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A recent developmental study reveals that—at least in primates—a slow life history might be
a prerequisite for skilled manipulation and technological behavior. This supposition, however,
demands critical evaluation because other taxa with a much shorter lifespan also exhibit dexterous
object handling and material technology. By examining object-handling and nest-building data
from, respectively, mice and birds, we show that a slow life history does not govern the evolution of
manipulative and technological ability. More generally, we highlight the need for a comparative,
cross-taxa approach to understand drivers—such as differences in life history, ecology, task
complexity, and brain size—of seemingly sophisticated behavior.

OBJECT MANIPULATION IN PRIMATES

Human technological prowess is unrivaled across the animal kingdom, leading many researchers to
ponder—why? To inform this question with ecological and evolutionary insights, the go-to method
is to study the behavior of our closest living relatives: non-human primates. Of particular interest
are the fine motor skills involved in object manipulation since such actions underpin the ability to
use tools, a technological behavior we share with few species (Shumaker et al., 2011). In a recent
object-manipulation study in non-human primates, Heldstab et al. (2020) contend that they have
uncovered a key driver of technological behavior: a slow life history.

From 2011 to 2018, Heldstab and colleagues repeatedly visited zoos to observe when and how
128 individuals of 36 primate species handled food items (see the left panel in Figure 1), from
1 week after birth until reaching adult-level manipulation competence. Strikingly, the researchers
found that the expression, in terms of both the order and the timing, of eight food-handling actions,
appears almost entirely conserved across the studied primate phylogeny. For example, most species
first grabbed an object with one hand early on in development (within the first several weeks), while
four species—all long-lived great apes—also grabbed two separate objects simultaneously much
later on in development and close to weaning (roughly 4–7 years of age). Coupling these robust
developmental and life-history data, the authors conclude that complex manipulation skills and
technological abilities are unlikely to evolve in species with relatively fast life histories. While this
predictionmay be true for primates, many short-lived species also show skilled object manipulation
and material technology. A broader range of species must be considered, then, to understand the
evolution of manipulative and technological ability.

OBJECT MANIPULATION IN MICE AND BIRDS

Manus digital dexterity has evolved in the majority of tetrapods, but the most adept class
appears to be mammals, including short-lived rodents (Sustaita et al., 2013). House mice
(Mus musculus), for example, use different one-handed and (a)synchronous two-handed food-
manipulation techniques depending on the visibility or positioning of a food item (Whishaw
et al., 2017). These flexible motor actions in house mice are comparable to some of the motor
actions Heldstab et al. (2020) described in primates (see the middle panel in Figure 1; and see
Iwaniuk and Whishaw, 2000 for a similar conclusion). That the primates, and not the house mice,
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FIGURE 1 | Skilled object manipulation across three taxa. Left panel: a primate holds a piece of sugar cane with one hand. Middle panel: a mouse grasps a peanut

with both hands. Right panel: a weaver bird secures fresh nest material with its bill. Image credit (left, middle, right): Christopher Krupenye; Ralph Capri; Holger Mette.

show independent-digit one-handed object manipulation,
however, arguably reflects ecological rather than life-history
differences. Arboreal harvest mice (Micromys minutus) pups, for
instance, can move both their first and fifth digits independently
to grasp horizontal plant stalks at 10 days of age; they do this, like
the observed primates, following the cumulative acquisition of,
in turn, digit extension and dependent-digit grasping (Ishiwaka
and Möri, 1999). A similar, sequential acquisition of motor
elements occurs over 3 months in nest-building by weaverbirds
(Collias and Collias, 1964), a technological behavior that is
phenotypically and cognitively similar to tool use (this topic
is outwith the scope of the current correspondence, but for
detailed discussions see: Hansell, 2000, p. 89–92; Hansell and
Ruxton, 2008, Fragaszy and Mangalam, 2018, p. 196). First,
juvenile weaverbirds must learn how to effectively collect strips
of plant material; this involves knowing where to perch, which
place to cut, what direction to tear, and how wide and long a
strip should be. Next, the task of building begins: using only
their bill and feet, the aspiring weavers must learn how to tuck,
loop, and interlace each piece of material without the material
dropping to the ground, before a hanging basket nest can take
shape (see the right panel in Figure 1). Thus, taken together,
these data from mice and birds show that hierarchical patterns
in the development of manipulative and technological skills
do not require extended ontogenetic periods; instead, ‘practice’
and social input appear to play the larger role, at least for
nest-building birds (Collias and Collias, 1964; Walsh et al., 2010,
2011; Breen et al., 2016, 2020).

BRAIN SIZE AND OBJECT MANIPULATION

Why, then, do 36 primate species develop object manipulation
skills slowly? As argued in the recent study (Heldstab et al.,
2020), this pace may reflect how much time a brain needs to
‘grow’. In many primate species, including humans, prolonged
periods of development are associated with larger brains
(Barrickman et al., 2008), potentially due, in part, to energetic
costs associated with tissue growth (Isler and van Schaik,
2009). But having a big brain is not a prerequisite for skilled
motor behavior: for perspective, several spider species—just
like chimpanzees—actively manipulate manufactured objects

to secure insect prey (Goodall, 1964; Yeargan, 1994). Indeed,
it appears that in vertebrates the degree of foliation of the
cerebellum, a brain region involved in motor control, is the
better predictor of object manipulation skills than is brain size:
not only do those primates that use tools have greater cerebral
foliation than do non-tool users (Iwaniuk et al., 2009; Barton,
2012), but an increase in cerebral foliation is also associated with
nest structure complexity in birds (degree of cerebral foliation: no
nest < platform nest < cup nest; Hall et al., 2013) and variation
in frogs’ locomotor ability (number of cerebral folds: arboreal
frogs > terrestrial frogs; Manzano et al., 2017). These kinds of
comparative brain-behavior correlations, however, only hint at
potential causation; for direct evidence, experimental paradigms
are needed (Healy and Rowe, 2007)—a challenging prospect
when brain architecture is involved.

CONCLUSION

Returning to the question of why dozens of primate species
develop object manipulation slowly, the answer may sound
familiar: it is simply not yet clear. But Heldstab and colleagues’
study (Heldstab et al., 2020) has paved the way for promising
future work on the factors underpinning technological abilities,
not least because of the large developmental dataset they have
made available. These detailed data on the ontogeny of object
manipulation skills in primates can now be rigorously compared
against similar datasets in other taxa, allowing insight into
(shared and divergent) phylogenetic patterns of technological
behavior more broadly. This first, albeit brief comparison using
some of the rodent and avian nest-building data show that
Heldstab et al.’s primate-specific result may lack generality, and
that a slow life history need not explain the evolution of skilled
manipulation and technological behavior.
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