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Bee pollinators are key components of terrestrial ecosystems. Evidence is mounting
that bees are globally in decline, and species with a higher degree of specialization
are the most vulnerable to local extinction. However, ecological features that could
explain bee specialization remain poorly tested, especially in tropical species. Here,
we aim to determine the most specialized bee species and their associated ecological
traits in tropical plant–bee interaction networks, answering three questions: (1) Which
bees in the interaction networks are specialists? (2) Is body size related to their
role as specialists in interaction networks? (3) Are there phylogenetic relationships
between the bee species identified as specialists? We used fifteen quantitative plant–
bee interaction networks from different Brazilian biomes covering 1,702 interactions (386
bee and 717 plant species). We used the normalized degree (standardized number
of partners) as a metric to determine trophic specialization of bee species. Body size
was estimated by measuring intertegular distance (ITD), i.e., the distance between
the bases of the wings on the thorax. Evolutionary distinctiveness (ED) was used to
quantify species uniqueness, i.e., the singularity of species in the phylogenetic tree.
Relationships between dietary specialism, ITD and ED were assessed using generalized
linear models. We detected 34 specialist bee species (9% of total species), distributed
in 13 genera, and four families. ITD and ED were important variables explaining the
specialization of tropical bee species. Specialists were larger and less phylogenetically
distinct than expected by chance. Based on a large data set covering some of the
main tropical biomes, our results suggest that loss of specialist bees from Brazilian
plant–bee networks could have deleterious consequences for native plant species
preferentially pollinated by large-bodied bees. Moreover, by affecting more evolutionarily
distinct species, i.e., those with fewer extant relatives, the loss of specialist bees will
likely affect few clades but can result on considerable loss of evolutionary history and
phylogenetic diversity in the Brazilian bee communities. The results are important for
decision-making concerning conservation measures for these species and may also
encourage the development of sustainable management techniques for bees.
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INTRODUCTION

Pollination between bees and plants is one of the key mutualistic
interactions structuring ecosystems (Potts et al., 2016). This
interaction is necessary for the reproduction of most plants,
allowing fruit and seed formation in natural areas (Laura et al.,
2013), agricultural lands (Klein et al., 2007), and areas under
recovery (Montoya et al., 2012). Thus, pollinators are essential
for the maintenance of natural communities and agricultural
productivity (Potts et al., 2010, 2016; Vanbergen et al., 2014).
However, several studies have indicated that the abundance and
diversity of bees are declining and that some species are clearly
at risk of extinction (Gallai et al., 2009; Garibaldi et al., 2009;
Lever et al., 2014). In particular, specialist species (i.e., those that
interact with a smaller number of partners) seem to be the most
vulnerable to habitat loss (Bommarco et al., 2010; Aizen et al.,
2012; Ferreira et al., 2020). Bees are considered the main taxon of
pollinators, so understanding bee pollination networks and bee
specialism patterns may provide effective support to conservation
and restoration programs (Hallett et al., 2013).

Specialization is broadly defined as the ability of organisms
to exploit a more restricted set of resources than that of related
lineages (Day et al., 2016). Implicit in this concept is the idea
that the subset of resources exploited is used more effectively
and sometimes exclusively by specialists than by generalists
(Larsson, 2005; Armbruster, 2017). Bees are usually polylectic,
i.e., they collect floral resources from a great diversity of plant
species (Michener, 1979), exhibiting generalist behavior (Ebeling
et al., 2011). Bee specialization on a single food resource is rare
(e.g., González-Varo et al., 2016) and usually, specialist species
depend on generalist partners (see below; Bascompte et al., 2003).
Nevertheless, oligolecty may function for reducing competition
and foraging costs (Armbruster, 2017), and specialist bees can
be key pollinators, i.e., network connectors (hubs) (Olesen et al.,
2007; Romero et al., 2020) and crop pollinators, such as the case of
Peponapis Robertson, 1902 that preferentially visit and pollinate
cucurbit plants (Guzman et al., 2019; see also Cane, 2021).
Therefore, the replacement of specialist species by generalist ones
may have negative consequences on community stability and
resilience (Peralta et al., 2020), as well as ecosystem functioning
(Clavel et al., 2011). Moreover, visiting bees do not always act as
pollinators (Popic et al., 2013), and specific methods are needed
to determine the effectiveness of pollination (e.g., Dafni, 1993).

The theory of complex networks has been used to describe
the structure of interspecific mutualistic interactions and the
role of species within communities (Bascompte et al., 2003).
Some patterns emerge from the analysis of these networks,
such as nestedness, a pattern in which the interactions are
asymmetric, i.e., specialist and generalist species tend to interact
with the generalist ones, characterizing a core of species
(Bascompte et al., 2006; Bascompte and Jordano, 2007; Aizen
et al., 2012). Thus, the analysis of interaction networks is
useful to characterize the level of specialization among species
composing the network (Montoya et al., 2006; Weiner et al.,
2014). However, such network-based approaches to determining
ecological specialization are strongly influenced by sampling
methods, and failure to use standard survey methods can produce

inaccurate assessments of plant–bee interactions (Vázquez and
Simberloff, 2002; Vázquez and Aizen, 2003; Dorado et al., 2011).
For example, in tropical regions, mainly in tropical forests with
high canopies, bee sampling is usually restricted to flowers in the
lower strata of vegetation (Ferreira et al., 2020).

Initially, the generalist and specialist role of species was
related to their abundance (Krishna et al., 2008) but, later
evidence has also shown that morphological traits are important
in determining the interaction patterns of these matrices
(Chamberlain et al., 2010; Gibson et al., 2012). It has been
suggested that similarity in resource use is higher among species
with similar body size (Cortopassi-Laurino et al., 2003; Nogueira-
Ferreira and Augusto, 2007; Rabelo et al., 2014). For instance, in
temperate forests, smaller bees can be more specialized foragers
than larger bees (Smith et al., 2019). The authors suggested
that large bees fly greater distances and thus, encounter and
exploit a wider range of plant species than bee taxa with more
limited dispersal abilities (Smith et al., 2019). Some controversy
may be found, however, when considering bumblebees from
the northern hemisphere. A previous study indicated that
the foraging behavior of some large European species (genus
Bombus Latreille, 1802) is generalist, as these species did not
show fidelity in their interactions with the studied grassland
plants (they can collect pollen from up to three different plant
species during a foraging trip, thus having a more generalist
role) (Leonhardt and Blüthgen, 2012). Another study indicated
high fidelity of interactions between bumblebees and a single
plant species in undisturbed forest patches of North America
(Villalobos et al., 2019). Hence, further studies are required to
clarify the relationship between pollinator body size and diet
specialization, especially in tropical regions where still exists an
important knowledge gap.

In addition to body size, specialist behavior may be related to
the degree of evolutionary relationship between species because
interspecific interactions are largely structured by the degree of
phenotypic complementarity between mutualistic partners (e.g.,
long-tongued bees visit flowers with deep corolla tubes) (Vázquez
et al., 2009). As related species tend to have similar characteristics
due to shared ancestry (Rezende et al., 2007a), they often occupy
similar positions in terms of their interactions, both with regard
to the number of partners with which they interact and to the
functional attributes of their partner species (Hutchinson et al.,
2017). On the other hand, it is likely that competition between
similar individuals is greater, and the speciation process could
take place by selecting different characteristics between species,
allowing them to differentiate their niches (Johnson and Hubbell,
1975). Thus, closer species could also be potentially different in
terms of trophic interactions.

The present study analyzes specialization in interaction
networks between plants and bees in tropical biomes, aiming
to determine: (1) Which bees in the interaction networks
are specialists? (2) Is the body size of bees related to their
role as specialists in interaction networks? (3) Are there
phylogenetic relationships between the bee species identified as
specialists? Answering those questions can help understanding
the ecosystem functioning in the present (but also predict future
global change responses), providing support to decision-make

Frontiers in Ecology and Evolution | www.frontiersin.org 2 July 2021 | Volume 9 | Article 699649

https://www.frontiersin.org/journals/ecology-and-evolution
https://www.frontiersin.org/
https://www.frontiersin.org/journals/ecology-and-evolution#articles


fevo-09-699649 July 22, 2021 Time: 17:25 # 3

Raiol et al. Specialist Bee Species in Interaction Networks

FIGURE 1 | Location of the interaction networks studied. The numbers correspond to the identifiers (ID) in Table 1.

processes concerning pollinator’s conservation and sustainable
management, and identifying pathways for future research on
specialist pollinator taxa in tropical ecosystems.

MATERIALS AND METHODS

Studies conducted in Brazil on interaction networks between bees
and plants were compiled previously (Giannini et al., 2015). All
studies followed standardized sampling procedures suggested by
Sakagami et al. (1967), in which the researcher observes each
plant in a pre-established transect for a fixed time (3–5 min)
and collects all the bees observed using an entomological net,
repeating this procedure monthly for at least one year. The
interaction networks were represented as a set of nodes (species)
connected through links, with each link representing an observed
interaction (Bascompte and Jordano, 2007). We included surveys
that determined the number of bees sampled per plant to
construct fifteen quantitative networks. These networks belong
to some of the most important Brazilian biomes (Figure 1).
The nomenclature and systematic identification of the bees
followed that of Moure’s Bee Catalog1, and plant identification

1http://moure.cria.org.br/

was in accordance with the Missouri Botanical Garden’s Tropicos
information system2.

To answer the first question and identify the specialist bees
in the interaction networks, the following network metrics were
used: (1) Degree, which describes the number of interactions of
a given species with different species; thus, species with lower
degree values are considered specialists because they interact
with few species (Thompson, 2005; Vázquez et al., 2005; Krishna
et al., 2008). (2) Strength, which is the relative frequency of
interaction of a bee species with a plant species; it is represented
as the number of interactions between a bee species and a plant
species divided by the number of visits by all bee species to that
same plant. Thus, specialist bees have lower interaction strength
values (Vázquez et al., 2007; Dormann, 2011; Schleuning et al.,
2011; Mello et al., 2016). (3) Closeness, which is based on the
number of steps on the shortest path (in terms of interactions)
that link a particular species to all other species in the network;
a low closeness value for a species means that it is distant
from most other species in the network, indicating specialization
in interactions (González et al., 2010). (4) Betweenness, which
measures the extent to which a particular species is located
within the shortest paths between two other species, acting as a

2http://www.tropicos.org/
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central connector in the network (Newman, 2003); species with
lower betweenness values are also considered more specialized
(Guimarães et al., 2011). To test whether the four metrics were
correlated, a Pearson’s correlation test was performed. The results
obtained for each metric derived from each network were scaled
ranging from 0 to 1 (using x′ = x – min x/max x – minx
x) to reduce a possible effect of the number of interactions
observed. This procedure better reflects the role of each species
in the network than the raw data, avoiding any trend in the
analysis of the process (Legendre and Legendre, 2012). The four
metrics presented were calculated using the bipartite package
(Dormann, 2019) in R (R Core Team, 2021). We selected the
5% most specialized bees in each network, aiming to determine
the smallest set of species in each network, especially to help in
guiding further studies and conservation programs.

To answer our second question (does body size determine bee
species’ roles as specialists in interaction networks?), we used a
database containing intertegular distance (ITD) measurements
of Brazilian bee species (Borges et al., 2020), which was
complemented in the current study (46% of ITD measures).
ITD is correlated with the body size of bee species (Cane, 1987;
Figure 2), and was used as a predictor variable for the previously
mentioned specialization metrics of the interaction networks.

To answer the third question (are there phylogenetic
relationships between bee species identified as specialists?),
a phylogeny was constructed containing all bee genera with
available data recorded for Brazil, according to the TimeTree
database (timetree.org, access on February 15, 2019). Species
recorded in this study were inserted within the phylomatic
function (Webb and Donoghue, 2005) from the software
PHYLOCOM, version 4.2 (Webb et al., 2008). For tree calibration
by the branch length adjustment (“bladj”) algorithm from

FIGURE 2 | The intertegular distance (ITD) is the distance between the bases
of the wings on the bee thorax (Megachile orba Schrottky, 1913; Photo:
Fernanda Trancoso).

PHYLOCOM, we used median time estimates for internal
nodes, as given by the TimeTree database. The Evolutionary
distinctiveness (ED) metric was used to quantify singularity
of species in the phylogenetic tree (Faith, 1992; Fournier
et al., 2017), being suggested to point out priority species
for conservation (Veron et al., 2017). ED was computed for
all species registered in this study by “evol.distinct” function
using fair portions (Isaac et al., 2007) from the R package
“picante” (Kembel, 2020). Additionally, phylogenetic signal, i.e.,
the tendency that closely related bee species resemble each
other in terms of functionality, was computed as Pagel’s λ and
Bloomberg’s K for the ITD using the “phylosig” function from
the “phytools” R package (Revell, 2021). In both indices, the
null expectation (high phylogenetic signal) assumes Brownian
motion models of evolution (random walk). Pagel’s λ measures
to which degree the shared history of taxa has driven trait
distribution at the tips of the phylogeny (Pagel, 1997, 1999). By
definition, a lambda value of 1 results from a trait distribution as
expected from Brownian motion (high phylogenetic signal), and
lambda values of 0 indicate that there is no phylogenetic signal.
Bloomberg’s K (Blomberg et al., 2003) ranges between 0 and
infinity, with K = 1 indicating Brownian motion evolution. Larger
K indicates stronger phylogenetic signal. “phylosig” computes
p-values to test if observed lambda and K value differ significantly
from 0, i.e., if there is a phylogenetic signal.

To test effects of body size (ITD) and ED on bee species’
specialization (normalized degree), we constructed generalized
linear mixed models (GLMMs), which are considered the best
tool to analyze non-normal data involving random effects (Bolker
et al., 2009). We used beta models in the R package glmmTMB
(Gałecki and Burzykowski, 2013), because the data were scaled
between 0 and 1, as mentioned above. Predictor variables
included ITD and ED, and random variables included network
and bee species, since the location where the networks were
sampled can potentially affect the relationship to be tested,
and some species may be more represented than others in the
networks, which could increase the variability of the metrics.
Candidate models were ranked by Akaike information criterion
(AIC) values using the “dredge” function in the R package
“MuMIn” (Barton, 2020), and selected models were those models
<2 delta AIC of the top model.

RESULTS

The database organized in the present study included 15
interaction networks belonging to three Brazilian biomes
(Atlantic Forests, Cerrado and Caatinga; Table 1 and Figure 1),
containing 1,702 interactions between bees and plants (Figure 3).
Data showed 814 specimens of bees distributed in 4 families,
118 genera, 386 species (Supplementary Material), and 869
specimens of plants distributed in 100 families, 336 genera,
and 717 species.

Correlation analysis of the four network metrics showed
a strong correlation between degree and the other metrics
(r > 0.70, p < 0.0001) and an intermediate correlation between
the other three (strength, closeness, and betweenness) (r < 0.53,
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TABLE 1 | Source of data for the 15 interaction networks analyzed.

ID References Number of
bee species

Number of
plant species

1. Aguiar, 1995 23 37

2. Aguiar, 2003; Aguiar and Zanella, 2005 39 42

3. Andena et al., 2005 59 57

4. Carvalho, 1993 37 19

5. Carvalho, 1999 47 61

6. D’Avila, 2006 10 34

7. Faria, 1994 46 52

8. Faria-Mucci et al., 2003 23 42

9. Lima, 2004 73 66

10. Mateus, 1998 92 58

11. Pedro, 1992 124 123

12. Rêgo, 1998 30 26

13. Silva, 1998; Silva and Martins, 1999 27 23

14. Silveira, 2006 (Costa do Sol) 44 29

15. Wilms, 1995 147 214

p < 0.0001). Thus, degree was used as our measure of specialism
among bee taxa in the following analyses.

Specialist bees (5% of each network with the lowest degree)
selected in the 15 networks totaled 34 species distributed in 13
genera and four families (Table 2). This corresponds to 8.7%
of the total bee species recorded, and to 10.9% of the total bee
genera in the database. The genus Centris (Fabricius, 1804) had
the highest number of specialist bee species (10 species), followed
by Augochloropsis (Cockerell, 1897) (6 species) and Augochlora
(Smith, 1853) (5 species). The genera Anthodioctes (Holmberg,
1903), Bombus and Caenohalictus (Cameron, 1903) had two
species each. Acanthopus (Klug, 1807), Agapostemon (Guérin-
Méneville, 1844), Alepidosceles (Moure, 1947), Ariphanarthra
(Moure, 1951), Augochlorella (Sandhouse, 1937), Callonychium
(Brèthes, 1922), and Ceratina (Latreille, 1802) were represented
with one species each.

The ITD was obtained for 85% of the analyzed bee species.
A phylogenetic tree with all the genera analyzed in this study,
including their branch length, can be found in Figure 4.

The best model of degree among Brazilian bee species
included the predictor variables ITD and ED, with species and
network held as random effects (Table 3). The resulting graphical
representation of the mixed generalized linear model showed that
the greater the specialization, the larger was ITD (Figure 5A).
The result also shows that the greater the specialization, the lower
was ED (Figure 5B). Thus, according to our data, specialist bee
species are larger and less phylogenetically distinct than expected
by chance. Moreover, a significant phylogenetic signal of ITD
was found (Pagel’s λ [p-value] = 0.9999 [<0.001]; Bloomberg’s K
[p-value] = 1.4069 [0.001]).

DISCUSSION

Using 15 interaction networks sampled across a range of
Neotropical biomes, we identified 34 bee species that had
the lowest number of interaction partners, and thus can be

considered the most specialized. Nearly one third of them belong
to the oil-collecting bee genus (Centris). Results also showed that
more specialized bees (i.e., low degree) tend to have larger body
size and lower ED than more generalist species. Also, we found a
phylogenetic signal for body size (ITD). Our study is the first with
such quantitative assessment of specialization for Neotropical
bees, and based on more than 1,700 plant–bee interactions.

Specialist Bees in the Interaction
Networks
The highly specialized mutualistic relationships between the
solitary bees of the genus Centris and families of plants whose
flowers produce oil are well known (Machado, 2004; Mello
et al., 2013; Rabelo et al., 2014; Pacheco-Filho et al., 2015). The
main sources of floral oils with recorded interactions with these
bees belong to the following botanical families: Calceolariaceae,
Iridaceae, Krameriaceae, Malpighiaceae, Orchidaceae, and
Plantaginaceae (Giannini et al., 2013; Martins et al., 2015).
The species Centris burgdorfi (Friese, 1900) was previously
indicated as a specialist on a local scale (Sabino et al., 2019).
Species of some subgenera of Centris (especially Paracentris
and Wagenknechtia) are notably specialists (Giannini et al.,
2013), and two species from the list obtained here belong to
Paracentris [C. burgdorfi Friese (1900) and Centris klugii Friese
(1899)]. For other species cited as specialists, Augochlorella
ephyra (Schrottky, 1910) was classified as rare in interactions
with flowers of the plant Ludwigia sericea (Cambess.) H. Hara
(Onagraceae) in South Brazil (Gonçalves and Buschini, 2017).
One species of the genus Caenohalictus was cited as a specialist
in an interaction network study conducted in South Brazil (Diniz
and Buschini, 2015), although the species quoted was different
from the two species recorded in the present study. Bees in
the genus Alepidosceles (including A. imitatrix Schrottky, 1909)
are all components of an oligolectic clade (Michener, 2007),
therefore demonstrating the strength of the methods applied
here to determine specialist bees from Neotropical interaction
networks. The bee Acanthopus excellens (Schrottky, 1902) is a
cleptoparasite of Centris, subgenus Ptilotopus, although none of
the Centris in this subgenus is specialist in our study. Acanthopus
visits on flowers are likely an unusual event, as they are not
required to provide food for their offspring. For the other species
of bees identified as specialists, there are no published studies
on their mutualistic interactions patterns, demonstrating the
important knowledge gap. Available data are limited to the degree
of rarity, record and frequency of occurrence (Schlindwein, 1998;
Imperatriz-Fonseca et al., 2011; Boff et al., 2013; Mouga et al.,
2015; Gostinski et al., 2016). It is also noteworthy that most of the
specialist species emphasized here exhibit non-eusocial behavior,
for which there are little data available in the literature and/or
an expressive taxonomic impediment, especially for species in
the Halictidae family (16 out of the 34 specialist species belong
to this family).

Specialism and Body Size
The results of the present study also showed that bee
specialization is positively related to body size, i.e., the larger
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FIGURE 3 | The plant–bee interaction network compiled from all the data analyzed from 15 interaction networks surveyed in three different Brazilian Biomes. All
non-specialist bee species are represented in black, all plants in green and all specialist bees and their links are in red. Network plot was generated with Circos
(Krzywinski et al., 2009).

the bee, the higher the specialization. Although these results
contradict two previous studies (Leonhardt and Blüthgen, 2012;
Smith et al., 2019), it is also in accordance to the finds of one
study in undisturbed forests of North America (Villalobos et al.,
2019). The study of Leonhardt and Blüthgen (2012) compared
Apis mellifera L. and two species of Bombus [B. pascuorum
(Scopoli, 1763) and B. terrestres (Linnaeus, 1758)]. Although
Bombus species have large body sizes (Borges et al., 2020), this
variable was not specifically evaluated. The study of Smith et al.
(2019), conducted on forests in the mid-Atlantic United States,
analyzed a much smaller number of bee species (56 species).
This reinforces the importance of the results obtained in the
present study, since they address several tropical and subtropical
climate sites in Brazil, and a large number of species. Warmer

climates might support the evolution of specialist behavior
among pollinators, given the high resource supply and the costs
for resources competition (Classen et al., 2020), which may
explain the opposite relations between broad scale studies from
temperate and tropical climates (see also Orr et al., 2021).

Body size directly influences foraging capacity and resource
exploitation in bees (Rabelo et al., 2015) because larger bees
have a larger flight range (Greenleaf et al., 2007). Our result
may indicate that larger bee species, presenting a greater flight
capacity, can most likely preferentially exploit the most rewarding
food sources and thus, be more prone to specialize in these
sources. Larger body size bees can maximize exploitation of
a sparsely distributed food plant, becoming more efficient at
resource collection on a single species or collection of closely
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TABLE 2 | Specialist bee species selected on 15 Brazilian plant–bee networks
(representing 5% of each network) and their degree.

Family Genus Species Degree

Apidae Acanthopus Acanthopus excellens (Schrottky,
1902)

0.0345

Halictidae Agapostemon Agapostemon chapadensis
(Cockerell, 1900)

0.0175

Apidae Alepidosceles Alepidosceles imitatrix (Schrottky,
1909)

0.0081

Megachilidae Anthodioctes Anthodioctes megachiloides
(Holmberg, 1903)

0.0175

Anthodioctes vernoniae (Schrottky,
1911)

0.0081

Halictidae Ariphanarthra Ariphanarthra palpalis (Moure, 1951) 0.0047

Halictidae Augochlora Augochlora caerulior (Cockerell,
1900)

0.0175

Augochlora foxiana (Cockerell, 1900) 0.0081

Augochlora perimelas (Cockerell,
1900)

0.0172

Augochlora michaelis (Vachal, 1911) 0.0047

Augochlora thalia (Smith, 1879) 0.0047

Halictidae Augochlorella Augochlorella ephyra (Schrottky,
1910)

0.0164

Halictidae Augochloropsis Augochloropsis callichroa (Cockerell,
1900)

0.0192

Augochloropsis cockerelli (Schrottky,
1909)

0.0164

Augochloropsis crassigena (Moure,
1943)

0.0385

Augochloropsis electra (Smith, 1853) 0.0172

Augochloropsis nigra (Moure, 1944) 0.0047

Augochloropsis rotalis (Vachal, 1903) 0.0047

Apidae Bombus Bombus brevivillus (Franklin, 1913) 0.0238

Bombus morio (Swederus, 1787) 0.0238

Halictidae Caenohalictus Caenohalictus curticeps (Vachal,
1903)

0.0047

Caenohalictus incertus (Schrottky,
1902)

0.0172

Andrenidae Callonychium Callonychium brasiliense (Ducke,
1907)

0.0152

Apidae Centris Centris aenea (Lepeletier, 1841) 0.0081

Centris analis (Moure & Seabra, 1960) 0.0081

Centris burgdorfi (Friese, 1900) 0.0152

Centris decolorata (Lepeletier, 1841) 0.0385

Centris discolor (Smith, 1874) 0.0047

Centris ferruginea (Lepeletier, 1841) 0.0152

Centris klugii (Friese, 1899) 0.0192

Centris lutea (Friese, 1899) 0.0152

Centris mocsaryi (Friese, 1899) 0.0081

Centris spilopoda (Moure, 1969) 0.0526

Apidae Ceratina Ceratina paraguayensis (Schrottky,
1907)

0.0435

related plant species than bee species with more generalized
diets, thus gaining a fitness advantage. But this is only possible
in large species that can overcome energetic costs of such
a strategy. In fact, preferences based in nutritional benefits
have already been shown. The amount of amino acids in

pollen seems to influences floral preference in A. mellifera
(Cook et al., 2003); similarly, the ratio between pollen proteins
and lipids affects the preference of bumblebees (Vaudo et al.,
2016). The discrimination capacity presented by bees seems
to have a genetic basis, i.e., certain genes have an effect on
the preference of pollinators and may therefore have played
an important role in floral evolution (Schemske and Bradshaw,
1999). As mentioned above, there are few studies available on
bees, but a previous study involving ants and their interactive
plants showed an equally positive relationship between species
body size and specialization in trophic interaction networks
(Chamberlain and Holland, 2009).

Specialism and Evolutionary
Distinctiveness
The interactions between plants and bees may exhibit
phylogenetic components that direct the preferences of a
group of bees toward a particular group of plants (Pacheco-
Filho et al., 2015). In fact, specialism seems to be an ancestral
trait in bees, since the earliest branches of their phylogenetic
tree include specialists (Danforth et al., 2006). Some bees
developed convergent traits specialized in the exploitation
of floral resources, forming functional groups (Fenster et al.,
2004), especially in highly specialized interactions. One example
is orchid bees (Euglossini), which through coevolutionary
processes exhibit specialized morphological and behavioral
modifications for the collection of aromatic compounds from
orchids flowers (Ramírez et al., 2010, 2011). Body size, as
showed by our results, presented a strong phylogenetic signal
indicating that closely related species tend to resemble each
other considering this trait. This was already showed for insects
(Chown and Gaston, 2010; Pallarés et al., 2019), as well for
vertebrates (Smith et al., 2004; Diniz-Filho et al., 2007). However,
complex interactions between ecological function, environment,
natural history and phylogenetic evolution likely play a joint
role in body size (Smith et al., 2004), and how significant is
specifically the phylogenetic signal in its variation remains
unclear (Chown and Gaston, 2010).

As mentioned earlier, highly specialized mutualistic
interactions are rare in nature (Hoeksema and Bruna, 2000),
and our study showed that species with more specialized
behavior have lower ED in the bee phylogeny. Together with the
concentration of most specialist within few genera from mainly
two families, this may indicate that, depending on how these
species respond to environmental changes (climatic, land use,
for example), the loss of evolutionary history and phylogenetic
diversity within certain clades would be much higher than if
there was a more heterogeneous distribution of specialist species
in the phylogeny. Rezende et al. (2007b) tested whether simulated
coextinctions in plant–animal mutualistic interaction networks
involved phylogenetically related species more frequently
than expected at random. The authors obtained evidence that
phylogeny is partially responsible for the propensity of species to
interact in more than one-third of the analyzed networks and that
phylogenetically related species tend to interact with a similar set
of species and tend to have similar roles in interaction networks.
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FIGURE 4 | Phylogenetic tree using all the bee genera analyzed from 15 interaction networks surveyed in three different Brazilian Biomes.

Our results also showed that none of the 34 specialist
bee species highlighted here exhibit eusocial behavior. Social
species (some degree of sociality, i.e., from cooperative working
to eusociality) represent 10–15% of all extant bees and are

usually regarded as generalists (Michener, 2007), however, this
may not be true for all species. Worldwide, few social species
have been studied (Smith et al., 2019), being bumblebees and
honeybees the most represented taxa. Solitary species represent
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TABLE 3 | Model selection results based on Akaike information criterion (AIC) for
beta GLMMs of bee species’ specialization, as measured using degree (D).

Model Structure AIC 1AIC Wgt

1 D ∼ ITD + ED −2165.43 0.00 0.87

2 D ∼ ED −2160.90 4.53 0.09

3 D ∼ ITD −2158.61 6.81 0.03

NULL D ∼ 1 −2157.44 7.98 0.02

Table shows that Model 1 is the most parsimonious model (1AIC < 2).
Predictor variables included body size as measured using intertegular distance
(ITD), and evolutionary distinctiveness (ED). Random effects included network
and bee species.

FIGURE 5 | Graphical representation of the degree (number of partners) in
relation to the (A) ITD and (B) evolutionary distinctiveness (ED) of the selected
model (Model 1 – see Table 3). A lower degree value indicates higher
specialization. Shaded areas represent 95% confidence intervals.

85% of extant bees (Michener, 2007) (they are about 75% of the
species in our study), but despite being the majority (Wcislo
and Cane, 1996), the knowledge on solitary species biology is
even more scarce. Generalist trends within eusocial bees have

been hypothesized as a response to the (1) high number of
individuals in the nest (high demand for resources in the nest
and high abundances in the field), (2) eusocial colonies are active
throughout the year (especially in tropical zones), and (3) labor
division supports a higher diversity of interactions (independent
search combined to recruitment foraging behavior) (Lichtenberg
et al., 2010; Maia et al., 2019). From the 13 genera of specialist
bees identified in the present study, one is a cleptoparasitic
(Acanthopus), one is a representative of an oligolectic and
solitary clade (Alepidosceles), four are solitary (Anthodioctes,
Ariphanarthra, Centris, and Ceratina) and seven present
some degree of sociality, from the formation of aggregated
nesting sites (Caenohalictus and Callonychium), communal
behavior (Agapostemon and Augochlora), variable social behavior
(Augochlorella and Augochloropsis), and the primitively eusocial
bumblebees (genus Bombus) (Janjic and Packer, 2003; Alves dos
Santos, 2004; Coelho, 2004; Michener, 2007; Gonçalves, 2016;
Gonçalves, 2019). Although most specialist species are solitary,
some are also social, as found in undisturbed forests of north
America (Villalobos et al., 2019); thus, both social and solitary
bees are prone to adopt specialist behavior (Classen et al., 2020).

Specialism apparently has multiple independent evolutionary
origins, being more common on Colletidae, Andrenidae,
Megachilidae, and non-social Apinae, but most genera within
these families contain also generalist species (Wcislo and Cane,
1996). Multiple drivers are likely related to trophic specialism
on both social and solitary bees, such as, a larger or smaller
suit of foraging behaviors (Portman et al., 2019), the plasticity
to respond to floral resource coverage (Petanidou et al., 2008;
Fründ et al., 2010; Baude et al., 2016; Kelly and Elle, 2021),
seasonal or phenological change of nutritional value on available
floral resources (Seitz et al., 2020), resource competition (Johnson
and Hubbell, 1975; Sáez et al., 2017) specially related to nectar-
robbing processes (Irwin et al., 2010), and also, can be based
on the biology of individual-level interactions and not only
on species-level (Brosi, 2016; Smith et al., 2019). Since bees
are a megadiverse group (Orr et al., 2021), further studies
are still necessary for understanding the roles of sociality and
specialization on foraging behavior and species evolution.

Caveats and Future Steps
As previously stated, it is necessary to consider that
methodological survey biases may interfere with the results
obtained here, especially because high canopy forests cannot
be surveyed using the standard methodology analyzed. There
remains a big gap regarding studies of interaction networks
with standardized methods in tropical regions, as well as
studies on phylogenetic and functional traits, which makes
comparisons even more difficult. However, the present work is
an important contribution considering current empirical data
in tropical regions, and aims to help pave the way for a deeper
understanding of the mechanisms driving specialization patterns
in tropical environments.

Future studies should prioritize new surveys of plant–
bee interaction in places not yet sampled and test other
interaction network metrics to identify specialist species
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(e.g., Blüthgen et al., 2006; Kaiser-Bunbury and Blüthgen, 2015;
Vargas et al., 2017). They also should deepen the ecological
knowledge on bee species here identified as specialists to help
devise conservation programs. A possible investigation is to
determine if specialism is related to bee phenology and flight
activity period. Additionally, it would be important to determine
the geographical distribution of specialist species to protect their
natural habitats, ensuring future habitat availability. Studies that
involve conservation genetics for maintenance of the genetic
viability of natural populations of specialist species are also
urgently required.

CONCLUSION

Based on a data set covering some of the main tropical biomes,
we demonstrate that interaction network metrics are useful for
identifying the bees that have specialized interactions with plants
and that these species have a larger body size and lower ED. These
species deserve attention because they act as effective pollinators
and are more vulnerable to environmental change. Our results
can serve as support to decision-making and the implementation
of conservation measures for these species, and may also
encourage future studies. Given increasing human impacts on
tropical ecosystems, evidence-based approaches to conserving
specialist bees are urgently needed to safeguard their populations
and functions in tropical plant–pollinator communities.
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