
fevo-09-671492 January 5, 2022 Time: 17:3 # 1

ORIGINAL RESEARCH
published: 11 January 2022

doi: 10.3389/fevo.2021.671492

Edited by:
Cornelia Oedekoven,

University of St Andrews,
United Kingdom

Reviewed by:
Aurelio F. Malo,

University of Alcalá, Spain
João E. Rabaça,

University of Evora, Portugal

*Correspondence:
Federico Morelli

fmorellius@gmail.com

Specialty section:
This article was submitted to

Population, Community,
and Ecosystem Dynamics,

a section of the journal
Frontiers in Ecology and Evolution

Received: 05 March 2021
Accepted: 02 December 2021

Published: 11 January 2022

Citation:
Morelli F, Brlík V, Benedetti Y,

Bussière R, Moudrá L, Reif J and
Svitok M (2022) Detection Rate of

Bird Species and What It Depends
on: Tips for Field Surveys.

Front. Ecol. Evol. 9:671492.
doi: 10.3389/fevo.2021.671492

Detection Rate of Bird Species and
What It Depends on: Tips for Field
Surveys
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Bird counting inevitably suffers from imperfect detection, which varies across species,
habitats, period of the day, and seasons. Although various modeling techniques have
recently been developed to account for this phenomenon, the biological basis of
natural variation in detection remains insufficiently known. This study examined the
bird species’ detection rate throughout the day, considering their body mass and
diet type, concerning the environment and weather characteristics. Species detection
rates were significantly affected by the number of individuals of that species but
were unrelated to body mass. Overall, species with the highest detection rate were
Corn bunting, Blackbird, European robin, House sparrow and Common chiffchaff.
Granivores-insectivores and insectivores showed significant differences in detection
rates throughout the day among habitats, with higher detection rates in grasslands
during the afternoon. Insectivores showed higher detection rates in farmland during
midday (warmest time of the day). Granivores, omnivores and scavengers did not show
changes in detection rates in different day periods. Such patterns in daily detection
rates were significant even when considering abundance and total species richness in
each community. Finally, cloudiness was unrelated to the overall detection rate of birds,
while temperature and wind affected detection rates in some guilds. Our findings provide
some advice for choosing a suitable ornithological sampling method by considering the
avian communities composition in combination with the type of environment, the diet of
bird species, and the period of the day.

Keywords: bird survey, census, conspicuousness, cues, daytime, detectability, monitoring programs, trophic
guild

INTRODUCTION

Birds are often used in ecological studies as potential bioindicators (Padoa-Schioppa et al., 2006;
Drever et al., 2008; Morelli, 2015). Surrogates or bioindicators represent shortcuts in ecology: a
cost-effective strategy to study highly complex systems (Rodrigues and Brooks, 2007; Lindenmayer
et al., 2015). Some groups of bird species have also been proposed as “surrogates” or “proxy” for
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identifying hotspots of species richness or other measures of
biodiversity during the last decades (Gregory et al., 2005; Padoa-
Schioppa et al., 2006; Gregory and van Strien, 2010; Morelli
et al., 2014). Also, a single species (e.g., eagle owl, Bubo bubo)
was proposed as an indicator of mortality of bird communities
concerning human structures such as power pylons (Pérez-
Garcia et al., 2016) or overall avian diversity (e.g., common
cuckoo) (Morelli et al., 2015).

Information on species occurrences and/or densities is
essential to assess wildlife population status and evaluate
management decisions in conservation planning (Noon et al.,
2012). In particular, point-count surveying is a popular method
for collecting data on species distribution and estimation of
indices of bird abundance (Bibby et al., 2000; Farnsworth et al.,
2002). This method is commonly used for studies at several
spatial scales—from local to regional studies and even nationwide
monitoring programs (Fuller and Langslow, 1984; Surmacki and
Tryjanowski, 2000; Budka and Kokociński, 2015; Kwieciński
et al., 2017; Morelli et al., 2017). Points are visited one or
more times, mainly in the early morning during the breeding
season (Bibby et al., 2000; Gregory et al., 2004; Budka and
Kokociński, 2015). Data are typically collected when weather
conditions are suitable (e.g., without strong wind or rain),
and each visit usually lasts 5–10 min. All visual and aural
detections are recorded within either a fixed (often 100 m) or
unlimited radius (Bibby et al., 2000). Similar survey strategies
are used during the non-breeding seasons. However, several
methodological shortcomings are associated with the avian
detections when collecting data, which could compromise the
integrity of the data. Among these shortcomings, we can briefly
mention the bias related to observers’ skills recognizing different
bird species, especially when compounded over large spatial
scales (Celis-Murillo et al., 2009).

Most importantly, variation in the detectability of each species
could strongly affect the correct identification of the number of
species in a given assemblage (Bochio and Anjos, 2012). Bird
detection probabilities are typically used to assess abundances
(Buckland et al., 1993) instead of raw counts of individuals
or species occupancy (Norvell et al., 2003). Bias in estimated
detection probabilities can lead to bias in abundance estimates,
thus affecting the reliability of statistical analyses used to assess
habitat selection or within occupancy models (Welsh et al., 2013).
The primary bias introduced by detection error is an inability
to identify the ecological mechanisms and detection processes
in the modeling approach (Welsh et al., 2013). In total, all
these elements increase the uncertainties associated with the data
collected during avian surveys. Neglecting the importance of
variation in species’ detectability can lead to unreliable datasets
and thus misleading results that ignore this potential source
of variation (Burnham, 1981). Therefore, monitoring programs
should correct for species detectability and eventually changes in
species detectability (Kéry and Schmid, 2004).

There are several statistical tools for dealing with the fact
that detectability is not constant over space and time. For
example, occupancy models have been used when evaluating
habitat selection or occurrence of bird species at a large spatial
scale or to develop predictive models of overall species richness

(MacKenzie et al., 2006; De Wan et al., 2009). In such models,
it is necessary to perform multiple surveys at each sample unit
within a specified period to account for elusive or undetected
individuals (MacKenzie et al., 2006). But at the root of the
problem, there is the level of detectability of targeted species
that could change depending on the habitat characteristics,
individual’s activity and period of the day. Bird detectability
depends on (i) species biology and behavior (abundance, activity,
species body size, and conspicuousness, ecological traits), (ii)
individual characteristics within the species (sex, age) (iii)
environmental factors (habitat, weather, the phase of the season,
time of day) and (iv) methodology of counts and skills of
observers (recognition ability, assumptions associated with a
given census technique) (Sólymos et al., 2018; Zamora-Marín
et al., 2021). There is significant evidence that some traits
of birds play an important role in the variability of species
detectability (Sólymos et al., 2018). Large bodied birds are
expected to have lower singing rates, due to their relatively lower
resting metabolic rate (Michael and Brenowitz, 1985; Bennett
and Harvey, 1987), but characterized by louder and lower-
frequency songs, potentially increasing the overall detectability
of singing individuals (Cardoso, 2010; Sólymos et al., 2018).
Louder and lower frequency sounds could be detected from more
considerable distances, while the higher intensity of singing can
be associated with a higher probability of detection or detection
rate (Sólymos et al., 2018). The type of diet is another factor
that can contribute to detectability. For example, insectivorous
species are more likely to forage diurnally depending upon the
activity of their prey (Kronfeld-Schor and Dayan, 2003; Silva
et al., 2015). On the other hand, scavenger-omnivorous species
may be more detectable because of their generally larger body size
(Sólymos et al., 2018).

Environmental factors or habitat type also affect bird detection
(Wiley, 1991; Mockford and Marshall, 2009), and a change of
detection rate within a day may bias assessments depending
upon what time of day assessments were made (Brown and
Handford, 2002). The effectiveness of morning vs. afternoon
surveys can change depending on the species. Only a few
studies have tried to explore this potential cause of uncertainty
(Bas et al., 2008; Santos et al., 2009), even if the change in
detectability through the day is essential to set a cost-effective
bird monitoring program (Palmeirim and Rabaça, 1981; Conway
and Gibbs, 2011). Furthermore, during the breeding season,
the frequency and loudness of the song are likely the main
factors affecting the detection rate of territorial birds using
point counts (Farnsworth et al., 2002; McCallum, 2005). Some
avian taxa can even change the intensity of singing at different
stages of the breeding season (Johnson and Dinsmore, 1986;
Blumenrath and Dabelsteen, 2004), likely affecting detectability.
Adding even more complexity is observing that some taxa
change vocalizations depending upon habitat type, making
comparisons among studies complex (Schieck, 1997; Mockford
and Marshall, 2009). The effects of the habitat type (open, close
forests, dense vegetation, etc.) on the sound propagation and
transmission were studied in bird songs (Brumm and Naguib,
2009). The relative importance of environmental vs. weather
factors is difficult to quantify because it is time-consuming.
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FIGURE 1 | The scheme of the survey program illustrates the coverage of the
whole day using 10 min observations (point counts) distributed in each of the
seven 2-h periods dividing the day, approximately from sunrise to sunset. The
surveys were performed in four types of habitats: farmland, forest, grassland
and urban areas.

Methods used to analyze data from community-level surveys
(e.g., targeting multiple species) could present several limitations
(Dorazio and Connor, 2014).

The goals of this study were to assess the detection rate of
bird species (a) within different periods of the day (approximately
from sunrise to sunset) and (b) in association to the trophic
guild and habitat type (i.e., farmland, forest, natural grassland,
or urban). We also examined how weather variables influence
detection rates by trophic guilds within each habitat type.

MATERIALS AND METHODS

Study Areas and Bird Data Collection
Data were collected in the Czech Republic (Moravia and Central
Bohemia region, centroid area: latitude 49.87◦, longitude 14.93◦)
and France (department of Vienne, centroid area: latitude 46.67◦,
longitude 0.48◦). Four expert ornithologists with a comparable
skill level participated in the data collection. Each observer
surveyed four types of habitat based on the dominant landscape:
farmland (arable land), forest, natural grassland and urban
habitat (Figure 1). To select the sampling sites in each type
of habitat, we choose only areas where the specific land-use
categories above mentioned were dominant, e.g., covering more
than 95% of the area of the sampling site. We avoided sampling
sites with mixed composition, where none of the land-use types
occupied at least 50% of the area. We used a similar approach to
classify dominant land-uses of the spatial units in previous studies
(Morelli et al., 2013; Benedetti and Morelli, 2017).

Twenty three areas were visited (11 in the Czech Republic and
12 in France, country-specific areas included the four habitats
above described). A point count was selected within each habitat
type (sampling sites) (Bibby et al., 2000) at least 200 m from
the habitat edge. Point counts were also separated by at least
300 m to avoid double counts of the same individuals. Bird
surveys were performed during the breeding season of 2017, from
late April to late May (which correspond roughly to the phase
of maximum activity of focused species) using a standardized
protocol (Bibby et al., 2000) (description provided in the next
paragraph). Since the detection rate could be inconstant across
the season, 70% of the observations were collected during the
first 2 weeks of the study (last week of April and the first week
of May), trying to reduce the potential effects of seasonal changes
in species detectability.

The standard protocol followed in the field was: At each
sampling point, we performed an exhaustive survey and counted
breeding birds over seven visits of 10 min on consecutive 2-
h periods from sunrise to sunset (hereafter called “periods of
the day”). The first period was between 05:00 and 07:00, and
the last period was between 17:00 and 19:00 (Figure 1). Thus,
each sampling site was surveyed for a total of 70 min on the
same day (seven visits). The total effort was 23 point-counts ×

7 visits = 161. All bird individuals detected visually or aurally
within a 100 m radius around the point were counted during
a 10 min period.

We used the 100 m cut-off distance often used for point
counts (Bibby et al., 2000; Mattsson et al., 2013; Morelli et al.,
2013) as it allows a more significant number of birds to be
included in the counts compared to 50 or 75 m (Thompson
and Schwalbach, 1995). All birds seen outside the 100-m radius
were excluded. Also, waterfowl, nocturnal and raptor species
were excluded because these species are not accurately sampled
using point counts (Bibby et al., 2000). Additionally, weather
variables were recorded at each sampling site during each one
of the seven observation periods. Weather variables included
intuitive and straightforward measures of cloud cover [as a
proportion of the sky covered by clouds: 0/4 (no clouds), 1/4
(few clouds), 2/4 (half covered), 3/4 (almost wholly covered), or
4/4 (wholly covered)], temperature (measured in◦C) and finally
wind intensity (“null” = 0, comparable to 0 in the Beaufort wind
scale; “weak” = 1, comparable to 1–2 in the Beaufort wind scale;
or “moderate” = 2, comparable to 3–4 in the Beaufort wind scale).

All bird species recorded were classified into four trophic
guilds (based on the dominant diet of species): granivores
(species with a diet that consists primarily of seeds and grain),
insectivores-granivores (species with a diet that consists of
seeds, grain and insects), insectivores (species with a diet that
consists primarily of insects) and omnivorous-scavengers. We
determined the diet and body mass of each species using Cramp
and Perrins (1994); Pearman et al. (2014), and Storchová and
Hořák (2018) (Supplementary Table 1).

Detection Rates
We calculated detection rates at the level of species and trophic
guilds, respectively, in all 23 sampling sites. After the complete
survey on a given sampling site (seven visits = 70 min of
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observation), the presence of a species was only attributed when
the species was observed at least once. Thus, for a species
classified as “present,” the site-specific detection rate is computed
as the number of times that species was detected during the seven
visits. For example, if a species is observed five times during
seven visits, its detection rate is = 5/7 = 0.714. When a species is
detected, the minimum site-specific detection rate is 1/7 = 0.143,
while the maximum is 7/7 = 1 for the species seen during all
visits. Finally, if no individuals of a given species were detected
during the complete survey, such species are unaccounted (are
considered absent) at the site. In that case, as in the case of
occupancy models, we assume that a species is not falsely detected
when absent (MacKenzie et al., 2006). The mean detection rate
for a species was estimated as the mean value of the site-
specific detection rates across all sites. The mean species detection
rates were used as a response variable in species-level regression
analysis (see below).

We also quantified trophic guild-level detection rates in each
visit. First, we calculated the total number of species observed
in each sampling site and used this total species richness as an
estimate of true species diversity at a given site. The trophic guild-
level detection rate was calculated as the proportion of species
belonging to a given trophic guild observed during a visit divided
by the total number of species of such trophic guild recorded
after all visits at the given site. The guild-level rates varied from
0 (if none of the present species is detected) to 1 (if all present
species are detected) during a given visit. This approach implicitly
assumes a perfect detection of the total species richness. To verify
this assumption, we constructed analytical rarefaction curves
with unconditional 95% confidence intervals (Colwell et al., 2004)
and assessed species inventory completeness. Moreover, the non-
parametric richness estimator Chao2 (Chao, 1987) was used to
estimate the total number of species, including those unobserved.
Since detection rates of the species were relatively homogeneous
(mean CV = 0.57), we used the bias-corrected form of the
estimator (Chao, 2005).

Statistical Analysis
The dataset consisted of 161 observations (23 sites by seven
visits) with a relatively balanced number of sites per habitat type
(farmland—6, forest—5, grassland—5, urban—7). We ran two
different models:

First, we used regression analysis to assess the effects of species
relative abundance (sum of individuals counted per species)
and body mass on detection rates of species (response variable)
(n = 79)—species-level model. Since the species detection
rates are restricted to the interval (1/7–7/7), we used a beta
regression approach (Ferrari and Cribari-Neto, 2004). The beta
regression model assumes that the response follows a beta
probability distribution defined by mean and precision (inverse
dispersion) parameters (Cribari-Neto and Zeileis, 2010). The
beta distribution is commonly used to model variables that
assume values in the standard unit interval, such as proportions.
Considering that the detectability of species may be the result of
two processes: (1) abundance of individuals and (2) probability
that an individual is detected, we modeled the response variable
(species detection rate) as a function of covariates via a logit

link function. The covariates themselves, abundance and body
mass, were log-transformed, to improve the symmetry of their
distribution. The precision parameter was assumed a constant,
corresponding to the basic beta regression model introduced
in Ferrari and Cribari-Neto (2004). The model parameters
were estimated by maximum likelihood, and goodness-of-fit
was assessed using several diagnostic plots. Since Corn bunting
Emberiza calandra emerged as an outlier (large Cook’s distance
and large residual), we excluded the species and refitted the model
leading to considerably better performance (Supplementary
Figures 1, 2). The significance of model coefficients was evaluated
using partial Wald tests (Cribari-Neto and Zeileis, 2010).
Estimated detection rates were plotted along with their 95%
confidence intervals that were calculated using 1,000 standard
bootstrap replicates and the non-parametric percentile method
(Efron and Tibshirani, 1993).

Second, we used beta distribution models with logit-link
function to explore changes in trophic guild detection rates
regarding different habitat types, weather variables and period
of the day—guild-level models. Since the activity and singing
of birds show non-linear circadian patterns (Robbins, 1981b;
McNamara et al., 1987), we expected detectability to vary in a
non-linear way during a day. Therefore, we employed generalized
additive mixed models (GAMMs), a flexible modeling framework
capable of fitting both linear and non-linear responses (Wood,
2017). Individual GAMMs were fitted to each of the four trophic
guilds. The trophic guild detection rates (see above) were used
as response variables. The fixed part of the models contained the
main term of habitat type and interaction of habitat type with
thin plate regression spline smoother for the period of the day to
allow for different temporal trends among the habitats. Observer
identity was included in the models to account for a potential
observer-related bias (e.g., observer differences in hearing or
observational skills). Although we consider this observer-related
influence a random effect, the observer effect was treated as a
fixed term in the models due to a low number of the factor levels
(n = 4) which may lead to imprecise among-population variance
estimates (Harrison et al., 2018). Considering the response
of bird activity to weather conditions (O’Connor and Hicks,
1980; Robbins, 1981a; Bonter et al., 2013), we also included
linear parameters of wind and clouds and a smoother for the
temperature to account for variation in detectability related to
these effects. The random effect structure of the models involved
varying intercepts among sites to control for repeated sampling.
To avoid overfitting, GAMM parameters were estimated by
penalized likelihood maximization, in which wiggly models are
penalized more heavily than smooth models (Wood, 2017). We
also set the upper limit on the degrees of freedom associated
with the smooth terms and restricted the basis dimension used
for smoothing to k = 5 to prevent non-realistically complex
response patterns. The performance of the GAMMs was assessed
using diagnostic plots; no severe violation of the assumptions was
recorded. The significance of model terms was assessed using
Wald tests, conditional on the smoothing parameter estimates
(Wood, 2013). To evaluate the significance of habitat by the
period of the day interaction, we fitted simpler GAMMs without
habitat-specific temporal trends and compared them with the
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GAMMs involving habitat-specific smoothers using a χ2-test
on the differences in maximum-likelihood scores, taking into
account the difference in degrees of freedom (van Rij et al., 2017).

The analyses were performed in Spade (Chao and Shen,
2010) and R (R Development Core Team, 2019) using the
libraries “betareg” (Cribari-Neto and Zeileis, 2010), “ggplot2”
(Wickham, 2016), “itsadug” (van Rij et al., 2017), and “mgcv”
(Wood, 2017).

RESULTS

Overall, we detected 79 species belonging to four trophic guilds: 8
granivorous, 29 granivorous-insectivorous, 37 insectivorous and
5 omnivorous/scavengers (Supplementary Table 1).

The species inventory appeared nearly complete as the
rarefaction curves reached asymptotes, and their confidence
intervals covered or closely approximated the expected total
richness calculated by the Chao2 estimator at most of the sites
(Supplementary Figure 3). It should be noted, however, that our
survey scheme had weaker species coverage in few forest and
grassland sites.

The species-level detection rates (Supplementary Table 1)
were significantly affected by the number of individuals
(abundance: p < 0.001), and this effect was independent of the
bird’s body mass as indicated by the insignificant interaction term
(abundance × body mass: p = 0.386). There was no evidence that
detection rates were related to body mass (p = 0.133). Detection
rates increased with the number of individuals (Figure 2). When
considering all habitat types combined, the species with the
highest detection rates were Corn bunting Emberiza calandra,
Blackbird Turdus merula, European robin Erithacus rubecula,
House sparrow Passer domesticus and Common chiffchaff
Phylloscopus collybita (Supplementary Table 1).

Considering the detection rate of different trophic levels,
granivores-insectivores and insectivores showed significant
differences in temporal trends (periods of the day) among
habitats (Tables 1, 2). Both groups had a constant detection
rate in forests throughout the day, while they had a higher
probability of observation during afternoon hours (3 p.m. and
later) in grasslands (Figure 3). Insectivores also showed higher
detection rates in the afternoon in farmland (with a peak during
the midday). In contrast, granivorous-insectivorous birds had
opposite detection patterns in farmlands (the highest detection
rate in the morning) and always had high detectability in the
urban landscape. We did not find any temporal trend in detection
rates of granivores and omnivores/scavengers. This result was
also confirmed when modeling species with the same abundance.

Among the weather characteristics, wind and temperature
significantly affected the detection rates of some studied
guilds, while cloud cover seemed unimportant (Tables 1, 2).
Wind negatively affected the detection rates of granivores
and insectivores (marginally non-significant); omnivores
were unaffected and granivores-insectivores showed a
positive response. Interestingly, higher temperatures were
associated with lower detectability of insectivorous species
(Supplementary Figure 4).

Finally, there was a good deal of variation among sites, while
the observer-related effect was negligible for all but granivorous-
insectivorous species (Tables 1, 2).

DISCUSSION

The accuracy of the information about species distribution
is essential to establish correct biodiversity programs and
conservation planning (Zamora-Marín et al., 2021). The
detection rate of species could be ignored when detection
is consistent across time or space (Buckland et al., 2010).
However, our findings suggest that the detection rates of species
differ among trophic guilds (when controlling for abundances),
habitat type, and time of day. Overall, we found that the
bird detection rate correlated positively with species abundance
when considering trophic guilds or analyzing species separately.
This finding was expected since it is a general pattern already
demonstrated (Welsh et al., 2013). We also estimated the
overall detection rate for every 79 species (see Supplementary
Table 1). However, we prefer to be cautious about the individual
detection rate interpretation because the number of detections
for each species collected in this study varied hugely, precluding
a reliable comparison. Additionally, a phylogenetic approach
would likely be more appropriate to compare bird detection rates
(Rubolini et al., 2015).

Effects of Habitat Type, Weather, Diet
and Period of the Day on the Bird
Detection Rate
Our results suggest that habitat types present different challenges
for observers. The detection accumulation curves showed that
some habitats exhibit high inter-site differences (e.g., farmlands)
compared with other types (e.g., forests or urban) (see Figure 3).
Assuming that all observers involved in the fieldwork have
relatively comparable abilities, we can hypothesize that these
differences could be associated with more significant ecological
variation among farmlands surveyed in terms of habitat
heterogeneity. On the other hand, forest and urban areas did
not exhibit much variation among landscapes, suggesting minor
ecological variation among sites. One implication for survey
strategies is that one might need to have a broader survey scheme
in farmland than in forest areas, considering potential differences
in bird detection related to the local farmland characteristics.

We found that wind was related to the detection rate of
granivorous and granivorous-insectivorous species. On the other
hand, the temperature affected the detection rate of insectivorous
species in all habitat types, while the cloudiness was unrelated
to the bird detection rate in our study. The positive association
between the detection rate of insectivorous birds and temperature
could be correlated to a greater activity of insects during the warm
part of the day (Silva et al., 2015), followed by higher activity of
insectivorous birds involved in feeding activities.

We examined the detection rate of birds grouped by the
trophic guild in different types of environments. Interestingly,
our study only partially supports the common assumption that
birds are much easier to detect in the morning. We found
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FIGURE 2 | The effect of species abundance on detection rates of bird species as predicted by the beta regression model. Observed values (dots) are displayed
along with estimated detection rates (line) and 95% percentile bootstrap confidence interval of the estimate (gray band). Dot size is proportional to the body mass of
a given species.

TABLE 1 | Summary characteristics of the GAMMs testing for the interacting effects of habitat type and period of the day on detection rates in four bird trophic guilds
while accounting for weather conditions, repeated sampling of the same sites and observer-related bias.

Granivores Grani-insectivores Insectivores Omnivores

Variable χ2 (df) p χ2 (df) p χ2 (df) p χ2 (df) p

Fixed effects

Habitat type 3.6 (3) 0.313 5.1 (3) 0.167 6.1 (3) 0.109 0.9 (3) 0.831

Habitat type × Period 1.8 (6) 0.938 37.2 (6) <0.001 15.4 (6) 0.017 0.8 (6) 0.992

Cloud cover 0.9 (1) 0.346 1.0 (1) 0.327 0.1 (1) 0.779 0.4 (1) 0.526

Wind 17.3 (1) <0.001 4.8 (1) 0.028 2.9 (1) 0.091 <0.1 (1) 0.843

Temperature <0.1 (1) 1.000 0.2 (1.4) 0.819 10.1 (2.1) 0.019 1.6 (1) 0.208

Observer 0.6 (3) 0.906 11.3 (3) 0.010 3.9 (3) 0.275 2.5 (3) 0.467

Random effects

Site 38.6 (16) <0.001 53.6 (16) <0.001 21.1 (16) 0.002 <0.1 (12) 0.577

Wald test statistics (χ2) and associated degrees of freedom (df) are displayed along with probabilities (p). Results significant at α = 5% are highlighted in bold. For details
on temporal patterns in specific habitats (see Figure 3). Estimates of parametric coefficients and further numeric information are given in Table 2.

that the morning is the best time for observers to detect
granivorous-insectivorous species in farmlands and grasslands.
At the same time, morning is less critical for birds from other
types of habitats. Granivorous-insectivorous and insectivorous
birds were the only groups showing a substantial and statistically
significant temporal pattern during the day in different kinds of

environments (see Figure 3). These changes in detectability could
be associated with the fact that such species are following the
temporal dynamics of their prey, probably corresponding to the
increased activity of insects during warmer periods of the day
(Williams, 1961; Silva et al., 2015). Notably, the comparison of
detection rates through the day periods for each trophic guild
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TABLE 2 | Coefficients and associated characteristics of GAMMs fitting detection rates of four bird trophic guilds (granivores, grani-insectivores,
insectivores, and omnivores).

Granivores Grani-insectivores

Parametric coefficients Estimate SE z p Estimate SE z p

Intercept 0.17 0.56 0.30 0.765 –0.96 0.45 –2.15 0.032

Wind –0.87 0.21 –4.16 < 0.001 0.33 0.15 2.20 0.028

Cloud cover –0.13 0.14 –0.94 0.346 –0.10 0.10 –0.98 0.327

Forest 0.50 0.57 0.88 0.377 0.18 0.46 0.39 0.699

Grassland 0.56 0.57 0.97 0.332 –0.13 0.47 –0.29 0.775

Urban 1.00 0.53 1.88 0.060 0.80 0.43 1.84 0.066

Observer 2 –0.35 0.48 –0.74 0.462 1.29 0.38 3.35 <0.001

Observer 3 –0.35 1.08 –0.33 0.745 0.82 0.87 0.94 0.345

Observer 4 –0.26 0.78 –0.33 0.744 0.55 0.63 0.87 0.383

Smooth terms Edf Ref. df χ2 p Edf Ref. df χ2 p

Temperature 1.0 1.0 <0.01 1.000 1.4 1.6 0.23 0.819

Farmland × period 1.0 1.0 2.12 0.146 2.5 3.0 10.92 0.013

Forest × period 1.0 1.0 0.15 0.701 1.0 1.0 0.03 0.866

Grassland × period 1.1 1.1 2.25 0.136 3.8 4.0 50.94 < 0.001

Urban × period 1.8 2.3 3.77 0.188 1.0 1.0 0.35 0.555

Site 1.0 1.0 <0.01 1.000 1.4 1.6 0.23 0.819

Insectivores Omnivores

Parametric coefficients Estimate SE z p Estimate SE z p

Intercept –0.67 0.40 –1.68 0.093 –0.29 0.44 –0.64 0.519

Wind –0.29 0.17 –1.69 0.091 –0.05 0.27 –0.20 0.843

Cloud cover –0.03 0.11 –0.28 0.779 –0.08 0.12 –0.63 0.526

Forest 0.71 0.38 1.86 0.064 –0.26 0.33 –0.81 0.421

Grassland 0.10 0.38 0.27 0.785 0.00 0.40 –0.01 0.995

Urban 0.68 0.36 1.91 0.057 0.00 0.35 –0.01 0.992

Observer 2 0.18 0.34 0.51 0.609 0.56 0.38 1.48 0.138

Observer 3 1.36 0.74 1.85 0.065 0.51 0.71 0.73 0.466

Observer 4 –0.16 0.53 –0.30 0.766 –0.06 0.64 –0.09 0.925

Smooth terms Edf Ref. df χ2 p Edf Ref. df χ2 p

Temperature 2.1 2.5 10.07 0.019 1.0 1.0 1.58 0.208

Farmland × period 2.6 3.1 17.08 <0.001 1.5 1.8 1.14 0.603

Forest × period 1.0 1.0 0.12 0.733 1.0 1.0 0.22 0.640

Grassland × period 3.1 3.6 28.95 < 0.001 1.0 1.0 0.38 0.535

Urban × period 1.9 2.4 5.16 0.109 1.0 1.0 < 0.01 0.997

Site 9.3 16.0 22.10 0.002 < 0.1 12.0 < 0.01 0.577

Model coefficients (estimate) and their standard errors (SE) are displayed for parametric terms. Estimated degrees of freedom (Edf) and reference degrees of freedom
(Ref. df) are shown for smooth terms. Test statistics (z and χ2) and associated probabilities (p) are given for each parameter. Results significant at α = 5% are highlighted
in bold. Note that the base levels of categorical variables (farmland—habitat type, observer 1—observer) are absorbed in the intercepts. For overall tests of the model
parameters (see Table 1).

is independent of the number of species belonging to each guild
(no abundance-dependant) since we are comparing rates ranging
from 0 to 1 for each group.

Finally, when combining the effects of habitat type, trophic
guild and period of the day emerged some considerations useful
for field working planning (see Figure 3 and Tables 1, 2). For
farmlands, the most appropriate period of the day for surveys
seems to be the morning, between 05:00 and 11:00, to collect
data on granivorous-insectivorous species, which tend to be more

active early in the morning (between sunrise and 06:00). For
insectivorous birds, on the contrary, the detection rate increases
during the late morning and early afternoon, with a peak at noon.
In forests, the bird detection rate was relatively homogeneous
across the day, without significant differences among trophic
guilds. This homogeneity suggests that monitoring strategies
don’t necessarily need to pay special attention to the time of
the day for field data collection in forests. In this regard, our
results provide evidence that the detection rate of species in
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FIGURE 3 | Temporal patterns of detection rates of birds of four trophic guilds (granivores, granivores-insectivores, insectivores and omnivores) in four habitats
(farmlands, forests, grasslands and urban areas) as modeled by GAMMs. Predicted detection rates (lines) are displayed along with 95% confidence bands (gray
envelopes), keeping other variables constant at their mean values. Wald tests statistics (χ2) and associated probabilities (p) are given for each relationship. Results
significant at α = 5% are highlighted in red.

the forests, being a rather closed environment compared to
farmlands or grasslands, are less affected by weather variables
(e.g., sun, temperature, etc.) In natural grasslands, the best
time for monitoring granivorous-insectivorous bird species in
our study was in the late morning, while the detection rate of
insectivorous species increases during the day, being higher in the
afternoon. In urban areas, the detection rate was not significantly
associated with the period of the day. This information is essential
in more dense settlements, where surveys could be adapted to
different day hours to avoid noise pollution peaks. Some studies
have demonstrated that moderated anthropogenic noise has a
negligible effect on species detection (Koper et al., 2016).

Potential Methodological Drawbacks of
This Study and Expected Implications on
Survey Strategies
A limitation of this study could be related to the quality of the data
describing the trophic guilds of species, in some cases derived
from heterogeneous sources. Additionally, some concern could
be associated with the fact that the species belonging to each
trophic guilds are different in terms of ecological characteristics
(e.g., “omnivores” are composed by single groups as corvids,
that might partially share several behavioral characteristics, while
other groups are composed of more heterogeneous species).
However, we tried to reduce this potential bias by introducing
the relative effects of species’ characteristics as body mass on the
detection rate in the modeling procedures.

During the modeling procedure, we excluded the Corn
bunting Emberiza calandra because identified as an outlier. The

Corn bunting is known as an easy-detectable farmland bird
because of the loud song and the typical singing at the top of
the shrubs along the roads. In our dataset, however, the Corn
bunting was recorded only in two sampling sites. The removal of
the species does not alter the results of the models but improves a
little bit overall performance.

In this study, we tried to alleviate also the potential
problem of observer bias by using a double strategy: (a) to
use only highly skilled ornithologists on the data collection
and (b) to introduce the identity of observers as a fixed
factor in the modeling procedure. In conclusion, our study
aimed not to deliver a correction tool for modeling species’
occurrence data but primarily to provide valuable guidelines
for sampling methods, depending on the type of habitat and
ecological characteristics of the targeted communities. Our
findings represent a piece of information that could be useful
for designing more flexible monitoring schemes for bird species,
interpretation of existing data, and better understanding when
assessing the community composition in different types of
landscapes. Of course, all this information needs to be correctly
tested before being transferred to other case studies in another
country or habitat, where the trophic guilds could be composed
of different species. In this sense, because the season also
plays an essential role in the detection rate of species (Harms
and Dinsmore, 2014), we believe that our results must be
complemented by further studies considering the source of
variation of detection rate concerning different phases of the
breeding season.

Our results provide some inputs which can be valuable
when using different survey strategies, for example, the distance
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sampling methods, frequently used to estimate the abundance
of birds (Buckland et al., 1993; Koper et al., 2016). Distance
sampling was mainly developed to deal with variability in
detection probabilities of species based on the effect of
distance or visibility and is based on a fall-off in detections
with distance (Buckland et al., 1993). However, an essential
assumption of distance sampling methods is that distances
to individuals are accurately estimated, a task not easy to
accomplish under normal field conditions (Norvell et al., 2003).
Furthermore, a correct assessment about the heterogeneity of
the detection rate of species could enhance studies dealing with
estimations of the size of a given population or studies applying
distance sampling methods (Richardson, 2007) to evaluate survey
completeness (Welsh, 2002). From our results, we can make some
recommendations about when and how to conduct the surveys
in order to get the best chances of detecting all the species. Such
suggestions, however, are not a suitable method for estimating
bird abundances.

In summary, implementing methods that incorporate or
at least consider differences in species’ detection rates would
enhance the reliability of such surveys. We expect that our
findings could provide valuable information for choosing
a suitable ornithological sampling method regarding the
avian communities, different types of environment, and an
adequate day period.

DATA AVAILABILITY STATEMENT

The original contributions presented in the study are included
in the article/Supplementary Material, further inquiries can be
directed to the corresponding author/s.

AUTHOR CONTRIBUTIONS

FM and YB conceived the idea and designed the methodology.
FM, VB, YB, RB, and LM collected the data in the field
and prepared the dataset. FM and MS prepared the data and
performed data analyses. All authors contributed critically to the
drafts and gave final approval for publication.

FUNDING

FM, YB, and JR were financially supported by the Czech Science
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Budka, M., and Kokociński, P. (2015). The efficiency of territory mapping, point-
based censusing, and point-counting methods in censusing and monitoring a
bird species with long-range acoustic communication – the Corncrake Crex
crex. Bird Study 62, 153–160. doi: 10.1080/00063657.2015.1011078

Burnham, K. P. (1981). Summarizing remarks: environmental influences. Stud.
Avian Biol. 6, 324–325.

Cardoso, G. C. (2010). Loudness of birdsong is related to the body size, syntax and
phonology of passerine species. J. Evol. Biol. 23, 212–219. doi: 10.1111/j.1420-
9101.2009.01883.x

Celis-Murillo, A., Deppe, J. L., and Allen, M. F. (2009). Using soundscape
recordings to estimate bird species abundance, richness, and
composition. J. Field Ornithol. 80, 64–78. doi: 10.1111/j.1557-9263.2009.
00206.x

Chao, A. (1987). Estimating the population size for capture-recapture data with
unequal catchability. Biometrics 43, 783–791. doi: 10.2307/2531532

Chao, A. (2005). “Species estimation and applications,” in Encyclopedia of Statistical
Sciences, Vol. 12, eds S. Kotz, N. Balakrishnan, C. B. Read, and B. Vidakovic
(New York, NY: Wiley), 7907–7916.

Frontiers in Ecology and Evolution | www.frontiersin.org 9 January 2022 | Volume 9 | Article 671492

https://www.frontiersin.org/articles/10.3389/fevo.2021.671492/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/fevo.2021.671492/full#supplementary-material
https://doi.org/10.1007/s10531-008-9420-6
https://doi.org/10.1371/journal.pone.0183691
https://doi.org/10.1111/j.1469-7998.1987.tb03708.x
https://doi.org/10.1111/j.1469-7998.1987.tb03708.x
https://doi.org/10.1163/1568539042360152
https://doi.org/10.4322/natcon.2012.012
https://doi.org/10.4322/natcon.2012.012
https://doi.org/10.1098/rspb.2012.3087
https://doi.org/10.1046/j.1474-919X.2003.00130.x
https://doi.org/10.1046/j.1474-919X.2003.00130.x
https://doi.org/10.2307/3802478
https://doi.org/10.1080/00063657.2015.1011078
https://doi.org/10.1111/j.1420-9101.2009.01883.x
https://doi.org/10.1111/j.1420-9101.2009.01883.x
https://doi.org/10.1111/j.1557-9263.2009.00206.x
https://doi.org/10.1111/j.1557-9263.2009.00206.x
https://doi.org/10.2307/2531532
https://www.frontiersin.org/journals/ecology-and-evolution
https://www.frontiersin.org/
https://www.frontiersin.org/journals/ecology-and-evolution#articles


fevo-09-671492 January 5, 2022 Time: 17:3 # 10

Morelli et al. Bird Detection, Day Period and Habitat

Chao, A., and Shen, T.-J. (2010). Program SPADE (Species Prediction And Diversity
Estimation) - Program and User’s Guide. Available online at: http://chao.stat.
nthu.edu.tw (accessed March 19, 2011).

Colwell, R. K., Mao, C. X., and Chang, J. (2004). Interpolating, extrapolating, and
comparing incidence-based species accumulation curves. Ecology 85, 2717–
2727. doi: 10.1890/03-0557

Conway, C. J., and Gibbs, J. P. (2011). Summary of intrinsic and extrinsic factors
affecting detection probability of marsh birds. Wetlands 31, 403–411. doi: 10.
1007/s13157-011-0155-x

Cramp, S., and Perrins, C. (1994). The Birds of the Western Palearctic. Oxford:
Oxford University Press.

Cribari-Neto, F., and Zeileis, A. (2010). Beta regression in R. J. Stat. Softw. 34,
01–24.

De Wan, A. A., Sullivan, P. J., Lembo, A. J., Smith, C. R., Maerz, J. C., Lassoie,
J. P., et al. (2009). Using occupancy models of forest breeding birds to prioritize
conservation planning. Biol. Conserv. 142, 982–991. doi: 10.1016/j.biocon.2008.
12.032

Dorazio, R. M., and Connor, E. F. (2014). Estimating abundances of interacting
species using morphological traits, foraging guilds, and habitat. PLoS One
9:e94323. doi: 10.1371/journal.pone.0094323

Drever, M. C., Aitken, K. E. H., Norris, A. R., and Martin, K. (2008). Woodpeckers
as reliable indicators of bird richness, forest health and harvest. Biol. Conserv.
141, 624–634. doi: 10.1016/j.biocon.2007.12.004

Efron, B., and Tibshirani, R. J. (1993). An Introduction to the Bootstrap. London:
Chapman and Hall.

Farnsworth, G. L., Pollock, K. H., Nichols, J. D., Simons, T. R., Hines, J. E., and
Sauer, J. R. (2002). A removal model for estimating detection probabilities from
point-count surveys. Auk 119, 414–425.

Ferrari, S., and Cribari-Neto, F. (2004). Beta regression for modelling rates and
proportions. J. Appl. Stat. 31, 799–815.

Fuller, R. J., and Langslow, D. R. (1984). Estimating numbers of birds by point
counts: how long should counts last? Bird Study 31, 195–202. doi: 10.1080/
00063658409476841

Gregory, R. D., and van Strien, A. (2010). Wild bird indicators: using composite
population trends of birds as measures of environmental health. Ornithol. Sci.
22, 3–22. doi: 10.2326/osj.9.3

Gregory, R. D., Gibbons, D. W., and Donald, P. F. (2004). “Bird census and survey
techniques,” in Bird Ecology and Conservation: A Handbook of Techniques, eds
W. J. Sutherland, I. Newton, and R. E. et Green (Oxford: Oxford University
Press), 17–56. doi: 10.1093/acprof:oso/9780198520863.003.0002
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