposed by Arditi
and Ginzburg, gradually supersedes the traditional Lotka-
Volerra model, taking deserved place in monographs and
textbooks. Since its 7th edition, the popular textbook on
ecology (Molles, 2016) presents both LV and AGC models as
the fundamental predator-prey systems. The theory of ratio-
dependent predation had already given an impetus to the
development of the modern trophic theory. However, many
challenging multidisciplinary problems remain unsolved. As
such, future studies will benefit from collaboration between
empiricists, field biologists, and theoreticians (Arditi and
Ginzburg, 2014; Hossie and Murray, 2016).
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