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Understanding how animals use information about their environment to make movement
decisions underpins our ability to explain drivers of and predict animal movement.
Memory is the cognitive process that allows species to store information about
experienced landscapes, however, remains an understudied topic in movement ecology.
By studying how species select for familiar locations, visited recently and in the past,
we can gain insight to how they store and use local information in multiple memory
types. In this study, we analyzed the movements of a migratory mule deer (Odocoileus
hemionus) population in the Piceance Basin of Colorado, United States to investigate
the influence of spatial experience over different time scales on seasonal range habitat
selection. We inferred the influence of short and long-term memory from the contribution
to habitat selection of previous space use within the same season and during the prior
year, respectively. We fit step-selection functions to GPS collar data from 32 female
deer and tested the predictive ability of covariates representing current environmental
conditions and both metrics of previous space use on habitat selection, inferring the
latter as the influence of memory within and between seasons (summer vs. winter).
Across individuals, models incorporating covariates representing both recent and past
experience and environmental covariates performed best. In the top model, locations
that had been previously visited within the same season and locations from previous
seasons were more strongly selected relative to environmental covariates, which we
interpret as evidence for the strong influence of both short- and long-term memory
in driving seasonal range habitat selection. Further, the influence of previous space
uses was stronger in the summer relative to winter, which is when deer in this
population demonstrated strongest philopatry to their range. Our results suggest that
mule deer update their seasonal range cognitive map in real time and retain long-term
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information about seasonal ranges, which supports the existing theory that memory is
a mechanism leading to emergent space-use patterns such as site fidelity. Lastly, these
findings provide novel insight into how species store and use information over different
time scales.

Keywords: short-term memory, movement ecology, mule deer, step-selection functions, space use, Odocoileus
hemionus, cognition, long-term memory

INTRODUCTION

Animal movement is a fundamental process that underpins the
relationship between species and their environment (Nathan
et al., 2008; Morales et al., 2010). For decades, the study of
animal movement has informed our understanding of important
ecological processes, including patterns of distribution and
abundance (Turchin, 1989, 1991), optimal foraging (Owen-
Smith et al., 2010; Middleton et al., 2018), species interactions
(Schlaegel et al., 2019), and habitat selection (Byrne et al.,
2014; Avgar et al., 2016). By quantifying the factors that drive
animal movement, we can better understand these ecological
processes and improve predictions of when and where we
observe species, which has important applications for species
management and conservation (Jeltsch et al., 2013; Berger-Tal
and Saltz, 2014; Allen and Singh, 2016; Tucker et al., 2018).
Thus, the study of animal movement is central to both basic and
applied ecology.

Animal movement is the direct result of the complicated
interplay between the physiological state of the animal, the
influence of abiotic and biotic environmental factors, and the
constraints of the cognitive and physical capacities of the
individual (Nathan et al., 2008). Animals move to fulfill basic
biological needs that promote fitness (e.g., finding a mate,
locating forage, avoiding risk, etc.), and these movements
are directly influenced by environmental conditions (e.g., the
locations of conspecifics, distribution of resources, predator
abundance etc.; Nathan et al., 2008; Avgar et al., 2013b). Although
the influence of environmental factors has been a primary focus
of movement ecology, in recent years, studies have increasingly
recognized the importance of quantifying the influence of
cognition on animal movement (Schmidt et al., 2010; Avgar et al.,
2013a; Fagan et al., 2013; Bracis et al., 2015; Spiegel and Crofoot,
2016). Cognitive processes, such as learning and memory, are the
mechanisms that allow species to store and use information about
their environment (Shettleworth, 2001). By tracking experience
with their environment, animals can adjust their movements
to better exploit local environments to fulfill biological needs
(Benhamou, 1994). Thus, accurate explanations and predictions
of movement depend on appropriately quantifying the cognitive
capabilities of animals and accounting for the influence of
cognition on movement decisions.

Due to advancements in field technology and analytical
techniques, our ability to infer memory and its effect on
movement of free-ranging animals has improved in recent years
(Fagan et al., 2013). Research integrating cognitive processes into
studies of animal movement has yielded important discoveries
about space-use behavior, habitat selection, and foraging theory

(Van Moorter et al., 2009; Wolf et al., 2009; Avgar et al., 2015;
Bracis et al., 2015). This work has demonstrated that species
use memory to follow annual migration routes (Bracis and
Mueller, 2017; Merkle et al., 2019), and generate and maintain
home range boundaries (Boerger et al., 2008; Van Moorter et al.,
2009; Spencer, 2012). Further, memory can reinforce territoriality
through routine patrolling of territory boundaries (Schlaegel
et al., 2017). Cognition allows species to remember locations
of resources (i.e., spatial memory) and their relative quality
(i.e., attribute memory; Fagan et al., 2013; Merkle et al., 2014).
Species that use memory optimize resource gain by increasing
access to high quality forage and reducing the energetic costs
associated with movement (Mcnamara and Houston, 1985;
Mitchell and Powell, 2012; Merkle et al., 2014; Bracis et al., 2015;
Polansky et al., 2015).

Despite the documented benefits of using memory in making
movement decisions, theory suggests that memory only provides
an adaptive advantage under specific environmental contexts and
the use of memory is limited by physiological constraints (Dukas,
1999; Riotte-Lambert and Matthiopoulos, 2020). Species are
more likely to use memory to make movement decisions in semi-
heterogeneous and semi-predictable environments (Barraquand
and Benhamou, 2008; Boyer and Walsh, 2010; Esposito et al.,
2010; Bracis et al., 2015). When environments are highly
predictable or unpredictable, there is little benefit to memory,
and other factors are more likely to guide movement decisions
including reliance on ingrained behaviors and the transfer
of socially acquired information (Mcnamara and Houston,
1987; Riotte-Lambert and Matthiopoulos, 2020). Furthermore,
processing and storing information in memory induces an
energetic cost, therefore, memory is limited by storage capacities,
and the accuracy and availability of information decays over time
(Dukas, 1999; Burns et al., 2011). Species are regularly exposed
to an abundance of information; therefore, the information that
gets stored in memory must be prioritized by its relevance
and how long it is useful to the individual. Memory can
be compartmentalized into different memory types: short-term
(or working) memory and long-term (or reference) memory
(Howery et al., 1999; Cowan, 2008). Information in short-
term memory decays quickly, meaning new information can
be processed without reaching storage capacity. In contrast,
long-term memory has minimal decay, but exacts a greater
physiological cost for retaining the accuracy of information
(Cowan, 2008). Although uncommon in the animal ecology
literature, a few empirical studies have demonstrated that species
can rely on different memory types when making movement
decisions (Mettke-Hofmann and Gwinner, 2003; Oliveira-Santos
et al., 2016; Vergara et al., 2019).
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The above suggests that the influence of memory on animal
movement will depend on the environmental and physiological
constraints on cognition, and therefore it is important that
we account for how these constraints might limit or promote
how species use memory to make movement decisions. Within
and among species, individuals are likely to rely on memory
differently depending on life stage, season, life history strategies,
internal state (e.g., hunger, reproduction), other animals
(e.g., conspecifics, predation risk), and current environmental
conditions (Mettke-Hofmann and Gwinner, 2003; Sulikowski
and Burke, 2011; Morand-Ferron et al., 2019; Snell-Rood and
Steck, 2019). Furthermore, given these conditions, species are
likely to use memory differently depending on their physiological
capacity, for example relying on different memory types
or experiencing accelerated or slowed decay of information
(Mettke-Hofmann, 2014). Therefore, by studying the conditions
and constraints that influence how and when species use
memory when making movement decisions, we can deepen our
understanding of how animal cognition has evolved and gain a
more mechanistic understanding of how cognition drives habitat
selection, optimal foraging theory, and gives rise to emergent
space-use patterns.

Our objective was to assess the influence of short- and
long-term memory on habitat selection of a migratory mule
deer population (Odocoileus hemionus) when occupying seasonal
ranges. Memory typically cannot be directly observed from
animal movement data, but in several past studies, memory
was inferred by measuring the influence of past experience on
current movement decisions (e.g., return to previously visited
locations; Fagan et al., 2013; Merkle et al., 2014; Oliveira-
Santos et al., 2016; Jakopak et al., 2019). To address our
objectives, we inferred short- and long-term memory effects on
habitat selection from utilization distributions (UDs) measured
from recent (e.g., short-term) and past (e.g., long-term) space
use of deer. We incorporated the UDs, which represented
landscape experience, and current environmental covariates into
step-selection functions, which provided inference to habitat
selection by comparing locations used by animals to those
deemed immediately available to them in a spatially restricted
area (SSF; Fortin et al., 2005; Thurfjell et al., 2014). First, we
aimed to establish if experience with the landscape, relative
to environmental covariates, was an important driver of mule
deer seasonal range movement. Then we assessed the degree
to which covariates representing recent and past experience
(i.e., use) with the landscape influenced mule deer habitat
selection within and between seasons. From these results,
we can gain insight to the underlying cognitive processes
driving seasonal range movement. Mule deer were ideally
suited for this analysis because they display strong fidelity
across multiple spatial scales (e.g., return to locations, repeat
migration routes, and return to seasonal ranges), which
supports the likely role of memory in driving seasonal habitat
selection (Northrup et al., 2016; Jakopak et al., 2019; Merkle
et al., 2019; Sawyer et al., 2019). Furthermore, mule deer
in this system migrate annually between summer and winter
ranges, which divides the experience an animal has with
the landscape and allows for assessment of the degree to

which deer rely on recent compared to past experience when
selecting habitat.

If memory is an important driver of habitat selection,
then covariates representing previous experience should show
stronger effects on habitat selection compared to environmental
covariates alone in both seasons. Further, we can infer the
relative influence of short- and long-term memory on deer
habitat selection based on how deer select for recent experience
(e.g., short-term memory) and past experience (e.g., long-
term memory) with a location. We also expected that deer
would demonstrate stronger selection for familiar locations in
the summer compared to winter because during the summer
deer birth and raise fawns and must maximize forage intake
to cope with a comparatively resource-poor environment on
winter ranges. Thus, we expected that the value of selecting
familiar locations would be greater when there is increased
pressure to maximize access to forage and offspring are most
vulnerable to predation. Further, we expected that past experience
would be more important in the summer based on past work
showing higher fidelity on summer ranges (Northrup et al., 2021;
see Figure 1).

MATERIALS AND METHODS

Study Area
This study took place in the Piceance Basin of northwestern
Colorado, United States, near the town of Meeker (Figure 2).
This area is topographically diverse, and the dominant vegetation
consists of big sagebrush (Artemisia tridentata), and a pinyon
pine (Pinus edulis)-Utah juniper (Juniperus osteosperma)
shrubland complex at lower elevations and a mix of mountain
shrublands, quaking aspen (Populus tremuloides), big sagebrush
and a variety of coniferous trees at higher elevations. The region
experiences warm, dry summers and cold winters, with most
of the moisture falling as snow during the winter. The area is
popular for hunting and over the last 15 years has seen extensive
exploration for and development of natural gas resources
(Northrup et al., 2021). Mule deer in this area are migratory,
moving between low elevation winter range and high elevation
summer range. Deer typically occupy winter ranges between
October and April and occupy summer ranges between May and
September, though this time can vary substantially (Lendrum
et al., 2014; Northrup et al., 2014b).

Mule Deer Data
Adult female mule deer were captured as a part of a larger
research program that took place between January 2008 and
April 2018. Throughout this time, deer were captured during
December and March for a variety of project objectives. For
initial captures, winter range study area boundaries were flown
in a helicopter and deer were captured opportunistically using
net gunning (Krausman et al., 1985). Upon capture, deer were
blindfolded, hobbled, and administered 0.5 mg/kg of midazolam
and 0.25 mg/kg of Azaperone. Deer were then transferred to
a central processing site, where a suite of standard measures
and samples were taken, deer were fit with global positioning
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FIGURE 1 | Annual migration between seasonal ranges effectively resets the experience an animal has with the landscape, allowing for an assessment of the relative
effects of previous spatial experience across multiple scales (i.e., recent experience, measured from current season space use, and past experience, measured from
previous season space use) on current season habitat selection. From the influence of covariates measuring spatial experience and current environmental
conditions, we infer how mule deer store and use information in both their short-term (i.e., recent experience) and long-term (i.e., past experience) memory. We
expected that if memory is an important driver of habitat selection, covariates measuring both types of experience would show stronger effects on habitat selection
than environmental covariates. Summer rangers have greater resource availability than winter ranges, and deer birth and raise fawns during the summer months.
Accordingly, we expected that deer would demonstrate stronger selection for covariates measuring experience in the summer compared to winter, and the influence
of past experience would be greater in the summer.

system radio collars (G2110D Advanced Telemetry Systems,
Isanti, MN, United States) and released on site. Northrup et al.
(2014a) provide more in-depth detail on the capture procedure
and the suite of measures and samples taken. All procedures
were approved by the Colorado Parks and Wildlife Institutional
Animal Care and Use Committee (protocol numbers 17-2008 and
01-2012) and followed the guidelines of the American Society of
Mammalogists (Sikes, 2016).

Between 2010 and 2013, we aimed to track individual deer over
multiple years by recapturing them and replacing collars. In the
years following the initial capture, 40 previously captured deer
were located using very high frequency (VHF) radio telemetry
and captured using net guns. All procedures described above
were followed, but collars were replaced each December. For this
current analysis, we focused on data collected between October
2011 and September 2013. During this time, collars were set to
attempt a relocation every 30 min between October and April
and every hour between May and September. We divided data
into summer or winter range based on a visual assessment of the
migrations of each individual deer because mule deer sometimes
demonstrate irregular movements that other standard methods
of defining migrations, such as net square displacement, would
not accurately capture. We determined that a deer had left their
summer or winter range when they made consistent movement
away from their established range and did not return until the

following season. We similarly determined that a deer had arrived
on their winter or summer range when, after migration initiation,
they showed localized movements in an area that eventually
became part of their range. For the below analyses, we excluded
all locations deemed to be during migration.

General Statistical Framework
We examined the habitat selection patterns of mule deer on
their winter and summer ranges using step-selection functions.
Following Avgar et al. (2016), we generated random movements
by drawing step lengths (the distance between relocations) from
a gamma distribution with mean and standard deviation for each
individual equal to the empirical mean and standard deviation of
step lengths. We drew turn angles (i.e., the difference in bearing
between the previous and current movement) from a uniform
circular distribution. For each used location, we drew 10 available
locations and intersected them with the below environmental and
memory covariates.

Environmental Covariates
Past research on mule deer in this area has found deer to
respond to a number of natural and anthropogenic factors when
selecting habitat (Northrup et al., 2015, 2021). Because our
intent was to understand how previous experience, quantified
through previous space use, influenced deer habitat selection
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FIGURE 2 | Winter (blue) and summer (yellow) ranges for mule deer in the Piceance Basin, Colorado, United States. Map was produced using QGIS 3.6.3 (QGIS
Development Team, 2019. QGIS Geographic Information System. Open Source Geospatial Foundation Project. http://www.qgis.osgeo.org/). Base map by
OpenTopoMap (Kartendarstellung: © OpenTopoMap; http://www.opentopomap.org) under creative common license CC BY-SA 3.0
(https://creativecommons.org/licenses/by-sa/3.0/).

while accounting for other environmental factors, we chose
covariates based on these analyses. Specifically, for winter models,
we assessed habitat selection relative to a terrain ruggedness index
(TRI), elevation (elev), distance to treed edges (edge), snow depth
(snow), and the land cover categories representing barren land
(barren), shrublands (shrub), and grasslands (grass) with treed
land cover as the reference category. For summer models, we
examined habitat selection relative to TRI, elev, and edge as in
the winter models, but also examined the normalized difference
vegetation index (NDVI). Further, because there was little barren
land cover, we combined barren and grass into a single category
(open). In addition, because this area had ongoing active natural
gas exploration and development, we also assessed the response
of deer to the distance to well pads (dpads) and the distance to
roads (drds) for models fit to both seasons.

Covariates Representing Recent and
Past Spatial Experience
To meet our objectives, we aimed to quantify covariates
representing recent and past experience with a location. Previous
analysis of the deer movement data (Northrup et al., 2016)
derived a UD for each individual in our sample by fitting

continuous time correlated random walk models using the
“crawl” package (Johnson et al., 2008; Johnson and London,
2018) in the R statistical software (R Core Team, 2020). These
UDs were calculated at a 5 m × 5 m resolution and provide
an estimate of the probability that an animal had been within a
given 5 m× 5 m cell during the previous year, which we assumed
equated to the relative amount of experience each deer had with
that cell. Because deer migrate each year, the previous year’s UD
should capture their past experience with each seasonal range.
We used UDs fit to winter range data for winter 2011/2012 as a
representation of past experience for habitat selection models (see
below) fit to data from winter 2012/2013 and UDs fit to summer
range data for summer 2012 for habitat selection models fit to
data for summer 2013. We extracted these UD values for every
used and available location and termed this covariate prev_ud.

To quantify recent experience, we undertook a procedure
that calculates metrics equivalent to a daily UD. To do this,
we estimated the probability that a deer had been at a given
used or available location for every day during the current
season prior to the day the focal fix was taken on. To do
this, we followed the same general approach as Northrup
et al. (2016). Using the “crawl” package (Johnson et al., 2008;
Johnson and London, 2018), we fit continuous time correlated
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random walk models to data from each individual and season.
Next, we used these models to predict the location of each
animal for every minute they were on their seasonal range.
Under this approach, for each minute, the model produces a
bivariate normal distribution, which can be used to calculate the
probability that the animal was at any location in the study area
at that minute. By summing over every distribution for each
minute prior to the focal location, we can obtain the probability
that the animal had been at that location previously. We thus
calculated this probability for each used and available location.
To avoid overly weighting very recent experiences, we excluded
distributions from the 24 h prior to the focal location from these
calculations. Further, to ensure that our results were robust to
our choice of the amount of time to exclude, we conducted a
sensitivity analysis by also fitting our models excluding locations
from the previous 7 days. We termed the covariate representing
recent experience curr_ud to indicate that it represents the
current year’s UD to that point in time.

Model Fitting
Previous research in this area has shown mule deer to have
strong differences in habitat selection patterns by time of day
(Northrup et al., 2015). Thus, we split data by summer and
winter range and time of day, with nighttime determined to
be the time between sunset and sunrise. Sunrise and sunset
were calculated using geographical position and time of day.
We then took a tiered approach to model fitting. We expected
recent experience should decay over time because, presumably,
recent experience should be stored in short-term memory, which
has a limited capacity and the availability and accuracy of
information decays quickly (Cowan, 2008; Merkle et al., 2014).
To estimate decay of recent experience, we followed the general
approach of Merkle et al. (2014), who used the following decay
function for memory: 1

1+k × t where k is the decay coefficient,
with larger values equating to faster decay of memory, and
t representing the time since the animal was at a location.
For each used and available location, we applied the decay
function to discount the probability that the animal had been
at a given location for each minute previous to that location.
These probabilities were calculated as described above and after
applying the decay function, we aggregated these discounted
probabilities. For a given used or available location, this approach
provides the probability that the animal had been there previously
during that season, discounted according to the decay function
such that more recent experience could be weighted more. To
find the optimal k value for each individual, we fit individual
models including all of the environmental and experience-based
covariates outlined above, iterating through all possible values
of k between 0 and 1 following the general approach of Merkle
et al. (2014). We estimated k using maximum likelihood in a
two-stage process with the Broyden-Fletcher-Goldfarb-Shanno
(BFGS) optimizer in R. First, a k value was chosen, the probability
values were discounted using the decay function above, and
models were fit using maximum likelihood for the current value
of k (see below for model specification). Then, “optim” was
used to iterate through this process to estimate the value of k
corresponding to the maximum likelihood. In this approach,

k and the selection coefficients are estimated separately. We
attempted to estimate these parameters simultaneously but were
unable to achieve convergence. k parameters were estimated
using this approach separately for each individual animal, with
step-selection functions fit using conditional logistic regression
in the “survival” package in R (Therneau and Grambsch,
2000; Therneau, 2015). In addition, we were interested in
understanding how the importance of both recent and past
experience changed throughout the season. Thus, we fit the
models with an interaction between the landscape experience
covariates and the time since the animal arrived on their summer
or winter range, which provides inference to whether and
how their selection for areas they were familiar with changed
over the season.

After determining the optimal k value for each individual,
we recalculated the recent experience covariate using this value,
which should more appropriately represent a deer’s ability to
remember recently visited locations, and we fit a hierarchical
SSF where all coefficients (i.e., slopes) were allowed to vary
by individual. Prior to model fitting, we calculated pairwise
correlations among all covariates to ensure they were below
0.7 (see Supplementary Information). We fit models using
integrated nested Laplace approximation (INLA) in R (Lindgren
and Rue, 2015) with the addition of the PARDISO solver
(Bollhöfer et al., 2019, 2020; Alappat et al., 2020) to reduce
computation time and followed the guidance and coded examples
in Muff et al. (2020). For comparison, we fit additional models:
one excluding both recent and past experience, one excluding
only recent experience, one excluding only past experience,
and one excluding the environmental covariates. We compared
models using Bayes Factor (Gelman et al., 2013), which we
derived from the marginal likelihood by taking the difference
between complex models and a reference model where no
covariates were included (Gomez-Rubio, 2020). Bayes Factor
represents the strength of evidence provided by the data in favor
of one theory among two competing theories (Kass and Raftery,
1995). All continuous covariates except curr_ud were centered
and scaled by subtracting the mean and dividing by the standard
deviation. Covariates were scaled using means and standard
deviations calculated over all used and available locations for
all individuals. We refit the model with both experience types
and all environmental covariates, but using the curr_ud covariate
calculated excluding the most recent 7 days of experience to assess
the sensitivity of our results to the most recently experienced
locations (note that the entire model fitting process including
the estimation of the decay parameters k was repeated for
these models excluding the most recent 7 days). Due to the
computational requirements, we fit all models using the Cedar
cluster (computecanada.ca, RRG: hyf-453-ab).

RESULTS

We fit models to 29 individual deer in summer and 31 individual
deer in winter that had two complete winters and summers
of data to fit our objectives. No pairwise correlations between
covariates were >0.5 (see Supplementary Information). The
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results of our sensitivity analysis were nearly identical to when
we dropped the most recent 24 h for three out of four models
and fourth model didn’t converge. The coefficients all were in
the same direction, with only minor changes to the magnitude,
except in summer the magnitude of decay.currud increased
considerably, and there were no changes to whether 95% credible
intervals overlapped 0. For these reasons, we report our results
from models excluding the previous 24 h from the covariate
representing recent experience.

The influence on habitat selection from recent experience
decayed for most individuals, with decay being substantially
faster during the summer (Figure 3). For all combinations of
season and time of day, models with both recent and past
experience outperformed models with one type of experience
or no experience at all (Table 1). Across both seasons and time
periods, deer displayed strong selection for areas with which they
had recent experience (locations visited within the same season)
and past experience (locations visited last year), though their
seasonal dynamics varied between winter and summer (Table 2).
During the winter, selection for areas with which deer were
familiar over the short- and long-term was generally constant
across the season (Figure 4). However, during the summer,
selection declined throughout the season (Figure 4). Both recent
and past experience was substantially stronger drivers of selection
during the summer, with effects nearly three times those of
winter (Figure 4).

In both seasons, experience with the landscape appeared
to be stronger drivers of selection behavior than most of the
environmental covariates, having larger magnitude and less
uncertainty than other covariates (Table 2). Deer also showed
strong selection relative to elevation, but the direction of this
effect varied by time of day, with deer selecting for lower
elevations during the day and higher elevations at night in
both seasons. During the summer, few other covariates had
strong influence on selection, but during the winter, at nighttime,
deer showed strong selection for numerous anthropogenic and
landscape features (Table 2). In addition to these selection
patterns, there were some major shifts in coefficient magnitudes
between models fit with and without experience covariates to
the same data. Specifically, in the summer, models with no
experience had coefficient estimates for NDVI that were more
than 3x larger than models with experience, though 95% credible
intervals overlapped in all cases (Table 2; see Supplementary
Information for a table version with credible intervals). There
were similar, though weaker, shifts in land cover covariates for
summer models, but less evidence of such shifts in winter models.

DISCUSSION

Memory is a fundamental component of animal movement
decision-making, and our findings build on the cognitive
movement ecology literature by providing evidence that memory
is an important cognitive process driving mule deer habitat
selection (Merkle et al., 2014; Avgar et al., 2015; Oliveira-
Santos et al., 2016; Bracis and Mueller, 2017; Marchand et al.,
2017). Our results demonstrate that mule deer select for

familiar locations, both from recent and past experience, to
a greater extent than most measured environmental factors.
Although measuring memory directly in observational studies
is difficult, we suggest that these covariates are at least partially
representative of memory. Thus, these findings indicate that mule
deer store information using short- (defined here as information
accrued during the season of analysis) and long-term (defined
as information accrued the previous year) memory. If deer had
no capacity for memory, we would expect that past experience
would only influence habitat selection to the degree to which
it was correlated with current environmental conditions. While
it is possible that experience could represent temporally static
environmental factors not captured in our array of landscape
covariates, past research on this species has documented the
likely use of memory (Jakopak et al., 2019; Merkle et al., 2019),
and thus the re-selection of areas that were previously used is
more simply and logically explained by memory than by animals
repeatedly randomly encountering the same locations. Further,
if deer had a more limited capacity for memory, we expect
they would have selected primarily for recently visited locations,
which would indicate memory is reset when deer leave seasonal
ranges. However, the strong influence of past experience (e.g.,
last season’s UD) and the consistent finding of the importance
of memory when excluding the previous week of data suggests
that mule deer have a strong capacity for long- and short-
term memory.

The strong influence of long-term experience has important
implications for our understanding of the evolution of long-
term memory and migratory behavior (Mettke-Hofmann, 2014).
Species migrate to access seasonally variable resources and being
able to remember information about the location of resources
on seasonal ranges, despite periodic absence, would be critical
for exploiting them efficiently (Aikens et al., 2020). Migratory
species have been shown to have greater capacity to store
and utilize long-term memory, underscoring its importance
in informing long distance movements (Mettke-Hofmann and
Gwinner, 2003; Pravosudov et al., 2006; Mettke-Hofmann,
2014). Conversely, other research comparing short- and long-
term memory found evidence that resident species (e.g., non-
migratory) rely more on short-term memory (Oliveira-Santos
et al., 2016; Vergara et al., 2019). Our results support these past
findings and suggest that both short and long term memory are
critical for allowing migratory species to exploit local resources.
Further assessments of the relationship between memory types
and movement strategies, such as long-term memory and
migration, will provide insight to how cognition and movement
phenomena have evolved.

The roughly equal influence of both recent and past experience
indicates that when mule deer leave seasonal ranges, they
retain a certain level of familiarity that influences their detailed
movement decisions and thus patterns of space use in the
following year. Our findings support several recent papers, which
suggest that memory is an important mechanism generating
emergent space-use patterns of animals (Van Moorter et al., 2009;
Piper, 2011; Spencer, 2012; Avgar et al., 2015). Animals constrain
their space use, which results in home range behavior, site fidelity,
and recursion (Brown and Orians, 1970; Boerger et al., 2008).
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FIGURE 3 | Estimates of short-term memory decay of recently visited locations (i.e., recent experience) for night and day models comparing summer and winter for
individual mule deer in the Piceance Basin, Colorado, United States. The blue line indicates the population level mean.

Environmental conditions partially explain why these patterns
exist, because species are likely to constrain their space use
depending on the availability and quality of habitat and forage
(Mitchell and Powell, 2012), population density (Trewhella
et al., 1988), breeding status (Gaulin and FitzGerald, 1988), and
anthropogenic influence (Martin et al., 2010). However, tracking
experience with a landscape allows species to better exploit
environmental factors (Wolf et al., 2009; Schmidt et al., 2010;
Merkle et al., 2014; Bracis et al., 2015; Forrester et al., 2015). Mule
deer in this system exhibit strong fine-scale fidelity to seasonal
ranges between successive years, especially in the summer
(Northrup et al., 2021). Our results suggest that memory is the
mechanistic driver of philopatric behavior in this population.
These findings further suggest that general movement paths have
been reinforced over successive years and are likely consolidated
into long-term memory, which could explain how philopatric
patterns emerge at broader scales (Owen-Smith et al., 2010;
Merkle et al., 2019). Thus, we propose that long-term memory
is likely the mechanism promoting return to seasonal ranges and
short-term memory allows for deer to alter their habitat selection
based on updated information about dynamic variables in the
landscape (Spencer, 2012).

Theory suggests that memory only provides an adaptive
advantage when the benefit of reusing information outweighs the
cost of retaining it, which occurs most often in environments
that have medium levels of heterogeneity and predictability
(Mcnamara and Houston, 1987; Barraquand and Benhamou,
2008; Fagan et al., 2013; Bracis et al., 2015; Riotte-Lambert
and Matthiopoulos, 2020). As such, we speculate that the
stronger influence of previous experience in the summer, both
recent and in the past, suggests that memory is more valuable

when navigating the summer landscape. This could be a result
of a highly predictable landscape related to resource quality
and predation risk, in combination with increased pressure to
maximize energy stores in the summer. Mule deer birth and
raise fawns at this time, and summer ranges have ample forage
available (Péron et al., 2018). Contrastingly, deer lose substantial
energy stores during the winter due to poor resource availability
(Northrup et al., 2021) and likely prioritize energy conservation.
Thus, we suspect that good habitat during parturition and areas
of high-quality forage are more valuable to remember from year
to year on summer ranges, which would support a strong reliance
on memory as a strategy for selecting habitat (Péron et al., 2018;
Cameron et al., 2020). The lesser influence of experience in
the winter suggests it is physiologically more efficient for deer
to rely on other informational sources, such as conspecifics or
engrained behavior, when moving through a more resource-poor
landscape (Riotte-Lambert and Matthiopoulos, 2020). The strong
influence of experience in the summer can explain previous
observations that deer in this system maintain smaller range
sizes in the summer (Northrup et al., 2016), which further
supports our interpretation of the strong influence of memory
in generating space use patterns. Furthermore, we estimated
individuals experience a faster rate of decay of their short-term
memory of recently visited locations in the summer compared to
winter, which we speculate further supports the stronger reliance
on memory in the summer, because when information is valuable,
capacity limits of short-term memory may be reached at a faster
rate (Spencer, 1992, 2012).

In addition to the above-noted differences between summer
and winter, deer selected less often for recently visited locations as
the summer season progressed but showed relatively consistent
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TABLE 1 | Model comparison using Bayes Factors across season and time of day for hierarchical Step Selection Function models with coefficient estimates (i.e., slopes)
varying by individual, fit to adult female mule deer GPS radio collar data from animals in the Piceance Basin of Northwestern Colorado, United States.

Season Time of day Model Log Marginal Likelihood Bayes Factor

Summer Day use ∼ −1 + env + expR + expP + (1 | Deer) + (env | Deer) + (expR | Deer) + (expP | Deer) −558,344 5,145

use ∼ −1 + expR + expP + (1 | Deer) + (expR | Deer) + (expP | Deer) −559,138 4,351

use ∼ −1 + env + expR + (1 | Deer) + (env | Deer) + (expR| Deer) −559,338 4,151

use ∼ −1 + expR + (1 | Deer) + (expR | Deer) −560,161 3,328

use ∼ −1 + env + expP + (1 | Deer) + (env | Deer) + (expP | Deer) −560,528 2,961

use ∼ −1 + expP + (1 | Deer) + (expP | Deer) −561,551 1,938

use ∼ −1 + env + (1 | Deer) + (Deer | env) −562,310 1,179

use ∼ −1 + (1 | Deer) −563,489 0

Night use ∼ −1 + env + expR + expP + (1 | Deer) + (env | Deer) + (expR | Deer) + (expP | Deer) −399,570 3,945

use ∼ −1 + expR + expP + (1 | Deer) + (expR | Deer) + (expP | Deer) −400,243 3,272

use ∼ −1 + env + expR + (1 | Deer) + (env | Deer) + (expR | Deer) −400,395 3,120

use ∼ −1 + env + expP + (1 | Deer) + (env | Deer) + (expP | Deer) −400,885 2,630

use ∼ −1 + expR + (1 | Deer) + (expR | Deer) −401,277 2,238

use ∼ −1 + expP + (1 | Deer) + (expP | Deer) −401,771 1,744

use ∼ −1 + env + (1 | Deer) + (Deer | env) −402,264 1,251

use ∼ −1 + (1 | Deer) −403,515 0

Winter Day use ∼ −1 + env + expR + expP + (1 | Deer) + (env | Deer) + (expR | Deer) + (expP | Deer) −1,202,517 1,430

use ∼ −1 + expR + expP + (1 | Deer) + (expR | Deer) + (expP | Deer) −1,202,860 1,087

use ∼ −1 + env + expR + (1 | Deer) + (env | Deer) + (expR | Deer) −1,202,887 1,060

use ∼ −1 + env + expP + (1 | Deer) + (env | Deer) + (expP | Deer) −1,203,078 869

use ∼ −1 + expR + (1 | Deer) + (expR | Deer) −1,203,236 711

use ∼ −1 + expP + (1 | Deer) + (expP | Deer) −1,203,469 478

use ∼ −1 + env + (1 | Deer) + (Deer | env) −1,203,570 377

use ∼ −1 + (1 | Deer) −1,203,947 0

Night use ∼ −1 + env + expR + expP + (1 | Deer) + (env | Deer) + (expR | Deer) + (expP | Deer) −1,354,149 4,770

use ∼ −1 + expR + expP + (1 | Deer) + (expR | Deer) + (expP | Deer) −1,354,937 3,982

use ∼ −1 + env + expR + (1 | Deer) + (env | Deer) + (expR | Deer) −1,354,956 3,963

use ∼ −1 + expR+ (1 | Deer) + (expR | Deer) −1,355,963 2,956

use ∼ −1 + env + expP + (1 | Deer) + (env | Deer) + (expP | Deer) −1,356,557 2,362

use ∼ −1 + expP + (1 | Deer) + (expP | Deer) −1,357,471 1,448

use ∼ −1 + env + (1 | Deer) + (Deer | env) −1,357,697 1,222

use ∼ −1 + (1 | Deer) −1,358,919 0

Covariates are defined as environmental (env), recent experience (expR), and past experience (expP).

selection for these locations during winter. We believe this
pattern could best be explained by within season variation in
predation risk (Bracis et al., 2018). We believe at the beginning
of the summer, when fawns are most vulnerable to predation,
deer frequently revisit locations with ample cover to hide
their fawns, which likely stays consistent from year to year.
As fawns become more mobile as the summer progresses, by
rule, deer return to the same location less often (Monteith
et al., 2014; Cameron et al., 2020). Additionally, the value of
forage declines as the summer progresses, potentially causing
the selection of previously visited locations to become less
favorable. We did not have sufficient data to test the relationship
between environmental predictability, resource depletion and
predation risk on selection of familiar locations within and
between seasons (Lendrum et al., 2018), but we suspect
these are the variables driving observed patterns in memory
effects. Furthermore, we acknowledge that because we were
unable to incorporate these variables, selection for habitat
related to environmental predictability, resource quality, and

predation risk could potentially occur absent memory effects.
Thus, we encourage future assessments evaluating the role of
environmental predictability and understanding how changes in
environmental conditions influence when and how species use
memory when selecting for habitat.

The strong influence of landscape experience could have
negative implications for the ability of deer to respond to
landscape change. Previous evaluations of memory suggest that
a strong reliance on this process promotes rigid movement
behavior that doesn’t allow species to respond to change
(Merkle et al., 2015; Sawyer et al., 2019). These findings have
raised concerns that memory could have maladaptive effects
for populations experiencing environmental change related to
anthropogenic disturbance (Andersen, 1991; Morrison et al.,
2021). Thus, the strong reliance of mule deer on familiarity when
selecting habitat suggests that they may not be able to cope well
with the accelerated rates of change being documented in natural
systems (Sih et al., 2011; Beever et al., 2017; Wyckoff et al., 2018).
Alternatively, past work in this system by Northrup et al. (2021)
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TABLE 2 | Posterior means of population-level parameters for summer and winter night/day Step Selection Functions when experience coefficients are included or excluded for adult female mule deer in the Piceance
Basin of Northwestern Colorado, United States.

Covariates Summer Winter

Day Night Day Night

No experience With experience No experience With experience No experience With experience No experience With experience

Barren − − − − −0.094 −0.088 −0.047 −0.039

Dpads −0.055 0.246 −0.225 −0.147 −0.089 −0.085 0.023 0.022

Drds 0.054 0.042 0.133 0.09 0.032 0.022 0.076 0.069

Edge −0.056 −0.044 0.069 0.06 0.009 0.007 0.057 0.055

Elev −0.173 −0.353 0.906 0.753 −0.214 −0.303 1.013 0.874

Grass − − − − −0.099 −0.078 −0.243 −0.22

NDVI 0.309 0.083 0.317 0.072 − − − −

Open −0.172 −0.093 −0.075 −0.037 − − − −

Shrub −0.035 −0.06 −0.012 −0.05 −0.008 −0.006 −0.012 −0.007

snow − − − − −0.01 −0.012 0.039 0.043

TRI 0.138 0.102 0.095 0.029 0.006 −0.006 0.125 0.108

curr_ud − 1.68 − 2.394 − 1.21 − 1.261

curr_ud time − −0.165 − −0.221 − 0.004 − −0.172

prev_ud − 0.508 − 0.546 − 0.226 − 0.365

prev_ud time − −0.058 − −0.023 − −0.011 − 0.011

Models were fit with all coefficients (i.e., slopes) varying by individual. Values in bold are significant effects where the lower and upper 95% credible interval does not overlap 0. The lower and upper 95% credible
intervals were estimated from the quantiles of the posterior distributions (see Supplementary Information). Parameters can only be compared within season and time of day combinations (i.e., no experience vs.
with experience).
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FIGURE 4 | The strength of selection for covariates representing recent- and past experience estimated from population-level parameters from step-selection
functions for mule deer within their winter and summer range across time of day in the Piceance Basin, Colorado, United States.

suggests deer potentially can adapt behaviorally to some forms of
landscape change with minimal demographic effect, but clearly
more research is needed to understand the role of memory in
promoting or restricting adaptability to landscape change.

Memory is complex, and thus our methods have limitations
in providing inference to this process. First, memory is
fundamentally a latent characteristic, and the degree to which
it influences animal behavior can only be inferred (Fagan et al.,
2013). We inferred memory from selection of areas that had been
used in the past, but there are other possible interpretations. As
discussed above, the role of memory in informing movement
decisions may be confounded by selection of resources absent

any significant influence of memory (Oliveira-Santos et al.,
2016). If mule deer revisited specific locations based on their
moment-to-moment perception of resource quality, we might
find similar results, particularly if we were unable to quantify
an important environmental resource in our models, such as
predation risk. Further, mule deer in our system may also draw
on conspecifics (Codling et al., 2007; Jesmer et al., 2018) and
ingrained behavior (Riotte-Lambert and Matthiopoulos, 2020)
to guide movement decisions. However, we did not sample a
sufficiently large proportion of the population to adequately
include variables representing conspecific influence, as well as
the generally low sample size could have influenced our results.
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Further, inclusion of experience tended to reduce the magnitude
of environmental covariate coefficients, which could impact
interpretation of environmental drivers of space use.

However, we believe our results provide reasonably strong
evidence that memory is an important driver of mule deer
habitat selection, and mule deer store and use information
about their environment in short- and long-term memory. There
was little correlation between environmental and landscape
experience covariates (see Supplementary Information) and
models incorporating experience outperformed models with
environmental covariates alone, lending additional support to
previous research, which showed the inclusion of memory
in simulation models was integral for reproducing empirical
movement paths (Bracis et al., 2015; Merkle et al., 2019). Further,
the annual absence of mule deer from seasonal ranges allowed
for more robust inference to the influence of memory type effects
based on how deer select for locations experienced recently (e.g.,
within the same season with decay) or in the past (e.g., the
previous season). Lastly, our estimates of the effects of memory
should be realistic because they are consistent with previous
findings reported for mule deer and other ungulate species,
including the capability for long term retention of information
(Avgar et al., 2015; Jakopak et al., 2019; Merkle et al., 2019;
Cameron et al., 2020) and similar decay rates for short-term
memory (Bailey et al., 1989; Laca, 1998).

Our results further demonstrate the utility of including
experience in the formulation of step selection functions to infer
cognitive drivers of movement (Merkle et al., 2014; Oliveira-
Santos et al., 2016). Our findings demonstrate mule deer reliance
on recent and past experience varied in accordance with both
regional (summer vs winter range) and local (within-range)
conditions, lending insight to when memory is advantageous
and how the influence of memory can lead to the emergence
of space use patterns such as site fidelity. The specific processes
driving this temporal and spatial variation in the use of
memory, however, warrant further investigation. Therefore,
where possible, we encourage future studies to include internal
state variables (e.g., reproductive status) and additional external
factors, such as resource predictability and predation risk in
model formulations to further elucidate processes influencing
when and how species use memory to inform movement
decisions. Examining how and when species use different types
of memory can provide insights to the adaptive advantages of
memory-driven movement and the development of emergent
space use patterns.
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