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Hosts of avian brood parasites are under intense selective pressure to prevent or
reduce the cost of parasitism. Many have evolved refined egg discrimination abilities,
which can select for eggshell mimicry in their parasite. A classic assumption underlying
these coevolutionary dynamics is that host egg recognition depends on the perceivable
difference between their own eggs and those of their parasite. Over the past two
decades, the receptor noise-limited (RNL) model has contributed to our understanding
of these coevolutionary interactions by providing researchers a method to predict a
host’s ability to discriminate a parasite’s egg from its own. Recent research has shown
that some hosts are more likely to reject brown eggs than blue eggs, regardless of the
perceived differences to their own. Such responses suggest that host egg recognition
may be due to perceptual or cognitive processes not currently predictable by the RNL
model. In this perspective, we discuss the potential value of using the RNL model
as a null model to explore alternative perceptual processes and higher-order cognitive
processes that could explain how and why some hosts make seemingly counter-intuitive
decisions. Further, we outline experiments that should be fruitful for determining the
perceptual and cognitive processing used by hosts for egg recognition tasks.

Keywords: brood parasitism, color categorization, egg rejection, opponent channels, receptor-noise limited
model

INTRODUCTION

Avian brood parasitism is an alternative reproductive strategy where one female lays her eggs in
another bird’s nest, imposing the costs of rearing her young on a set of foster parents (Stevens,
2013). In response, hosts often evolve egg recognition abilities as a major line of defense against
parasitism, which, in turn, can select for improved eggshell mimicry in their parasite and instigate
a coevolutionary arms race (Dawkins and Krebs, 1979; Davies and Brooke, 1989; Stoddard and
Stevens, 2011). Such interactions have provided researchers with a tractable system to examine
parasitic relationships and coevolution (Dawkins and Krebs, 1979; Davies and Brooke, 1989;
Hauber et al., 2015b).

The perceptual and cognitive processes governing host egg recognition are central to
understanding host decision-making and coevolutionary arms races (Dawkins and Krebs, 1979;

Frontiers in Ecology and Evolution | www.frontiersin.org 1 November 2021 | Volume 9 | Article 702934

https://www.frontiersin.org/journals/ecology-and-evolution
https://www.frontiersin.org/journals/ecology-and-evolution#editorial-board
https://www.frontiersin.org/journals/ecology-and-evolution#editorial-board
https://doi.org/10.3389/fevo.2021.702934
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3389/fevo.2021.702934
http://crossmark.crossref.org/dialog/?doi=10.3389/fevo.2021.702934&domain=pdf&date_stamp=2021-11-04
https://www.frontiersin.org/articles/10.3389/fevo.2021.702934/full
https://www.frontiersin.org/journals/ecology-and-evolution
https://www.frontiersin.org/
https://www.frontiersin.org/journals/ecology-and-evolution#articles


fevo-09-702934 November 12, 2021 Time: 15:28 # 2

Hanley et al. Visual-Cognitive Processes Governing Egg Recognition

Davies and Brooke, 1989; Hauber et al., 2015b). Classic theory
assumes that hosts can select for eggshell mimicry in the parasite
by rejecting parasite eggs they perceive as dissimilar to their own
(Dawkins and Krebs, 1979). Pioneering work by Stoddard and
Stevens (2011) applied an avian receptor noise limited (RNL)
model (Vorobyev and Osorio, 1998) to the common cuckoo,
Cuculus canorus, and their respective hosts. They found that hosts
with strong recognition abilities were parasitized by cuckoos that
laid eggs with refined eggshell mimicry (as predicted by the RNL
model). However, while useful for predicting discriminability
between stimuli (Olsson et al., 2018; Price et al., 2019), the
RNL model’s original intent was to make predictions with
which to compare behavioral responses and then infer color
processing mechanisms (Osorio and Vorobyev, 2018). Contrary
to traditional expectations (Brooke and Davies, 1988; Reeve,
1989), Hanley et al. (2017) illustrated that some hosts reject
brown model eggs more than blue model eggs, even when those
eggs were equally dissimilar to the hosts’ own. In this experiment,
model eggs were painted colors that specifically aligned with
perceived variation in natural eggshell color (from blue-green to
brown; Hanley et al., 2015). This finding has been meta-replicated
in five hosts from three continents, each of which face distinct
forms of parasitism (Abolins-Abols et al., 2019; Hanley et al.,
2019b; Manna et al., 2020); however, not all hosts will accept any
egg models painted “blue” (Langmore et al., 2005; Begum et al.,
2012; Hanley et al., 2019a; Abernathy et al., 2021). These counter-
intuitive and, at times disparate, findings raise the question, “why
have these hosts deviated from our null expectations”?

Here, we explore alternative visual-cognitive processes that
may explain such deviations from the expected RNL model.
Specifically, we describe color vision in birds by explaining
how color is both received and perceived. We then outline the
discrimination challenge facing hosts and describe a higher-level
cognitive process (categorization) that hosts may use to process
this color information during decision-making (Harnad, 1987;
Shepard, 1987; Goldstone and Hendrickson, 2009). Our goal is
to contextualize previous findings of strikingly similar color-
biased rejection behaviors by describing egg recognition tasks
from color reception through perception (Figure 1). Finally,
we provide potential experimental frameworks to aid future
investigations into the perceptual and cognitive processes used
by hosts for egg discrimination tasks.

Color Reception
Birds are thought to have excellent color vision (Jacobs, 1981;
Goldsmith, 1990; Hart, 2001; Ödeen and Håstad, 2003). They
possess four types of single-cone photoreceptors, sensitive to
ultraviolet (or violet), short, medium, or long wavelength light
(Hart, 2001). Avian color reception is thought to be based on the
stimulation of these single cones (Hart, 2001; Ödeen and Håstad,
2003), where estimates of quantum catches (i.e., the number
of photons being absorbed by the cone from the stimulus)
approximate the stimulation of each photoreceptor:

Qi =

∫ 700

300
Ri (λ) S(λ)I(λ)O(λ)dλ

Where Qi represents the quantum catch for receptor i, R is
the sensitivity of photoreceptor i after accounting for oil droplet
transmittance, S is the reflectance of a stimulus, I is the irradiance
in photon flux, and O is the ocular media that narrows the
sensitivity of photoreceptors in birds (Bowmaker et al., 1997;
Vorobyev, 2003). By convention, we refer to the quantum catches
of the ultraviolet/violet-, short-, medium-, and long-wavelength
sensitive photoreceptors as Qu, Qs, Qm, and Ql, respectively.

Color Perception
Before a color can give rise to a perceptual experience in
an organism, the color that is received by the eye must be
transformed and transmitted to the brain (Osorio et al., 1999;
Kelber, 2016; Price et al., 2019). This is done by forming opponent
channels that contrast received quantum catches against each
other (Figure 1), a process that underlies color discrimination
in a range of organisms (Osorio et al., 1999; Ventura et al.,
2001; Rocha et al., 2008; Kelber, 2016; Price et al., 2019). In
theory, related opponent channels [e.g., (Qu+Ql) – (Qs+Qm)
and (Qs+Qm) – (Qu+Ql)] can produce signals that vary in sign
(positive or negative) and therefore may result in two different
responses. Unfortunately, the actual neural mechanisms of each
channel—and, indeed, the total number of channels used—are
unknown in birds (Kelber, 2016; Price and Fialko, 2018; Vasas
et al., 2018; Price et al., 2019). This makes it challenging to model
the actual signals reaching the avian brain.

To circumvent this difficulty, Vorobyev and Osorio (1998)
developed the RNL model that predicts discriminability between
stimuli. In this model, the actual opponent channels are
unimportant and the sign of the signal makes no difference on
model output (Vorobyev and Osorio, 1998). This model assumes
that visual signals and discrimination thresholds are determined
by photoreceptor noise (Vorobyev and Osorio, 1998), that
there are one fewer opponent channels than photoreceptor
types, and that altering light levels do not change perceived
differences between stimuli (Kelber, 2016). The RNL model
predicts differences between stimuli in just noticeable differences
(JNDs), classifying stimuli as either discriminable (>1 JND) or
not discriminable (<1 JND). Although in practice, it is generally
recognized that the theoretical threshold of 1 JND is likely
overly conservative in most natural contexts, and more realistic
thresholds may be set∼2 JNDs (Spottiswoode and Stevens, 2010,
2012; Stevens et al., 2013). This model is appealing because it
accurately estimates visible contrast, at least in some contexts
(e.g., brightly lit conditions), provided reflectance spectra for two
stimuli (e.g., those in a detection or discrimination task), spectral
sensitivity estimates of each of the organism’s photoreceptor
types (Price et al., 2019), and the irradiance of the environment
(Endler, 1993) are available.

However, there are certain conditions that may impact the
RNL model’s ability to accurately predict discriminability. For
example, this model does not currently account for how visual
contrast against the background impacts the thresholds beyond
which two stimuli can be discriminated (i.e., for discrimination
tasks). When viewing colorful stimuli, most animals will
compensate for differences in light conditions through a process
known as chromatic adaptation (Lind, 2016; Price et al., 2019).
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FIGURE 1 | The pathway to perceived color variation involves the capturing of light reflected by stimuli such as model eggs (column 1) by the retina (column 2), the
resultant photoreceptor stimulation (column 3), and the formation and transmission of an opponent signal to the brain (column 4). We can make predictions about
perceived egg color that likely result from these opponent channels (column 5), possibly differing from the predictions of the receptor noise-limited (RNL) model
(column 6). Ultimately, we have much to learn about the cognitive processes that hosts use to act on color information (column 7). Here we show model eggs
(labeled A-D in column 1), where egg B is considered an “own” egg template (to which others will be compared, indicated with asterisk). The inset eggs under
“photoreceptor stimulation” represent the quantum catches (see section “Color Reception” for details) under standard daylight conditions, following previously
published methods (Stevens et al., 2007). The post-receptor processes (columns 4–7) are less well studied in birds, and birds may rely on specific opponent
channels that weigh the contribution of specific photoreceptors in distinct ways. We show one such opponent channel (column 5) that is produced based upon the
quantum catches of each egg model type (each set of arrows describes the process), when the sign of the signal (positive or negative) and may result in distinct
responses to stimuli that differ from our null expectation under the RNL model (column 6, black = 0 JND and white ≈5 JND) where each egg is compared against
egg B. That perceived color information may then be used via unknown (question mark) higher order processes. Inserted photograph of the avian eye (in column 2)
was modified (cropped, flipped, rotated, and vignetted) from “Eyes and eyelids” by PigeonsAreAwesome under the CC BY-SA 4.0 license.

In this process, when the background predominantly reflects
long-wavelength light (typical in birds’ nests), the viewer will
upregulate short-wavelength receptor signals (e.g., blue) and
downregulate long-wavelength receptor signals (e.g., brown;
Price et al., 2019). Consequently the predicted detection of blue-
green eggs in brown nests is, rightly, improved (higher JND) by
accounting for the nest background (Price et al., 2019). However,
animals tend to perform better on discrimination tasks (e.g.,
comparing a parasite’s egg and a host’s egg) when stimuli are
more similar to the background (e.g., two brown eggs on a
brown nest) and poorer when stimuli are more different from
the background (e.g., two blue eggs on a brown nest); thus,
chromatic adaptation can effectively alter the threshold necessary
to differentiate stimuli (Krauskopf and Gegenfurtner, 1992; Lind,
2016; Price et al., 2019). Currently, the RNL model does not
account for these effects for discrimination tasks.

Higher-Order Processing
Most studies on color discrimination assume that animals use
low-level cognitive mechanisms simply based on discrimination
thresholds (Kelber and Osorio, 2010); however, previous research
has provided evidence of decision-rules based on higher-level
cognitive mechanisms in invertebrates, fish, mammals, and
even in birds (Tapper and Halpern, 1968; Sandell et al., 1979;
Nelson and Marler, 1989; Poralla and Neumeyer, 2006; Ham
and Osorio, 2007; Benard and Giurfa, 2008; Avarguès-Weber
et al., 2011; Lachlan and Nowicki, 2015; Renoult et al., 2015;
Caves et al., 2018). One such higher-level cognitive process is

categorization, which occurs when responses to stimuli vary less
within categories than between categories (Repp, 1984; Harnad,
1987; Treisman et al., 1995). This is known as a boundary effect,
which is a hallmark test of categorical perception and can only
be assessed measuring responses across a phenotypic range that
spans both sides of a decision boundary (Harnad, 1987; ten
Cate and Rowe, 2007; Kelber and Osorio, 2010; Hauber et al.,
2015b). Categorization is thought to increase the speed, accuracy,
and certainty of choices, while reducing the requirements for
neural processing (Nelson and Marler, 1989; Kepecs et al., 2008),
particularly useful for performing unfamiliar tasks or when
information is uncertain (Dukas and Waser, 1994; Benard et al.,
2006; Kepecs et al., 2008). Although the potential for hosts to
use color categorization in egg recognition has been discussed
previously (Spottiswoode and Stevens, 2010; Hanley et al., 2017),
and tests have illustrated a clear decision boundary (see figures S3
and S4 from, Hanley et al., 2017), no study has yet confirmed that
hosts use categorization for egg recognition (Green et al., 2020).

DISCUSSION

By providing reasonable predictions about perceivable differences
between host and parasite eggs, the RNL model has proven a
crucial method for testing certain hypotheses surrounding co-
evolutionary arms races between host perception and parasite
egg phenotypes (Spottiswoode and Stevens, 2010; Stoddard
and Stevens, 2011). Comparisons between the predictions of
the RNL model and actual host responses can demonstrate
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higher-order processes, such as categorization (Nelson and
Marler, 1989; Caves et al., 2018), or help determine the
discrimination thresholds necessary for specific egg recognition
tasks (Lind, 2016; Olsson et al., 2020). Such experiments
would refine our understanding of the perceptual and cognitive
processes that underly egg recognition decisions (e.g., opponent
channels, chromatic adaptation, and categorization) and advance
our understanding of host-parasite coevolutionary dynamics.
Here we outline tests necessary to explore hitherto untested
perceptual and cognitive processes, which may explain why
some hosts’ behaviors appear to deviate from the expectations
of the RNL model (e.g., rejecting brown but accepting equally
dissimilar blue eggs).

Host Selection for Proposed Tests
The experiments we outline below are ideally suited for hosts
traditionally considered intermediate rejecters (Rothstein, 1975;
Davies and Brooke, 1989; Peer and Sealy, 2004), rather than hosts
that unilaterally accept or reject eggs. Additionally, these tests are
suited for hosts with intermediate, rather than extreme, eggshell
colors so that experimental egg model stimuli can be realistically
bluer or browner than the host’s. In such an experiment, a
researcher would insert a single egg model, either experimental
or control, into each host’s nest and record their response
(reject/accept) within a predefined period (Canniff et al., 2018).
We advocate that researchers estimate avian-perceived coloration
of each host egg (rather than average host color as in Hanley et al.,
2017), experimental egg, and nest, in addition to measuring the
irradiance at each nest, as these data are vital for interpreting host
behavioral responses.

Perceptual Mechanisms
Egg rejection studies using egg models varying in coloration
along a continuous range would be particularly useful for
determining whether a host’s response is governed by a particular
opponent channel (Hanley et al., 2017, 2019b; Abolins-Abols
et al., 2019; Manna et al., 2020). Such experiments (Figure 2A)
would allow a researcher to determine whether host response
is better predicted by opponent channel(s) or discriminable
differences predicted under the RNL model and also whether
responses vary sharply anywhere along that color range (decision
boundary, see below). This could be a fruitful line of research,
since past studies have found that individual photoreceptor
quantum catches provided better predictions of host response
than discriminable differences predicted under the RNL model
(Cassey et al., 2008; Hauber et al., 2020). If hosts used a common
opponent channel, that may explain why disproportionate
rejections of brown eggs have been found in a range of hosts
(Stokke et al., 2007; Cassey et al., 2008; Soler et al., 2012;
Hanley et al., 2017, 2019b; Abolins-Abols et al., 2019; Manna
et al., 2020). If such a common channel exists, and is used
for egg recognition, it most likely broadly distinguishes short-
from long-wavelength dominated colors (e.g., blue and brown,
respectively). Still, while uncovering a specific shared opponent
channel used by diverse hosts would be exciting, other aspects of
visual perception might also explain host behaviors that deviate
from our null expectations.

Chromatic adaptation to the (typically) brown nest
background provides one such intriguing possibility. Lind
(2016) demonstrated that the thresholds necessary for color
discrimination can shift depending on the contrast between
the color of the stimuli and the nest background. Thus,
hosts with blue-green eggs would face a comparatively more
challenging task when discriminating a blue egg (i.e., higher
discrimination threshold) than discriminating a brown egg
(i.e., lower discrimination threshold). Consistent with this
observation, hosts found to disproportionately reject brown
egg models laid (at least moderately) blue-green eggs (Honza
et al., 2007; Cassey et al., 2008; Soler et al., 2012; Hanley et al.,
2017, 2019b; Abolins-Abols et al., 2019; Manna et al., 2020).
Although past experiments found that nest contrast did not
influence host egg recognition (Aidala et al., 2015; Hauber
et al., 2015a), a blue nest lining did increase performance on
an egg discrimination task by 25% in the blue-green egg laying
American robin Turdus migratorius (Aidala et al., 2015). We
feel this is still a promising line of research, particularly if
future studies employ an experimental manipulation of nest
background (Aidala et al., 2015) alongside sufficient variation
in the color of egg stimuli to determine threshold values (sensu
Lind, 2016). We suggest measuring the discrimination thresholds
by recording behavioral responses to sets of blue-green and
brown egg stimuli sufficiently diverse to surpass threshold levels
(e.g., 66.7% rejection rates; see Figure 2B) on high and low
contrast nest backgrounds.

Cognitive Mechanisms
If host responses show evidence of a sharp decision boundary
(Figure 2A), subsequent experiments should test for color
categorization. We suggest deploying discrete sets of egg models
of carefully designed colors (Nelson and Marler, 1989; Cheke
et al., 2006; Ham and Osorio, 2007; Caves et al., 2018), rather
than eggs with continuously varying colors (sensu Hanley
et al., 2017). For example, egg sets could be bluer (set 1)
and browner (set 2) than the hosts’ own (Figure 2C), but of
identical brightness. Within each set, one stimulus (stimulus
1) should be relatively similar (e.g., 3 JND) to the host’s own
egg (the control stimulus) and differ from the next stimulus
(stimulus 2) in the set by an identical degree (e.g., 3 JND).
Importantly, sets of stimuli should span the previously detected
decision boundary, and there must be comparable perceivable
differences within and between categories. While our focus is
on colors ranging from blue-green to brown, other color ranges
can be explored and more colors can be added as necessary.
Color categorization would be detected if differences in host
responses are significantly greater across the category boundary
(see above) than within either category. Although this is a
necessary follow-up test to confirm color categorization in hosts
(Green et al., 2020), it may not reveal the basis for such
categorical behavior. Typically, categorical behavioral responses
in an experiment such as the one we propose (Figure 2)
would imply hosts assign categorical labels to distinguishable
egg stimuli (e.g., egg sets); however, identical responses may
result from other processes (e.g., chromatic adaptation altering
discrimination thresholds for certain discriminations tasks;
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FIGURE 2 | Here we illustrate expected results from an experiment (A) investigating host response to eggs (acceptance = 0, rejection = 1) painted colors ranging
from bluer (negative) to browner (positive) than the hosts’ own eggs (solid line on x axis). Egg stimuli are plotted by their opponent channel signal,
(Qu + Ql ) – (Qs + Qm), such that negative and positive values represent blue and brown egg colors, respectively. In this example, hosts reject eggs bluer than their
own even less frequently than eggs with better color matches (as seen in Turdus thrushes, Hanley et al., 2017). We fit a hypothetical logistic regression (dashed line)
to these data. These predictions would be compared against the predictions of an RNL model. For reference, an arrow indicates the color that most closely matches
the host’s own egg color. Such egg models (B) that vary from the host’s own egg color (chromatic contrasts in JND) can be deployed in nests to measure the
discrimination thresholds for eggs bluer (set 1) or browner (set 2) than the host’s own. For a host with a moderately blue-green egg, we expect that chromatic
adaptation to a natural brown nest background could shift the discrimination threshold (blue and brown arrows on x-axis), such that threshold necessary to detect
66.7% of egg models (red lines) vary for each set of stimuli. Here error bars represent variation across multiple experiments (e.g., spanning years or populations).
Finally, we illustrate an (C) experimental schematic and set of (D) expected results for tests of color categorization. Eggs from each egg set, would vary by consistent
intervals. The numbers in egg icons represent the chromatic contrast to the host’s own egg, with the control model identical in color to the host’s own. To detect
categorization, the (D) differences between categories (egg sets) would have to be larger than differences within. We illustrate hypothetical results [identical to panel
(B)] and the post hoc significance of these comparisons (above bars) that would document categorical behavior, emphasizing particularly informative comparisons
using lines above the bars. These illustrate hypothetical results based on past results from hosts that lay blue-green eggs (e.g., Turdus thrushes: Hanley et al., 2017);
however, these designs would be particularly informative on a host population that has a distinct egg polymorphism (relatively blue or relatively brown) as in the
Daurian Redstart Phoenicurus auroreus (Yang et al., 2016; Zhang et al., 2021a,b).

Figures 2B,C). Regardless of the underlying mechanism of
categorical behaviors (e.g., Caves et al., 2020), such rejection
behavior would select for eggshell phenotypes in novel and
unappreciated ways.

Expected Evolutionary Outcomes
Importantly, these perceptual and cognitive processes (i.e.,
chromatic adaptation, categorization) may all impact host egg
recognition, and may not be mutually exclusive. Each can be
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tested by comparing host behavior to the predictions of the RNL
model, and would impact host-parasite dynamics in interesting
ways. For example, we would expect that heavily parasitized host
populations that lay blue-green eggs would evolve even bluer
eggs than unparasitized populations, under either categorization
or chromatic adaptation, due to their preferential rejection of
brown eggs (Soler et al., 2012; Hanley et al., 2013). In these
cases, host discrimination might not only select for parasite
eggshell mimicry, but also for shifts of the discrimination
threshold itself (Figure 2B). We argue that these aspects of
perception and cognition are as vital to coevolutionary arms
races as the egg traits that are selected. Furthermore, we expect
that the cognitive mechanisms underlying host egg recognition
will be more plastic (Buchanan et al., 2008) than their egg
and visual morphologies, which are, respectively, constrained
and conserved traits (Ödeen and Håstad, 2003; Hanley et al.,
2015). Focusing research attention on these more labile cognitive
processes will likely be fruitful for determining the role hosts play
in shaping coevolutionary dynamics.

Conclusion
In this perspective, we propose that hosts’ discontinuous
responses to continuous variation in eggshell color could be
explained by more explicit perceptual (opponent channels,
chromatic adaptation) and cognitive (categorization) models. By
outlining fruitful directions for future research, we encourage
researchers to use the RNL model as a null model with which
to compare other higher-level processes. Avian brood parasitism
provides an ideal system to not only learn about parasitism
and coevolution (Soler and Soler, 2000; Stoddard and Hauber,
2017), but also the hitherto unidentified perceptual and cognitive

mechanisms (Stoddard and Hauber, 2017) used by wild birds.
By developing experiments explicitly designed to discern the
underpinnings of avian vision, we can learn more about how
birds interpret the world around them, an understanding that
is vital to grasping their past, present, and future evolutionary
trajectories (Endler and Mielke, 2005; Endler et al., 2005; Stevens,
2011), as well as to informing current conservation efforts
(Blackwell et al., 2012; Dominoni et al., 2020). It is our hope
that this manuscript will catalyze future investigations into the
cognitive processes that underly perception and decision-making
in broad taxonomic groups and contexts.
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