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The impacts of extreme heat events are amplified in cities due to unique urban thermal
properties. Urban greenspace mitigates high temperatures through evapotranspiration
and shading; however, quantification of vegetative cooling potential in cities is often
limited to simple remote sensing greenness indices or sparse, in situ measurements.
Here, we develop a spatially explicit, high-resolution model of urban latent heat flux
from vegetation. The model iterates through three core equations that consider urban
climatological and physiological characteristics, producing estimates of latent heat flux
at 30-m spatial resolution and hourly temporal resolution. We find strong agreement
between field observations and model estimates of latent heat flux across a range of
ecosystem types, including cities. This model introduces a valuable tool to quantify the
spatial heterogeneity of vegetation cooling benefits across the complex landscape of
cities at an adequate resolution to inform policies addressing the effects of extreme
heat events.
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INTRODUCTION

Urban areas make up only a small fraction of global land area (<3%; Liu et al., 2014), but have a
disproportionately large influence on human quality of life and well-being. Cities are home to the
majority of the world’s population (Grimm et al., 2008) and continue to grow in both spatial extent
(Seto et al., 2012) and population (United Nations Department of Economic and Social Affairs
Population Division, 2018). Urbanization often leads to environmental degradation, prompting
cities to implement policies to ameliorate the environmental impacts. Such policies, however,
are currently limited by a dearth of actionable urban ecological data and theory to implement
demonstrated best practices (Zhou et al., 2019).

Urbanization disrupts the background surface energy balance via higher amounts of impervious
surface area (ISA), increased thermal admittance of surface materials, lower albedo due to the
presence of buildings and urban canyons, and fluxes of anthropogenic heat from buildings and
automobiles (Oke et al., 2017). In many regions, the modified thermal characteristics of the urban
landscape result in excessive heat, thermal discomfort of residents, and an urban heat island (UHI)
effect, where temperatures within the city tend to exceed those of local rural environments (Taha,
1997). Historically, the primary driver of extreme urban daytime temperatures has been thought
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to result from decreases in daytime latent heat flux (λE)
due to higher fractions of ISA, less vegetation, less moisture
availability, and therefore less evapotranspiration (Carlson and
Boland, 1978; Taha, 1997). Novel attribution methods evaluating
the component contributions of net radiation, aerodynamic
resistance, the Bowen ratio (or ratio of sensible heat flux to λE),
and heat storage provide evidence supporting the theory that the
daytime UHI intensity is mostly controlled by variations in the
capacity of urban and rural environments to evaporate water (Li
et al., 2019). The UHI is often cited as grounds for improving
urban heat resilience but is not necessarily a phenomenon that
requires mitigation due to the dependence of UHI magnitude
on the background rural conditions (Martilli et al., 2020). For
example, some cities that do not experience a large daytime
UHI (e.g., Phoenix, AZ, United States; Chow et al., 2012) still
experience extreme summer temperatures. Instead, urban heat
mitigation should focus on absolute temperature reduction.
Nonetheless, the role of evapotranspiration in moderating
extreme heat in cities points to municipal greening initiatives as
promising pathways for urban heat mitigation.

Cities are warming at a faster rate than their rural counterparts
(Fitzpatrick and Dunn, 2019) with increases in the magnitude
and frequency of extreme weather events. Excessively high
temperatures can increase electricity demand (McPherson et al.,
1994; Ruijven et al., 2019), induce vegetation stress (Wahid et al.,
2007; Reinmann and Hutyra, 2017), and represent a critical risk
factor for human mortality (Basu, 2009; Gasparrini et al., 2015).
Many city governments have undertaken efforts to increase
canopy cover (Roman, 2014) to offset local climate changes
driven by urbanization. Common surface materials found in
the urban environment are impervious and do not retain much
moisture for evaporation. Vegetation, however, can be used as
a tool to cool the urban environment via evapotranspiration.
When plants open their stomata to take up carbon dioxide (CO2),
they simultaneously release water vapor in a process that utilizes
energy for the conversion of liquid water to a vapor state, cooling
the plant and the air around it. Remote sensing observations
reveal an inverse relationship between surface temperature and
the Normalized Difference Vegetation Index (Tiangco et al.,
2008) and field experiments have shown that rooftop gardens can
reduce the surface temperature of buildings and the air around
them (Wong et al., 2003). Ziter et al. (2019) found the proportions
of canopy cover and ISA to be interactive drivers of urban
temperature variation. While previous research has established
the potential for vegetative cooling in urban environments, less
attention has been given to quantifying evapotranspiration rates
and the corresponding λE variations across entire cities.

Direct measurements of λE at discrete locations are
commonly made using eddy covariance flux towers. However,
this technique assumes uniform vegetation canopies on flat
terrain (Munger and Loescher, 2004). The heterogenous
landscape associated with cities often violates some assumptions
embedded in eddy covariance methodologies, making urban
measurements difficult. Consequently, direct measurements of
λE in urban areas are often made using tree-level measurements
of evapotranspiration. While this can be done by taking leaf-level
measurements of transpiration rates that are then scaled to the

entire canopy, studies more commonly use measurements of sap
flux rates in trees (Pataki et al., 2011; Winbourne et al., 2020).
Sap flux measurements provide an integrative measure of water
use and transpiration yielding important information about the
energy balance of individual trees. Modeling approaches are
necessary, however, to capture the spatial variability in λE across
larger areas of interest.

The Penman-Monteith model (Monteith, 1965) is a
commonly used approach to estimate λE based primarily
on meteorological conditions and the capacity of the land surface
to transfer water into the lower atmosphere. Recent Penman-
Monteith applications have started to focus on urban areas (Liu
et al., 2017; Zipper et al., 2017; Zhang et al., 2018; Wang et al.,
2020), incorporating the unique climatological properties of
cities by including the UHI (Zipper et al., 2017) and spectral
mixture analysis to consider the unique physical structure of
urban areas (Wang et al., 2020). Results show higher atmospheric
demand for water in areas with higher amounts of ISA and
alleviation of the UHI in regions with high evapotranspiration
intensity (Zipper et al., 2017; Wang et al., 2020). Other models
exist to partition surface energy fluxes in cities, however,
the International Urban Energy Balance Comparison Project
(Grimmond et al., 2010) found that the most commonly used
models had the poorest performance in modeling the λE
component of the surface energy balance and highlighted the
importance of accurate representation of vegetation in correctly
modeling the partitioning of turbulent fluxes. The focus on
quantifying evapotranspiration in urban areas is advancing our
knowledge of the surface energy balance within cities; however,
urban vegetation exhibits unique physiological dynamics that to
our knowledge have not yet been captured in previous studies
(Winbourne et al., 2020).

Urban vegetation tends to grow at accelerated rates compared
to rural vegetation (Briber et al., 2015; Smith et al., 2019),
likely due to a combination of increased light availability due
to open grown conditions, higher nitrogen (Rao et al., 2014;
Decina et al., 2017) and phosphorus (Hobbie et al., 2017; Decina
et al., 2018) deposition rates, higher surface CO2 concentrations
(Brondfield et al., 2012), lengthened growing seasons (Melaas
et al., 2016) and in some cases, higher water availability
(McCarthy and Pataki, 2010; Bijoor et al., 2011). Faster plant
growth has important effects on stomatal conductance, the
process governing the exchange of water vapor between the
biosphere and the atmosphere, due to the strong coupling
between the processes of photosynthesis and transpiration.
Studies of the relationship between stomatal conductance and
temperature in controlled experiments come to inconsistent
conclusions (Weston and Bauerle, 2007; Teskey et al., 2014;
von Caemmerer and Evans, 2015; Urban et al., 2017). While
similar urban studies are rare, Winbourne et al. (2020) found
a stronger positive relationship between stomatal conductance
and temperature in urban versus rural settings with observations
of persistent stomatal conductance in an urban maple tree at
temperatures in excess of 30◦C and vapor pressure deficits
(VPD) greater than 2.5 kPa. Furthermore, Esperon-Rodriguez
et al. (2020) found evidence of urban tree adaptation to climate
via plasticity in drought tolerance traits, with urban trees of
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the same species exhibiting more drought tolerance than rural
trees. This suggests that urban trees may have the ability to
acclimate to the extreme growing conditions found in the urban
environment, underscoring the role of urban vegetation in
providing temperature relief during extreme heat events.

Here, we introduce the Vegetation Photosynthesis and
Respiration Model Latent Heat module (VPRM-LH) – a
spatially explicit, remote sensing-driven model to produce hourly
estimates of urban λE at 30 m spatial resolution. In contrast
to frequently used vegetation indices characterizing the extent
of urban greenspace, VPRM-LH explicitly includes information
about the function of urban greenspace and its variation across
space and time. VPRM-LH outputs are particularly relevant to
the implementation of nature-based climate solutions in cities
due to a specific focus on vegetation contributions to λE. We find
strong agreement between field observations and model estimates
of λE across a range of ecosystems and urbanization intensities,
highlighting VPRM-LH as an effective tool in quantifying the
spatial heterogeneity of vegetation cooling benefits within cities.

METHODS

As an overview, VPRM-LH iterates through three core equations
that consider urban structural, climatological, and physiological
characteristics. Surface conductance of water vapor is estimated
as a function of photosynthesis and VPD using the Urban
Vegetation Photosynthesis and Respiration Model (VPRM)
(Mahadevan et al., 2008; Hardiman et al., 2017) and Medlyn
stomatal conductance model (Medlyn et al., 2011). The Penman-
Monteith model is used to produce estimates of λE, with
meteorological inputs downscaled to 30 m resolution based
on empirical relationships between ISA and temperature/VPD
(Wang et al., 2017). We present the necessary model equations
and data specifications to apply the VPRM-LH framework
(summarized in Supplementary Table 1). Model equations were
executed in R version 3.6 (R Core Team, 2020).

Model Description
Vegetation Photosynthesis and Respiration Model
We use the VPRM hourly carbon exchange as a means to estimate
net photosynthesis and eventually stomatal conductance.
Photosynthesis is defined as the gross biosphere-atmosphere
ecosystem exchange (GEE; µmol CO2 m−2 s−1) of CO2 and is
estimated as a function of incoming photosynthetically active
radiation (PAR) using a modified version of the Urban VPRM,
introduced in Hardiman et al. (2017). The first of three core
equations in VPRM-LH is:

GEE = ∧ · Tscale · Pscale ·Wscale · EVI ·
1

1+ PAR
PAR0

· PAR (1)

where Tscale, Pscale, and Wscale are dimensionless scaling terms
ranging from zero to one describing the influence of air
temperature, phenology, and moisture on photosynthesis. 3 and
PAR0 are ecosystem-specific parameters describing the light-use
efficiency of vegetation and half-saturation value of GEE as a
function of PAR. EVI is the enhanced vegetation index.

For rural applications, Tscale is calculated following
the equations within the original VPRM parameterization
(Mahadevan et al., 2008) as:

Tscale =
(T − Tmin)(T − Tmax)

(T − Tmin)(T − Tmax)− (T − Topt)2 (2)

where T is the air temperature, Tmin is the minimum temperature
for photosynthesis, Tmax is the maximum temperature for
photosynthesis, and Topt is the ecosystem-specific optimal
temperature for photosynthesis. For urban applications, however,
the Tscale equation is used for temperatures less than 20◦C, but
is set to one for all temperatures greater than 20◦C to account
for acclimation of urban vegetation to warmer temperatures. Our
field observations of sap flux indicate that stomatal activity does
not shut down in urban trees at temperatures up to 35.5◦C,
the highest observed temperature in the measurement period
(Supplementary Figure 1). In this model, we set the maximum
temperature for photosynthesis in both urban and rural pixels to
40◦C. Pscale captures the impact of leaf age on vegetation activity
and is calculated as:

Pscale =
EVI − EVImin

EVImax − EVImin
(3)

where EVImin and EVImax are the minimum and maximum EVI
observed during the growing season.

Wscale is a function of the Land Surface Water Index (LSWI),
which has been shown to be effective in monitoring vegetation
water content (Maki et al., 2004; Gu et al., 2008), and is
calculated as:

Wscale =
1+ LSWI

1+ LSWImax
(4)

where LSWImax is the maximum LSWI observed during
the growing season.

Ecosystem respiration, required to estimate net
photosynthesis (An; µmol CO2 m−2 s−1) at the leaf level,
is calculated as:

Reco = T · α+ β (5)

where T is the air temperature (◦C), α is the sensitivity of Reco
to T, and β is the minimum value that Reco can take on (µmol
CO2 m−2 s−1). Leaf respiration typically accounts for 8–12% of
ecosystem respiration (Tang et al., 2008) and is approximated to
be 10% of Reco. Therefore, net photosynthesis of the canopy is
estimated as:

An = GEE− 0.1 · Reco (6)

VPRM driver data come from publicly available remote
sensing and modeling products. EVI and LSWI are calculated
at 30 m resolution using Landsat 7 and Landsat 8 Tier 1
Surface Reflectance products retrieved from Google Earth Engine
(Gorelick et al., 2017; Dwyer et al., 2018). Using data from two
Landsat sensors allows for EVI to be obtained every 8 days.
Daily EVI values are interpolated between collection dates using a
spline function (Supplementary Figure 2). PAR data come from
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the Geostationary Operational Environmental Satellite (GOES;
EUMETSAT OSI SAF, 2021b) 16 which provides high spatial
(0.05◦ × 0.05◦) and temporal (hourly) resolution datasets of
incoming shortwave radiation (SW; W m−2) to North America.
In our study, PAR (µmol m−2 s−1) is approximated to be
SW/0.505 (Mahadevan et al., 2008). Hourly temperature data
come from the Rapid Refresh analysis product (RAP; Benjamin
et al., 2016) at a native resolution of 13 km× 13 km. Temperature
data are adjusted as a linear function of ISA (MassGIS, 2019) and
hour of year using the coefficients derived in Wang et al. (2017)
and methods described in Hardiman et al. (2017).

Medlyn Stomatal Conductance Model
Given estimates of photosynthesis, surface conductance at 30 m
resolution is estimated using the Medlyn et al. (2011) as:

gs = g0 + 1.6 · (1+
g1

δ
) ·

An
cs

Patm

(7)

where gs is the surface conductance (µmol H2O m−2 s−1), g0 is
the minimum surface conductance (100 µmol H2O m−2 s−1),
g1 is a unitless plant functional type dependent parameter that
captures the sensitivity of surface conductance to photosynthesis
rate (de Kauwe et al., 2015), δ is the VPD (kPa), An is net
photosynthesis (µmol CO2 m−2 s−1), cs is the partial pressure of
CO2 (40.53 Pa), and Patm is the atmospheric pressure (101325 Pa).
Patm and cs are held constant due to little sensitivity of model
outputs to variations in the values. δ is calculated from RAP
temperature and relative humidity, where values are adjusted to
account for urban heat and dry islands as a linear function of
ISA and hour of year using the coefficients derived in Wang et al.
(2017).

Penman-Monteith Model
Given estimates of surface conductance, λE (W m−2) is
calculated using the Penman-Monteith model as:

λE =
1(Rn − G)+ ρacp(δ)ga

1+ γ
(

1+ ga
gs

) (8)

where λ is the latent heat of vaporization of H2O (2260 J g−1), E is
the mass H2O evaporation rate (g s−1 m−2), 1 describes the rate
of change of saturation specific humidity with air temperature (Pa
K−1), Rn is the net radiation balance of the surface (W m−2), G is
the ground heat flux (W m−2), ρa is the dry air density (1.275 kg
m−3), cp is the specific heat capacity of air (1005 J kg−1 K−1), δ

is the VPD (Pa), ga is the atmospheric conductance (m s−1), gs
is the surface conductance (m s−1), and γ is the psychrometric
constant (66 Pa K−1).

1 is calculated following the methods outlined in Allen et al.
(1998) as:

1 =
4098[0.6108 exp ( 17.27T

T+237.3 )]

(T + 237.3)2 (9)

where T is the ISA-adjusted air temperature. Rn is calculated as:

Rn = (1− α) K ↓ +L ↓ −(εσT4
s + (1− ε)L ↓) (10)

where α is the albedo (Trlica et al., 2017), K↓ is incoming
shortwave radiation (W m−2; GOES-16), L ↓ is incoming
longwave radiation (W m−2; EUMETSAT OSI SAF, 2021a), ε is
the surface emissivity (Estimated to be 0.95 in urban areas; Oke
et al., 2017), σ is the Stefan-Boltzmann constant (5.67 × 10−8 W
m−2 K−4), and Ts is the surface temperature (K; RAP). G is
approximated as 10% of Rn. ρa and cp are held constant as the
model outputs show little sensitivity to variations in their values
(Supplementary Figure 3). Previous work found λE estimates
to be relatively insensitive to variation in ga within the range of
0.010–0.033 m s−1 (Zhang and Dawes, 1995), consistent with
values measured in city canopies (Chen et al., 2011; Ballinas
and Barradas, 2016). We use the constant values of 0.033 and
0.010 m s−1 for forests/cities and croplands, respectively, as
applied in Zhang et al. (2008).

Model Validation
Rural Validation
Vegetation photosynthesis and respiration model latent heat
was validated across a range of rural ecosystem types. Three
dominant North American land covers – deciduous broadleaf
forest (DBF), evergreen needleleaf forest (ENF), and croplands
(CRP) – were chosen as validation sites. Eddy covariance flux
tower λE measurements were compared to model estimates in
a 90 m × 9 0m grid (10 pixels) centered on the flux tower for
the most recent full year of available data (2017 for ENF, 2018
for DBF and CRP).

The Harvard Forest (AmeriFlux ID: US-Ha1) in MA,
United States was the validation site for DBF and is dominated
by red oak (Quercus rubra) and red maple (Acer rubrum;
Munger, 2021). The Howland Forest in Maine, United States
(AmeriFlux ID: US-Ho1) was the validation site for ENF and
is dominated by red spruce (Picea rubens) and eastern hemlock
(Tsuga canadensis; Hollinger, 2021). The Nebraska Agricultural
Research and Development Center (AmeriFlux ID: US-Ne1) in
NE, United States was the validation site for CRP and is an
irrigated maize field (Suyker, 2021).

Urban Heatwave Modeling and Validation
λE was modeled across Boston, MA, United States during mean
and heatwave conditions during the summer of 2018. Mean
conditions were modeled during a 6-day period from July 10–
July 15, 2018 where the mean air temperature across the modeling
domain was 23.1◦C, approximately equal to the mean 2018 6-
day rolling average temperature during June, July, and August
(JJA; 23.0◦C). Heatwave conditions were modeled during a
6-day heat event from August 2–August 7, 2018 where the
mean air temperature across the modeling domain was 28.7◦C
(Supplementary Figure 4).

Validation of urban ecosystem models can be difficult due
to limited field observations. Here, outputs were validated by
modeling λE in five pixels ranging from 47 to 99% ISA containing
trees outfitted with sap flux sensors between July 18 and
September 26, 2019. Details on sap flux sensor methodology are
described in Jones et al. (2020). Validation trees were in healthy
condition and included two sugar maples (Acer saccharum),
two Norway maples (Acer platanoides), and one red maple
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(Acer rubrum). λE (W m−2) was estimated from sap flux
measurements by estimating the rate of transpiration (g H2O s−1

m−2) via multiplying sap flux density (g H2O cm−2 s−1) by the
active sapwood area (the fraction of the basal area cross-section
that is active xylem; cm2) and dividing by the crown area of the
tree (m2). λE (W m−2) was then computed as the transpiration
rate multiplied by the latent heat of vaporization of H2O (2260 J
g−1). The active sapwood area of the tree was estimated from
species-specific allometric equations (Wullschleger et al., 2001;
Gebauer et al., 2008). Statistical analyses were conducted in R
version 3.6 (R Core Team, 2020).

RESULTS

Rural λE
We ran VPRM-LH for a full year in three rural ecosystems and
compared outputs with eddy covariance flux measurements of
λE. We find strong agreement between modeled and measured
λE across a range of time scales, especially during the summer
months (defined as JJA; Figure 1). Disagreement during the
dormant season is likely due to a higher proportion of λE from
evaporation not related to stomatal activity (e.g., evaporation
from soils), rather than direct fluxes via transpiration. Modeled
and measured λE show typical seasonal patterns with high
rates during the warmer growing season and low rates during
the cooler dormant season (Figures 1A–C). Modeled versus
measured λE are of the same order of magnitude at hourly
and daily time scales. Mean diurnal patterns in λE, including
afternoon peaks and nighttime lows, are successfully captured by
VPRM-LH (Figures 1D–F). JJA comparisons of hourly λE show a
high correlation (R2 values 0.83, 0.75, and 0.89 for DBF, ENF, and
CRP, respectively; Figures 1G–I). The accuracy of VPRM-LH is
comparable to the accuracy of VPRM estimates of net ecosystem
exchange of CO2 (NEE) as the R2 values associated with hourly
estimates of NEE for the same ecosystem types as reported in
Mahadevan et al. (2008) are 0.83, 0.65, and 0.83 for DBF, ENF,
and CRP, respectively.

Urban λE
λE across Boston varied substantially, with higher λE in the
more vegetated portions of the city and lower λE in the more
impervious portions of the city (Figure 2A). λE generally
increased with temperature, except for cloudy days where λE was
limited by available incoming solar radiation (Supplementary
Figure 4). During the 6-day heatwave event, λE averaged
85.6 W m−2 and was approximately 17% higher than during
the 6 days representing mean summer conditions (73.1 W m−2).
Daily maximum λE ranged from 135.4 W m−2 on a cloudy
day to 334.5 W m−2 during the warmest day in the study
period. For reference, the maximum estimated λE during JJA
at the DBF site, located approximately 100 km west of Boston,
was 486.4 W m−2.

The model modifications intended to capture urban λE
dynamics were evaluated by comparing model estimates of λE in
a subset of five pixels in Boston, MA, United States to coincident
λE estimates derived from sap flux measurements within the
pixels. Hourly field and model estimates of daytime λE show

a similarly strong agreement with the rural model application
(R2 = 0.80) across a range of urbanization intensities and tree
species (Figure 2B).

In general, λE was lower in pixels with higher ISA (Figures 2B,
3A), however, for a given EVI greenness the λE increased
with ISA due to urban heat and dry island impacts on local
meteorological conditions (Figure 3A). For example, for all pixels
where EVI = 0.70 (n = 912), the average 14:00 EDT λE ranged
from 219.1 to 249.7 W m−2 (Figure 3A). Furthermore, EVI
remains relatively stable on the scale of weeks during the growing
season, but λE has a diurnal cycle with peak fluxes occurring
during the afternoon, is close to zero at night, and responds
rapidly to changes in meteorological conditions. The temporal
resolution of VPRM-LH captures this diurnal pattern and shows
that enhancements of λE due to urbanization during the daytime,
when exposure to high temperatures is greatest, is higher than
nighttime (Figure 3B). The average range of λE for all pixels with
an EVI = 0.70 was less than 1 W m−2 during the night and was
greater than 30 W m−2 between 12:00 and 15:00 EDT.

The spatial patterns of λE and EVI are similar (Figures 2A,
3C), however, using λE as a metric of vegetation cooling
benefits captures interactive impacts of greenspace distributions,
radiation, and temperature drivers (ISA; Figure 3D).

DISCUSSION

Cities are highly vulnerable to projected increases in mean air
temperatures and the frequency of extreme heat events (Habeeb
et al., 2015) and as a result are eager to obtain actionable
ecological data informing their climate mitigation strategies
(Zhou et al., 2019). Extreme temperatures already represent an
important threat to public health, with vulnerable populations
(in terms of age, race, and income) particularly susceptible to
heat-related illness and death (Wellenius et al., 2017). Here, we
introduce a simple tool to quantify vegetation cooling activity in
cities with the potential to identify areas that will benefit most
from tree planting or urban greening.

Model Implementation and Limitations
Vegetation photosynthesis and respiration model latent heat
uses several readily accessible data sources such as the
Landsat, GOES, and RAP archives. Urban applications require
the use of an additional spatially explicit ISA product and
information about the region-specific relationship between air
temperature and ISA, however, this could be determined using
local weather station archives or low-cost sensor networks,
such as those used in Wang et al. (2017). VPRM-LH
estimates λE with good accuracy across ecosystems and time
scales; the model driver data is independent of the field
observations used for validation. The assumptions embedded
in estimation of ground heat flux, dry air density, specific
heat capacity, and leaf respiration rates do not appear to
introduce critical errors into λE estimates. A sensitivity
analysis of the incremental change in λE resultant from
incremental changes in model parameters points to the
atmospheric conductance term (treated as a constant) as a main
source of unaccounted for variance/uncertainty in the model
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FIGURE 1 | Comparison of modeled vs. measured λE at DBF, ENF, and CRP flux tower sites. (A–C) Annual trends in hourly, daily, and weekly λE. (D–F) Average
diurnal λE patterns during JJA. Error bars represent standard error for each hour during JJA. (G–I) Scatter plots of modeled vs. measure λE for each hour during
JJA. (J–L) Scatter plots of modeled vs. measured daytime average λE over the entire year.

(Supplementary Figure 3). Implementation of additional data
sources capturing the variability in atmospheric conductance
could further improve model accuracy.

The model validation and application presented here was
conducted in either mesic or irrigated ecosystems where water
availability does not typically constrain transpiration. Model
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FIGURE 2 | (A) Average 14:00 EDT λE at 30 m resolution across Boston, MA, United States under heatwave conditions. (B) Daytime (9:30–14:30) hourly estimated
λE vs. λE derived from sap flux measurements between July and September 2019.

application would benefit from further validation in more
water-limited regions. VPRM-LH currently considers moisture
limitations on transpiration in the Wscale term (eq. 3), which
leverages LSWI to restrict vegetation activity during dry periods.
The availability of water for vegetation, whether from irrigation
or precipitation, is a critical consideration in determining the
location for urban vegetation expansion. Additionally, VPRM-
LH only distinguishes vegetation at the plant functional type level
and does not consider species-specific differences in transpiration
strategies (e.g., isohydric vs. anisohydric). While the omission
of species-specific parameters may limit model accuracy under
certain climate conditions, VPRM-LH does not require high-
resolution tree species maps, which are likely not available
for many cities.

The interpretation of model outputs in mesic climates,
particularly on hot, humid days, should consider more than just
the magnitude of λE. Regions with a relatively high λE will have
more turbulent energy fluxes partitioned into latent rather than
sensible heat, which results in a cooling effect on temperature.
This interpretation, however, neglects to consider the impact of
the increase in atmospheric moisture (resultant from increased
transpiration) on perceived temperature. Higher atmospheric
humidity reduces the ability of the human body to shed excess
heat via the evaporation of sweat, lowering the rate that the body
can cool and increasing the perceived temperature, where the
perceived temperature is commonly quantified by the heat index.
In New York City, NY, United States (approximately 300 km
southwest of Boston), a significant increase in mortality risk
was observed on days where the maximum heat index exceeded
35◦ C (Metzger et al., 2010). Heat indices in excess of 35◦C
were not observed when modeling mean summer conditions in
Boston. However, during the 6-day heatwave event, the average
daily maximum temperature ranged from 27.7 to 35.7◦C, with
5.7% of pixels exceeding 35◦C. The average daily maximum

heat index during the same time period ranged from 29.0
to 43.9◦C with 78.4% of pixels exceeding the 35◦C threshold,
highlighting the impact of atmospheric moisture concentration
on perceived temperature.

The provision of shade, which represents another important
determinant of perceived temperature, counteracts humidity
effects. For example, Rahman et al. (2018) found that the
daytime air temperature under urban tree canopies in a temperate
climate was always lower than the air temperature in open areas.
Furthermore, while λE was the predominant cooling mechanism
of the air on days up to 30◦C, shading effects were more
prominent on extremely hot days in excess of 30◦C (Rahman
et al., 2018). Model output interpretation should consider the
implications of atmospheric moisture inputs and the type of
vegetation present, where trees will provide shade benefits that
are not provided by shrubs and grasses.

Implications for Cities
Urban greening, widely espoused as a climate mitigation strategy,
has been implemented around the world (Mell et al., 2013;
Pincetl et al., 2013; Tan et al., 2013) despite debates around
the exact services and tradeoffs with disservices provided by
urban canopies. Urban vegetation does store (Raciti et al., 2014)
and take up more atmospheric carbon (Sargent et al., 2018)
than most ecosystem models currently account for Churkina
(2008), but due to accelerated turnover (Smith et al., 2019) and
respiration (Decina et al., 2016) rates, tree planting is likely not a
viable avenue for meaningful carbon sequestration. Additionally,
urban trees are capable of removing atmospheric pollutants
and particulates (Weber et al., 2014) but are also sources of
volatile organic compounds (Churkina et al., 2015) and allergens
(Beck et al., 2013). The urban canopy, however, undoubtedly
contributes to local cooling via shading and transpiration (Bowler
et al., 2010), with temperature reductions from vegetation
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FIGURE 3 | (A) EVI vs. average 14:00 λE color coded by ISA. (B) Diurnal hysteresis comparison of λE as a function of air temperature in two pixels with EVI = 0.70
and ISA = 10 and 90%. Numbers represent the hour of day (EDT). (C) Map and distribution of EVI in Boston on August 2, 2018. (D) Map and distribution of ISA in
Boston.

observed to be up to 8◦C (Rahman et al., 2017). The potential for
vegetative cooling in cities is well established, but implementation
of greening plans for effective urban cooling has been heretofore
limited due to the inability to quantify variation in cooling
potential across the complex landscape of cities.

Vegetation photosynthesis and respiration model latent heat
offers a simple, satellite-based methodology for estimating urban
λE contributions from vegetation at fine spatial and temporal
resolution. The model incorporates a novel combination of
urban-specific parameters capturing climatological, physical,
and physiological intricacies of the urban environment and
its components. Model outputs are consistent with ground
measurements of λE and can be scaled to explore the cooling
potential of vegetation across cities at hourly, diurnal, seasonal,

and annual scales. In contrast to vegetation indices that are
commonly used to quantify the benefits of urban greenspace,
λE captures vegetation activity in addition to abundance
and offers nuanced information about the ecosystem services
provided by urban vegetation. VPRM-LH will be a valuable
tool in the implementation of policies combatting heat related
consequences of urbanization, especially as cities take the
forefront in addressing climate-related matters. VPRM-LH offers
an easy implementation and the ability to combine outputs with
sociodemographic datasets at sufficient resolution for political
action. The result is a unique opportunity to identify vulnerable
neighborhoods and optimize municipal decisions that repartition
the surface energy balance to address historic inequities in canopy
distribution and UHI (Hoffman et al., 2020).
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