AUTHOR=Sandén Taru , Wawra Anna , Berthold Helene , Miloczki Julia , Schweinzer Agnes , Gschmeidler Brigitte , Spiegel Heide , Debeljak Marko , Trajanov Aneta
TITLE=TeaTime4Schools: Using Data Mining Techniques to Model Litter Decomposition in Austrian Urban School Soils
JOURNAL=Frontiers in Ecology and Evolution
VOLUME=9
YEAR=2021
URL=https://www.frontiersin.org/journals/ecology-and-evolution/articles/10.3389/fevo.2021.703794
DOI=10.3389/fevo.2021.703794
ISSN=2296-701X
ABSTRACT=
Litter decomposition plays a pivotal role in the global carbon cycle, but is difficult to measure on a global scale, especially by citizen scientists. Here, citizen scientists, i.e., school students with their teachers, used the globally applied and standardized Tea Bag Index (TBI) method to collect data on litter decomposition in urban areas in Austria. They also sampled soils to investigate the linkages between litter decomposition and soil attributes. For this study, 54 sites were selected from the school experiments and assembled into a TBI dataset comprising litter decomposition rates (k), stabilization factors (S), as well as soil and environmental attributes. An extensive pre-processing procedure was applied to the dataset, including attribute selection and discretization of the decomposition rates and stabilization factors into three categories each. Data mining analyses of the TBI data helped reveal trends in litter decomposition. We generated predictive models (classification trees) that identified the soil attributes governing litter decomposition. Classification trees were developed for both of the litter decomposition parameters: decomposition rate (k) and stabilization factor (S). The main governing factor for both decomposition rate (k) and stabilization factor (S) was the sand content of the soils. The data mining models achieved an accuracy of 54.0 and 66.7% for decomposition rates and stabilization factors, respectively. The data mining results enhance our knowledge about the driving forces of litter decomposition in urban soils, which are underrepresented in soil monitoring schemes. The models are very informative for understanding and describing litter decomposition in urban settings in general. This approach may also further encourage participatory researcher-teacher-student interactions and thus help create an enabling environment for cooperation for further citizen science research in urban school settings.