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Understanding phenotypic responses is crucial for predicting and managing the effects
of environmental change on native species. Color and display size are typically
used to evaluate the utilization value of ornamental plants, which are also important
ornamental characters of Lonicera nervosa Maxim. (L. nervosa). However, there
is limited documentation of its floral environmental adaptation. The environmental
conditions for the development of an organism changes with altitudinal variation. The
aim of this research was to find flower trait variability maintenance and the tradeoff
among the organs in five different populations of L. nervosa growing at distinct altitudes.
We investigated the distribution patterns of floral color, floral display, and biomass
tradeoff along a 700-m altitude gradient from 2,950 to 3,650 m. One-way ANOVA
analysis was performed to assess the variability of flower traits and floral color across
different altitudes. Moreover, correlations and tradeoffs between flowers and vegetative
organs were also observed at different altitude ranges. The results indicated that
L. nervosa flowers had a strong adaptability along the elevation and divergent altitude-
range-specific patterns, which was divided by an altitude breakpoint at around 3,300 m.
Below 3,300 m, petal lightness (petal L) decreased, but total floral display area (TFDA),
individual floral dry mass (IFDM), and total floral dry mass (TFDM) increased with an
increase in altitude. Whereas, above 3,300 m no significant difference was observed
in petal L, TFDA, IFDM, and TFDM decreased slightly with an increase in altitude. The
responsibility for the selection on floral color at a lower altitude was stronger than that
at a higher altitude, while the selection agents on floral biomass had significant effects
within the entire altitude range. However, the effects on floral biomass were opposite on
both sides of 3,300 m. Thus, floral trait and floral color can be useful indicators for the
domestication of horticultural plants and help to evaluate and initiate management and
conservation actions.
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INTRODUCTION

Phenotype or trait is the morphological, anatomical,
physiological, biochemical, and phenological characteristic
of an organism resulting from both genetic and environmental
influences (Kattge et al., 2020). Elevation is a multiple-gradient
factor affecting atmospheric processes, such as precipitation,
temperature, solar radiation, etc. (Körner, 2007), which can
lead to geographic variation in traits. Plant species can adjust
to these diverse conditions through natural selection or migrate
to follow conditions to which they are adapted; these options
are not mutually exclusive (Nicotra et al., 2010). The floral
part is an important reproductive organ which is strongly
influenced by the environment. It attracts wide attention for
its ornamental value in gardening or landscaping. Adaptation
to environmental change is an important and nearly universal
aspect of the biotic response to climate change (Davis et al.,
2005). The mountainous region has large altitudinal gradients
and provides “natural laboratories” to study the evolutionary and
adaptive response of plant species to changes in the environment
(Körner, 2003).

Flower color shows both a strong genetic basis and a sharp
geographic transition (Streisfeld and Kohn, 2005), and both biotic
and abiotic agents of selection may affect floral traits (Rodríguez-
Castañeda et al., 2020). However, the intensity of different biotic
and abiotic interactions varies spatially, resulting in divergent
selection along with maintenance of the variability of floral
traits that influence these interactions (Mitchell-Olds et al., 2007;
Ågren et al., 2013; Vaidya et al., 2018). Conventional wisdom
is that a large proportion of these transitions reflect adaptation
to novel pollinator regimes (Darwin, 1862) and is supported as
one of the mainstream views until now (Fenster et al., 2004;
Souto-Vilarós et al., 2018; Ramos and Schiestl, 2019). Evidence
indicates that due consideration is given to the hypothesis that
interactions with pollinators has driven the evolution of flower
color in many (if not all) species (Rausher, 2008). The petal
color could be a sign of reward for pollinators (McCall and
Primack, 1992; Bauer et al., 2017; Deng et al., 2017), affecting
the flower visitation behavior of pollinators (Campbell et al.,
2010), and can reflect pigment deposition by calculating the
petal color (He et al., 2011; Del Valle et al., 2015). However,
recent research suggests that additional insights into the non-
pollinator agents of selection should be addressed, which can act
on the pleiotropic effects of flower color genes (Rausher, 2008;
Koski et al., 2020). As altitude increases, ultraviolet radiations
increase, and plants precipitate through the pigments to cope
with ultraviolet stress (Koski et al., 2020; Peach et al., 2020).
Meanwhile, the variability in floral color is also related to heat
absorption, and obtaining and maintaining an optimal flower
temperature is often imperative for successful plant reproduction
(van der Kooi et al., 2019).

The local flower size adaptations of plants to elevational
gradient may be affected by biotic factors, such as pollinator
community (Kuriya et al., 2015) or simply by the abiotic selective
pressure, regardless of changes in the pollinator community
(Bode and Dufresne, 2020). Previous research has shown that
some plant species tend to develop larger flowers at a higher

altitude (Malo and Baonza, 2002; He et al., 2017; Bode and
Dufresne, 2020), while some studies have shown that there is
no common regularity in the correlation between floral size and
altitude itself (Nagano et al., 2014). When both floral display
size and flower color vary within a plant species, each has
the potential to play an important role in pollinator attraction
and subsequent seed set (Malerba and Nattero, 2011). Larger
floral displays or inflorescences with more open flowers usually
increase pollinator visitation, and greater visitation can augment
pollen receipt and seedset (Cayenne Engel and Irwin, 2003;
Karron and Mitchell, 2012; Bauer et al., 2017). In hermaphroditic
plants, floral display size can serve as a proxy for pollinator
resource availability, and this seems to hold true for both
pollen and nectar rewards (Makino and Sakai, 2007; Brunet
et al., 2015). In addition, floral shape and size can influence
heat accumulation and retention within flowers to affect the
flowery behavior of pollinators (van der Kooi et al., 2019), so
the variation in abiotic factors along an elevational gradient,
such as temperature and illumination intensity will also affect
the floral display.

Despite the fact that trait-based approaches can make
a significant contribution to understanding the effects of
management and changes in the human environment on
productivity and general plant performance (Gagliardi et al.,
2015), relatively few studies have been applied to identify the
floral performance of L. nervosa, not to mention integrating
flower display, floral color, and leaf traits for a comprehensive
assessment. Using multiple imaging and sensing modalities to
evaluate many genetic lines repeatedly is of great value to plant
breeding programs (Bai et al., 2018), and the most significant
effect of plant color in landscaping is to attract and induce
the sight, the contrast, and the difference in color which is
the first thing perceived as a recognition characteristic by
tourists (Li, 2010). Therefore, the study on floral color and
floral display is of great significance to enhance the utilization
of plant resources and in providing important guidance for
the breeding of ornamental plants. From the lower ecotone
to the higher boundary of sub-alpine, i.e., forest line, the
belt of dense forests presented different habitats not only due
to the abiotic factors but also by biological interactions, in
particular, shading, allelopathic effect, or other competitions.
Thus, in this study, we aim to raise some hypothesis as
follows: (1) Floral traits would present divergent response to
altitudinal gradient; the flowers of L. nervosa tend to be darker
in color and larger in display with an increase in elevation;
and (2) Variation in plant traits shows one break point at
the dense forests.

Based on the above-mentioned scientific hypothesis, this
paper studies the characteristics of flower color diversity
and biomass distribution among organs aimed at exploring
the adaptation of flowers and tradeoff mechanism of organs
to altitudinal gradient. The study also provides a basis for
predicting the adaptive changes in L. nervosa under different
climate change scenarios, thus aiding in the identification
of the best suitable area for ornamental performance
and to provide more material and theoretical basis for
resource utilization.
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MATERIALS AND METHODS

Study Sites
The study was conducted at the Bipenggou valley in Lixian
County, Sichuan, China (31◦13′47"–31◦20′17" N, 102◦52′19"–
102◦57′41" E), which belongs to Qionglai Mountains located
at the eastern margin of Hengduan Mountains—Southeastern
China, as the watershed of Minjiang River and Daduhe River.
Bipenggou is part of the Miaro Nature Reserve, the eastern part
of Bipenggou is adjacent to Wolong National Nature Reserve,
and the southern part is adjacent to Siguniangshan Scenic
Area in Xiaojin County, which is also part of the “World
Heritage Site of Giant Panda Corridor.” Bipenggou has a complex
topography, large relative elevation, and complex climate, which
is mainly influenced by three air masses from the Pacific Ocean,
Indian Ocean, and Qinghai–Tibet Plateau; the climate is rich in
precipitation. The altitude in this region ranges from 2,015 to
5,922 m, with a steep vertical drop that provides several vertical
zones over a small area, making it an ideal location to study plant
adaptation to a changing environment.

The forest type is coniferous subalpine forest in the range of
2,200–3,600 m in this region. Studies show that in Bipenggou the
dominant species between 2,900 and 3,200 m are Picea asperata
and Picea likiangensis, under which are deciduous trees, such as
Sorbus koehneana, Betula albosinensisi, and Acer laxiflorus, and
the main shrubs are Sophora davidii, Berberis veitchii, Daphne
odora, Viburnum betulifolium, and Cotoneaster multiflorus; in
the range of 3,100–3,300 m, the dominant species are Betula
albosinensisi, Abies recurvata, Picea asperata, and Cupressus
chengiana; the main shrubs are Rhododendron violaceum, Prunus
plusinensis, Rosaceae sp., Rhododendron setosum, Lonicera
tangutica, and Sophora davidii; in the range of 3,400–3,600 m,
the dominant species are Larix masteriana, Cupressus chengiana,
Abies faxoniana, and Abies squamata; the main shrubs are
Rhododendron violaceum, Sorbus koehneana, Prunus plusinensis,
Berberis veitchii, and Rhododendron cephalanthum. In the range
of 2,800–3,600 m, consistent with our study area, the soil is brown
loam with pH 5.5–7.0, with high gravel content and shallow soil
layer in the area (Li et al., 2010). The study site and overview of
the sampling plots are shown in Figure 1.

Study Species
Lonicera L. is an important genus of the family Caprifoliaceae,
which comprises about 180 species (Jachuła et al., 2019) and
is a representative genus in the alpine region. Most species
have labial crowns and are biflorous, with a pleasant color and
a beautiful posture, making it an important genus of plants
used for landscaping (Zhang et al., 2004; Liu et al., 2015), and
some Lonicera species have been listed among valuable nectar-
and pollen-yielding plants (Bożek, 2007). There are 99 species
widespread in China (FRPS) which provide a good material for
studying the diversity of the plant mating system for its rich
flower color and morphological variation; however, most of the
studies on Lonicera spp. are focused on the medicinal value of the
genus (Shang et al., 2011; Ge et al., 2018). There are very limited
studies conducted on the biological characteristics and utilization

of the genus in landscaping. For this study, we selected L. nervosa
(Figure 2), as it shows characteristics like bright color, luxuriant
branches and leaves, beautiful shape, and strong adaptability. The
corolla of L. nervosa is mauve or purplish red, and the color varies
in different habitats at varying altitudes, which provide abundant
material for resource utilization.

The reproduction pattern of L. nervosa is seed breeding (Wang
et al., 2000), with limited preliminary cutting experiments on the
breeding of L. nervosa (Feng et al., 2015); however, there is no
study on the adaptability of L. nervosa. Thus, our study will be
of great significance to fill the research gap on the environmental
adaptability of L. nervosa and will be useful to the breeding and
utilization of the species.

Sampling Methods
We set five sampling points at an interval of 200 m along the
altitude from 2,950 m to around 3,650 m (2,945, 3,102, 3,326,
3,505, and 3,657 m). Depending on the distribution of L. nervosa
at each point, three to five sampling sites were identified,
where the Lonicera species bloom during May–June. During
the late spring to the early summer of 2019, at each sampling
site, we randomly selected three to five mature L. nervosa
individuals at reproductive stages (June 18, 23, 25, and 29 and
July 3), 10–20 individuals at each altitude point in total. From
each individual, five twigs with flowers in full-bloom phase
were randomly selected with no significant loss of leaves or
flowers and no controlled variation in flower color or floral size
within the twigs. After we cut the twigs from the branches,
we quickly put them into Ziplock bags to keep them fresh for
further indoor measurements, which included photography and
trait measurements.

Photography and Image Analysis
With the advancement in camera technology, the sensor of a
digital camera can record highly detailed (high pixel), pure
(low ISO and low image noise), and more colorful (deep color
depth) images that contain more optical and color information.
Meanwhile, it is easy and convenient to operate and calibrate a
camera. Thus, with proper use, digital cameras serve as useful
and relatively inexpensive tools to capture images and quantify
color and pattern (Stevens et al., 2007). In this study, we selected
a Nikon D750 DSLR camera (Nikon Corporation, Tokyo, Japan)
which had a 35.9 × 24-mm CMOS sensor (6,016 × 4,016 pixels)
with 14-bit color depth, 100–25,600 ISO range. It showed
full regulation of exposure and metering as recommended for
unbiased data acquisition (Stevens et al., 2007; White et al., 2015;
Del Valle et al., 2018).

The properties of color images are device dependent, and the
display color of the object will vary when images are captured
at different color temperatures and camera settings (Hong et al.,
2001; Stevens et al., 2007), so we put the flowers in the miniature
studio after sampling and captured them with the DSLR to ensure
that the color temperature and other settings were consistent. The
experimental data for the definition of typical sunlight are derived
from the measured sunlight, and their relative spectral power
distribution is similar to the measured sunlight. Compared with
other standard lighting bodies, the chromaticity points of typical
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FIGURE 1 | Location of the study site and sampling plots as well as the overview of Bipenggou valley and the biotope of each plot along the valley: (A) location of
Bipenggou valley, (B) location and biotope of sampling plots sited at 2,950–3,650 m, and (C) overview of the study site.

sunlight are more consistent with the actual sunlight. Therefore,
the International Commission on Illumination recommended
that the measured sunlight should be replaced by typical sunlight
D55 (5,503 K), D65 (6,504 K), and D75 (7,504 K) and, as far
as possible, typical sunlight D65 (Liang et al., 2013). In terms
of the photographing conditions for this study, based on actual
observation, we set the white balance of the camera to 5,500 K
as the color at the color temperature of 5,500 K is closest to the
natural situation. With all these pre-adjusted settings, we fixed
the camera on the tripod and equipped it with an NIKKOR 24–
85-mm autofocus lens. Then, we manually adjusted the focal
length to 35 mm which was suitable to the miniature studio, and

the aperture was set to f/8 and the integration time to 1/200 s.
We deliberately underexposed all photographs by 0.3 f-stop to
prevent color “clipping” or saturation (Stevens et al., 2007; Del
Valle et al., 2018). The position between the camera and the
platform to place the flowers was fixed. When capturing, we
put a flannelette on the platform before we put the flowers on
it to prevent shadow and excessive brightness (Kendal et al.,
2013). All images were taken in RAW format, which contained
unprocessed images that may be linearized using a specialized
software. We used the ImageJ software (Schneider et al., 2012)
for image processing. We selected the petal center as the region
of interest in each image and extracted the mean value of
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FIGURE 2 | Appearance features of Lonicera nervosa: (A) overview of L. nervosa individual, (B) branches of L. nervosa, (C) details of a twig, and (D) details of
flowers with different colors.

red–green–blue (RGB) channels which was converted into hue–
saturation–lightness (HSL) value afterward.

Color parameters can fully express pigment content so that
measuring plant color parameters and computing by equation
can provide a fast and accurate method to estimate pigment
content (Qi et al., 2019). Digital cameras have become a common
tool for studying plant colors. With the help of DSLR and
image processing tools, Del Valle et al. (2018) built a fast, non-
invasive method to estimate anthocyanin pigment concentration
in reproductive and vegetative plant tissues, which provided
reliable measurement results.

Color information detected by the DSLR was in RGB color
space, which was not intuitive, and its process of distinguishing
color aberrations was nonlinear (Chien and Tsai, 2014), so RGB
color space was not suitable for color recognition. HSL color

space, however, was more intuitive and consistent with human
visual characteristics (Mizunuma et al., 2014; Lin et al., 2015; Qiao
et al., 2016) and is typically used in color recognition applications.
In the HSL color mode, H [hue, H∈ (0◦, 360◦)] was defined to
characterize the type of color, and the value of hue could be used
to represent the color warmth—the hue value looped from 0◦ to
360◦ and defined 0◦ and 180◦ as the y axis and 90◦ and 270◦ as the
x axis; the chromophore was divided into four quadrants. When
the hue value was in the first and fourth quadrants, the color was
considered as warm color, where 0◦ (360◦) was the warm pole,
and when the hue value was in the second and third quadrants,
the color was considered cold, where 180◦ was the cold pole. S
[color saturation, S∈ (0, 1)] described the discrimination of color
purity in the case of the same hue and lightness (Weeks et al.,
1995). L [color lightness, L∈ (0, 1)] spanned the full range of the
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selected hue from black to white in the HSL color space, so HSL
is suitable for observing the color lightness.

We converted the RGB channels into HSL value; the equations
are listed below (Joblove and Greenberg, 1978):

H = Rblue−Rred
(Rmax−Rmin) × 60+120, if Rgreen = Rmax

=
Rred−Rgreen

(Rmax−Rmin) × 60+240, if Rblue = Rmax

=
Rgreen−Rblue

(Rmax−Rmin) × 60+360, else if Rgreen < Rblue

=

(
Rgreen−

Rblue
(Rmax−Rmin) × 60

)
, otherwise;

L =
1
2 ×

Rmax+Rminmin
255 ;

S =
Rmax−Rmin
Rmax+Rmin

, if L ≤ 0.5

=
Rmax−Rmin

2 = 255−(Rmax+Rmin) , if L > 0.5

= 0 if Rmax = Rmin

Trait Measurements
After capturing the images for color measurement, we quickly
measured the fresh mass, and then we scanned the floral display
area and leaf area with a scanner. After this, the samples were
put into the oven, set at a temperature of 75◦C, to dry for 48 h
for the dry mass measurement (LY/T 1211-1999). The leaf and
flower traits were determined separately both in fresh mass and
dry mass. The trait measurements are provided in Table 1—based
on the TRY plant trait database (Kattge et al., 2020).

Statistical Analyses
Data was checked for the normality and homogeneity of variance
before analyses. Data analyses were performed by using SPSS
18.0 (SPSS Inc., Chicago, IL, United States) and Canoco 5.0
(Ithaca, NY, United States). One-way ANOVA was performed to
find the differences in floral traits along the altitudinal gradient,
and Duncan’s multiple-range tests were employed to detect
significance among means at p ≤ 0.05. Pearson’s correlation
coefficients and redundancy analysis (RDA) were calculated to
determine the relationship between floral color, floral display,
leaf traits, and altitude. Floral water content (FWC) was a
strong predictor to imply the variation of the ambient humidity
(Roddy et al., 2019), and specific leaf area (SLA) was a common
indicator for the intensity of illumination, so we substitute
FWC and SLA for ambient humidity and light intensity as
environmental factors in calculating the RDA. Simple linear
regression was used to examine these relationships; however,
sometimes the community species diversity or functional pattern
change in response to environmental characteristics was not
linear, and sudden changes in ecological processes may occur
in the response. A stable response state was present to a
certain environmental gradient but, after the environment stress
reaches a threshold, another state of response may occur with
severe fluctuations. Obviously, different ecological processes were

reflected in different gradient ranges on both sides of the
critical point of the environment. Thus, piecewise regression was
performed to confirm the altitudinal trends of the traits. R studio
(R Core Team, 2020) was used to perform the data visualization;
we used the R package ggpubr (Kassambara, 2020) to plot boxplot
figures and the packages Hmisc (Harrell and Dupont, 2021) and
PerformanceAnalytics (Peterson and Peter, 2020) to plot the
correlation matrix.

RESULTS

Floral Color Performance
Petal H, petal L, and petal S vary significantly within the entire
altitudinal range; however, at altitudes above 3,300 m, there was
no significant difference for petal L and petal S (Table 2). The
petal H was between 330◦ and 340◦ (Figure 1A), and regression
analysis showed a linear relationship between petal H and
elevation (Figure 3A). Altitude had a significant positive effect
on petal S and a significant negative effect on petal L; piecewise
regression showed that the gradient change of petal L and petal
S had a clear breakpoint at around 3,300 m (Figures 3B,C).
Below 3,300 m, petal S increased with an increase in altitude
and reached its maximum value at 3,300 m, while a further
increase in altitude had no significant effect on petal S. On the
contrary, below 3,300 m, petal L showed a significant decreasing
trend with an increase in altitude, while at above 3,300 m, no
significant difference was observed. Moreover, the correlation
analysis showed that both petal H and petal L had a significant
negative correlation with altitude (Figures 4A–C)—specifically,
the correlation between petal H and altitude was consistent
within all altitudes, while the correlation between petal L and
altitude was mainly found at a lower altitude (below 3,300 m).
Within the entire altitudinal range, there was no significant
correlation between petal S and altitude, but a positive significant
correlation existed below 3,300 m.

Floral Display
Altitude had a significant effect on individual floral display area
(IFDA), total floral display area (TFDA), individual Leaf area
(ILA), total leaf area (TLA), individual floral fresh mass (IFFM),
total floral fresh mass (TFFM), individual floral dry mass (IFDM),
total floral dry mass (TFDM), floral number per twig (FN), and
FWC (Table 2). Within the altitudinal gradient, no significant
correlation was observed between altitude and FN, but at 3,300 m,
FN was significantly higher than at other altitudinal gradients
(Figure 4). As for the floral biomass, both the IFFM and the
IFDM had a significant correlation with altitude (Figures 4A,B).
However, the variation trend by segment was different for
IFFM and IFDM; the breakpoint was at around 3,300 m, below
which the IFFM and the IFDM both had a significant positive
correlation with altitude. The difference occurred when altitude
was above 3,300 m; the IFFM no longer changed significantly
after 3,300 m, but the IFDM showed a descending trend
(Figures 3D,E). The gradient variation of TFFM was similar to
that of IFFM. It showed a significant correlation with altitude,
and below the breakpoint 3,300 m, the TFFM was increasing
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TABLE 1 | Traits and measurement of florals and leaves.

Traits Abbreviation Sampling position Measurement and explanation

Total floral fresh mass TFFM Floral The fresh mass of all the florals on a twig (including the flowers and the pedicel)

Individual floral fresh mass IFFM Floral The fresh mass of an individual floral

Total floral dry mass TFDM Floral The dry mass of all the florals on a twig (including the flowers and the pedicel)

Individual floral dry mass IFDM Floral The dry mass of an individual floral

Total floral display area TFDA Floral The display area of all the flowers in a twig, extracted with a scanner and Image J software

Individual floral display area IFDA Floral The display area of an individual flower

Floral water content FWC Floral FWC = (IFFM - IFDM)/IFFM × 100%

Floral number per twig FN Floral The number of all the blooming flowers on a twig

Total leaf dry mass TLDM Leaf The dry mass of all the leaves on a twig (including the laminae and the petiole)

Individual Leaf dry mass ILDM Leaf The dry mass of an individual leaf

Total leaf area TLA Leaf The area of all the laminae in a twig, extracted with a scanner and Image J software

Individual Leaf area ILA Leaf The area of an individual lamina

Specific leaf area SLA Leaf The leaf area per leaf dry mass

Leaf number per twig LN Leaf The number of expanded leaves on a twig

TFDM/TLDM TFDM/TLDM Allocation Allocation of total floral biomass to total leaf biomass on the twig

TFDA/TLA TFDA/TLA Allocation Allocation of total floral display to total leaf area on the twig

TABLE 2 | Altitudinal effects on floral morphological traits and biomass at different altitude ranges.

All altitude ranges 2,950–3,300 m 3,300–3,650 m

d.f. F value P d.f. F value P d.f. F value P

Petal H (◦) 4 8.302 0.000 2 16.205 0.000 2 3.285 0.041

Petal L (%) 4 21.787 0.000 2 23.504 0.000 2 0.478 0.621

Petal S (%) 4 4.069 0.003 2 7.302 0.028 2 2.530 0.084

IFDA (cm2) 4 3.872 0.007 2 1.335 0.275 2 8.403 0.001

TFDA (cm2) 4 7.509 0.000 2 7.419 0.002 2 11.548 0.000

ILA (cm2) 4 3.136 0.020 2 3.503 0.040 2 4.691 0.015

TLA (cm2) 4 5.993 0.000 2 6.16 0.005 2 5.685 0.007

IFFM (mg) 4 8.995 0.000 2 10.320 0.000 2 7.346 0.002

TFFM (mg) 4 11.676 0.000 2 17.093 0.000 2 10.821 0.000

IFDM (mg) 4 25.032 0.000 2 45.744 0.000 2 27.962 0.000

TFDM (mg) 4 30.161 0.000 2 44.669 0.000 2 32.702 0.000

FN 4 3.693 0.009 2 5.599 0.007 2 6.503 0.004

FWC (%) 4 10.614 0.000 2 15.682 0.000 2 18.562 0.000

TFDM/TLDM 4 2.477 0.052 2 2.133 0.132 2 3.748 0.033

TFDA/TLA 4 1.786 0.141 2 0.026 0.974 2 1.578 0.220

F value = a ratio of variance of different group for the data, P = the P-value associated with the regression coefficient.

with an increase in altitude. Afterward, the TFFM showed a
slight drop compared to that at 3,300 m (Figure 3D). The TFDM
had a similar gradient variation tendency with IFDM, but no
significance was observed (Figure 3E).

The IFDA had no significant correlation with altitude
(Figure 4A), while altitude had opposite effects on TFDA at both
sides of 3,300 m (Figures 4B,C)—below 3,300 m, TFDA increased
with an increase in altitude. However, at altitudes above 3,300 m,
the TFDA decreased with an increase in altitude (Figure 3G).

Correlation Within Floral Traits and Color
Performance
The piecewise regression showed a breakpoint in the gradient
change of FWC at around 3,300 m (Figure 3F). Below 3,300 m,
the altitude had a significant negative effect on FWC, while the

reverse was observed at above 3,300 m. The relationship between
FWC and color performance could be determined in separated
altitude ranges, with a breakpoint at around 3,300 m. The FWC
had a significant positive effect on petal L and a significant
negative effect on petal S up to 3,300 m, with no significant effect
on petal H (Figure 4B). However, at above 3,300 m, the FWC
showed a significant negative effect on petal H but no significant
effect on either petal L or petal S (Figure 4C). As for the floral
biomass, FWC had a significant negative correlation with IFFM
and TFFM (Figures 4A–C). Otherwise, the floral biomass also
had a separate correlation with color performance at different
altitude ranges, and the floral biomass had a significant negative
correlation with petal L while it had a positive correlation with
petal S; both correlations were highly significant below 3,300 m
(Figures 4A–C).
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FIGURE 3 | (A–L) The altitude has respective effects on floral color, floral display, leaf traits, and biomass allocation.
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FIGURE 4 | Correlation among floral traits and color within different altitude ranges: (A) 2,950–3,650 m, (B) 2,950–3,300 m, and (C) 3,300–3,650 m.
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From the RDA analysis, within the whole range of altitude
(2,950–3,650 m), the eigenvalues of each axis were 0.1620, 0.0466,
0.0134, and 0.4258, and the explained variations of each axis
were 16.20, 20.86, 22.20, and 64.78%; at 2,950–3,300 m, the
eigenvalues of each axis were 0.3964, 0.0364, 0.0153, and 0.3061,
and the explained variations of each axis were 39.64, 43.28,
44.80, and 75.41%; at 3,300–3,650 m, the eigenvalues of each
axis were 0.1405, 0.0762, 0.0337, and 0.4475, and the explained
variations of each axis were 14.05, 21.67, 25.03, and 69.78%,
respectively (Figure 5).

DISCUSSION

As expected, the study shows that altitude has a significant effect
on flower color and size, and one breakpoint occurred at around
3,300 m; however, our results also indicate that the altitudinal
variation tendency of the flower color and size was different
but complementary. The flower color darkened as the altitude
increased till a range of below 3,300 m, while the flower size was
expanding; however, both flower color and size remained stable
at above 3,300 m (Figure 6).

The temporal and spatial combinations of different pigments
and their contents ultimately determine the floral color since
the red, blue, or lavender pigmentation is mainly determined
by anthocyanins (Liu et al., 2020). Experiments show that the
color lightness of plants had a negative linear correlation with
anthocyanin (Qi et al., 2019). For L. nervosa, the flowers were
pink to purple, and the result of petal H also led to purplish
red, which implied that the crucial pigment of L. nervosa was
anthocyanin. The results of floral color performance can be
explained in two aspects: abiotic and biotic, respectively. The
floral color lightness could be determined by the deposition of
pigment, which was strongly affected by abiotic factors, such as
solar UV and temperature and biotic factors like pollinators.

Firstly, from an abiotic perspective, plants adapt to UV and
low temperature stress by pigment deposition (Koski et al.,
2020). They usually adopt darker colors in high-ultraviolet
and low-temperature environments (Arista et al., 2013). Darker

pigmentation was under a particularly strong selection by UV-
B irradiance (Roulin, 2014); an increase in UV may drive an
increase in UV-absorbing floral pigmentation (Koski et al., 2020),
and anthocyanins have been thought to play a major role in acting
as a UV screen that protects the DNA of a plant from sunlight
damage (Steyn et al., 2002; He et al., 2011). In habitats with high
solar UV, the floral anthocyanin concentration was usually found
to be the highest (Peach et al., 2020). The amount of UV radiation
in China is mainly dependent on its geographical latitude,
altitude, cloud, and aerosols (Hu et al., 2007; Zhou and Chen,
2008), although it is commonly contributing a higher fraction at
any given incoming irradiance at high altitude compared with
low altitude (for clear-sky conditions) (Blumthaler, 2007), i.e.,
the UV radiation increased by 0.202–0.090 W/m2 with altitude
increasing per 100 m, respectively, during the dry and wet seasons
on Yunnan–Kweichow Plateau (Zhou and Chen, 2008); more
frequent clouds and fogs can negate or even reverse this effect
(Caldwell, 1968; Körner, 2003; Hu et al., 2007). In our study,
a breakpoint occurred at around 3,300 m when the floral color
was changing along the altitude—but why? Generally, as light
intensity decreases, the leaf area and SLA of plants increase to
improve their ability to capture light energy (Saldaña-Acosta
et al., 2009; Xiao et al., 2015; Wang et al., 2021). We could
consider SLA as an indicator for the intensity of illumination.
SLA decreased with an increase in altitude till 3,300 m and
reversed at above 3,300 m (Figure 3L). Meanwhile, SLA had
a significant positive correlation with petal L (Supplementary
Figure 1), so we could conclude that light intensity had a strong
effect on floral color and the light intensity decreased with an
increase in altitude above 3,300 m in our study region. Our results
also showed that the correlation between FWC and floral color
performance was different at both sides of the 3,300-m altitudinal
range. Below 3,300 m, FWC had a significant correlation with
petal L, while there was no correlation observed beyond 3,300 m
(Figure 4). FWC can be an indicator for the variation of ambient
humidity. Compared to leaves, flowers had a high saturated water
content, which was a strong predictor of hydraulic capacitance
in both leaves and flowers (Roddy et al., 2019). The vulnerability
of plants to freezing temperatures gradually increased prior to

FIGURE 5 | Redundancy analysis of the relationship among floral color, floral traits, leaf traits, and environmental factors under different altitude ranges:
(A) 2,950–3,650 m, (B) 2,950–3,300 m, and (C) 3,300–3,650 m.
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FIGURE 6 | Diagrammatic sketch of the transformation on floral size and color of Lonicera nervosa. The flowers of L. nervosa tended to be larger and darker along
the altitude; however, the floral display appeared to be largest at an altitude of around 3,300 m, and the petal color lightness was kept stable at above 3,300 m.

and just after flushing in spring, when freezing events may still
occur (Lenz et al., 2013). With decreasing temperature along
the altitude, the phenological period of L. nervosa was delayed
by 18 days at a higher altitude (according to our sampling
date), so there was a shorter photoperiod at a low altitudinal
range when flowers were blooming, which may imply a signal
of a higher possibility of risk in cold spell in spring for the
plants (Körner, 2003; Augspurger, 2008; Fu et al., 2019), and a
lower water content could reduce the damage of cold (Körner,
2003). With the phenological period occurring later at high
altitudes, the longer photoperiod may imply a lower risk of
cold spell, so the FWC decreased with elevation, but things
changed when the altitude rose above 3,300 m, suggesting that
the moist environment could reverse the elevation effect on FWC.
Combining the result of SLA with FWC, we determine that,
at an altitude above 3,300 m, there were more frequent clouds
during the period when the L. nervosa flower was blooming, but
instead of turning brighter, the petal L of L. nervosa tended to
remain stable above 3,300 m. We infer that it may occur as a
combined effect of pollinators and floral temperature. Secondly,
from a biotic perspective, anthocyanins are also thought to play a
role in attracting insects for the purpose of pollination (He et al.,
2011). Hymenoptera carried the highest proportion of pollinators
(Zhao et al., 2018). Among them, bees and bumblebees had the

highest pollination efficiency and the largest proportion (Zou
and Huang, 2014). According to previous research and field
observation, bumblebees are the main pollinator of L. nervosa,
which were typical of alpine bees, mainly distributed in subalpine
coniferous forest belt and alpine shrub meadow belt, with
bumblebees showing a stronger preference for brighter flowers
(Deng et al., 2017).

For the results of floral size, we could also take sights
into the abiotic and biotic aspects. Obtaining an optimal
flower temperature was crucial for plant reproduction because
temperature mediated flower growth and development and
pollen and ovule viability, and it influenced pollinator visitation
(van der Kooi et al., 2019). Both the plant and anthophilous
insects can benefit from a flower temperature that differs
from ambient conditions; dark color may lead to a higher
intra-floral temperature because they absorb more energy
than light and reflective flowers (Jewell et al., 1994; van
der Kooi et al., 2019), and a larger flower may expand
the surface area that can absorb radiation (van der Kooi
et al., 2019). Zhao et al. (2016) showed that pollinator
diversity tended to be higher in communities at lower
elevations, and plant species with large floral displays and high
flower abundance were more selective in their exploitation of
pollinators. However, the selection of a flower size from a plant
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species by pollinators could vary with changing habitats due
to differences in pollinator communities (Bode and Tong,
2018). Meanwhile, the floral biomass was a ternary parameter,
while floral display area was a binary parameter; therefore,
the response of floral display area to the investment in floral
biomass was not so efficient as a linear response, for example,
the response in pigmentation, so the slope of IFDM was sharper
than petal L (Figures 3B,E). Although the investment on leaf
was increasing as the altitude increased (Figures 3H,J,K), the
drivers for this change were different below 3,300 m. L. nervosa
developed larger leaves to achieve more reproductive inputs;
with a cloudier environment at above 3,300 m, photosynthesis
was inhibited and assimilation efficiency was reduced. L. nervosa
invested more biomass into vegetative growth to sustain, so
TFDM/TLDM decreased in this altitude range (Figure 3I). We
can conclude that L. nervosa adopts a more radical strategy
on reproduction below 3,300 m and a conservative strategy at
above 3,300 m. The results show that, when the environmental
stress brought by altitude was moderate, L. nervosa adopted
a more radical reproductive investment strategy, and the
weight of different selection agents varied within different
altitudinal ranges.

CONCLUSION

With the increase in environmental stress due to increasing
elevation, the reproductive investment strategy of L. nervosa
tended to be more conservative. Under the combined effect of
temperature, UV radiation, clouds, and pollinator selection, a
single flower of L. nervosa appeared to be darker and larger at a
higher altitude. However, the darkening effect had a limitation,
and the total investment in floral biomass had a negative
correlation with petal L. The darkening of floral color and the
expansion of floral display tend to be complementary patterns,
which can provide guidance for the introduction and breeding of
wild L. nervosa.

Natural creation is like a natural artist. The adaptability of
the plants provides a factor to evaluate the utilization potential.
When introducing and utilizing the plants for landscaping,
people can choose the population suitable to their own needs.
Therefore, for plant landscape utilization, the diversity of the
characteristics of L. nervosa calls for more attention. However, the
phenotypic molecular mechanism of the plasticity of color and
flower display of L. nervosa requires further study.
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