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Chemical communication within an aquatic environment creates an intricate signaling
web that provides species with information about their surroundings. Signaling
molecules, like oxylipins, mediate a multitude of interactions between free-living
members of a community including non-consumptive effects by predators. Parasites are
another source of signaling molecules in aquatic communities and contribute directly by
synthesizing them or indirectly by manipulating host chemical cues. If chemical cues of
infected hosts are altered, then non-consumptive interactions between other members
of the community may also be affected. Different cues from infected hosts may alter
behaviors in other individuals related to foraging, competition, and defense priming.
Here, we discuss how parasites could modify host chemical cues, which may have
far reaching consequences for other community members and the ecosystem. We
discuss how the modification of signaling molecules by parasites may also represent
a mechanism for parasite-modified behavior within some systems and provide a
mechanism for non-consumptive effects of parasites. Further, we propose a host-
parasite system that could be used to investigate some key, unanswered questions
regarding the relationship between chemical cues, parasite-modified behavior, and non-
consumptive effects. We explain how trematode-gastropod systems can be used to
test whether there are alterations in the diversity and amounts of signaling molecules
available, and if habitat use, immune function, and behavior of other individuals and
species are affected. Finally, we argue that changes to pathway crosstalk by parasites
within communities may have broad ecological implications.

Keywords: chemical communication, non-consumptive interactions, community dynamics, oxylipins, signaling
web, infochemicals, volatile organic compounds, non-consumptive effects

INTRODUCTION

Species obtain important information about their surroundings through intricate signaling webs
created by chemical cues (Brönmark and Hansson, 2000; van Poecke and Dicke, 2004; Vos et al.,
2006). Cues can have a variety of functions including alarm cues, chemical defense, and sex
pheromones, that impact the behavior and physiology of organisms receiving these signals (Kats
and Dill, 1998; Kaupp et al., 2006; Fink, 2007; Pohnert et al., 2007; Kita et al., 2010). Aquatic
organisms respond to minute concentrations of chemical cues within this environment (Dicke
and Sabelis, 1988; Brönmark and Hansson, 2000; Vos et al., 2006). Gradual changes in chemical
cue diversity and concentration throughout an ecosystem relays important information to species,
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creating a network or signaling web that can be used by
community members and influence community dynamics (van
Poecke and Dicke, 2004; Vos et al., 2006; Fink, 2007; Brönmark
and Hansson, 2012). As a result, many interactions, such as
predator avoidance, and parasite transmission are influenced by
cues produced in the community (Kats and Dill, 1998; Burks and
Lodge, 2002; Fink, 2007; Saha et al., 2019).

Within the aquatic community, individuals of other species
may also “eavesdrop” on this communication to obtain additional
information about their environment (Baldwin et al., 2006;
Vos et al., 2006). If predators and parasites can perceive
cues through all of the chemicals found within the aquatic
system, or “ambient noise,” they can take advantage of chemical
crosstalk to increase depredation and transmission (Schultz and
Appel, 2004; Baldwin et al., 2006; Brönmark and Hansson,
2012). For example, eavesdropping has been shown to facilitate
tritrophic interactions in aquatic communities. Plants released
oxylipins and other VOCs as they were being consumed by
herbivores, which attracted carnivores and parasitoids that
subsequently reduced herbivore performance (Martin et al., 2019;
Kergunteuil et al., 2020).

Conversely, if a species is able to perceive an increased risk of
predation or parasitism through the perception of cues released
by other individuals, they may adopt strategies to reduce this
risk (Buck et al., 2018; Weinstein et al., 2018). Indeed, chemical
cues are important mediators of non-consumptive effects (NCEs)
in predator-prey relationships (Ferrari et al., 2010; Hill and
Weissburg, 2013). Response to predator cues leads to alterations
in behavior and physiology that reduce an individual’s risk
of predation (Weissburg and Beauvais, 2015; Hermann and
Landis, 2017). Relatively less is understood about the role of
chemical cues in mediating NCEs of parasites and parasite-host
interactions (Fink, 2007; Saha et al., 2019). More work is needed
to determine whether parasites perceive and use crosstalk in
their non-consumptive interactions with their hosts and other
members of the aquatic community.

OXYLIPIN CHEMICAL CUES MEDIATE
COMMUNITY INTERACTIONS

Organisms release species-specific chemical emissions,
representing a unique cocktail of cues, including fatty acids,
amino acids, nucleotides, and other volatile organic compounds
(VOCs) (Brönmark and Hansson, 2000; Pohnert, 2002; Fink,
2007). One important group of VOCs are oxylipins, or
oxygenated metabolites of fatty acids, (de Petrocellis and di
Marzo, 1994; Baldwin et al., 2006) that have essential roles in
normal physiology, stress, and immune response of a wide
breadth of taxa, from plants to animals (Stanley-Samuelson,
1994; Fink, 2007; Caldwell, 2009; Stanley, 2014; Gabbs et al.,
2015). Each oxylipin cocktail carries complex information to the
receiver, with the specificity of the mixture being key to dictating
the response by the receiver rather than a single oxylipin alone
(Metcalf and Kogan, 1987; Wendel and Jüttner, 1996; Fink, 2007).
For example, mixtures containing eicosanoids, oxylipins formed
from C20:C22 fatty acids, affect the physiology of invertebrates,

including the neuro- and reproductive physiology of mollusks
and insect cellular defense (Stanley-Samuelson et al., 1991;
Stanley-Samuelson, 1994). Eicosanoids have also been detected
in a wide diversity of parasite species, including the trematodes
Schistosoma mansoni and Fasciola hepatica, protozoans such as
Trypanosoma brucei and Plasmodium falciparum, the cestode
Spirometra erinaceieuropaei, and nematodes Brugia malayi and
Dirofilaria immitis (Liu and Weller, 1992; Kubata et al., 1998,
2000; Ali et al., 1999; Noverr et al., 2003; Chaisson and Hallem,
2012). Although the functions of some oxylipins from some
parasites are known, considering the diversity of parasite species
and the breadth of their host taxa, the functions of oxylipins in
host-parasite interactions are largely unexplored (Noverr et al.,
2003; Chaisson and Hallem, 2012).

Oxylipins are released by all biota transported within their
environment, received and perceived by another individual,
leading to possible changes in behavior depending on the
receiver’s state or species (Baldwin et al., 2006; Fink, 2007).
The reception of these chemical cues may trigger chemokinesis
and chemiotaxis in a wide diversity of species in response
to the presence of a specific cocktail of cues and play an
important role in species interactions within aquatic systems
(de Petrocellis and di Marzo, 1994; Fink, 2007; Pohnert et al.,
2007; Poulson et al., 2009; Brönmark and Hansson, 2012).
For example, oxylipin cocktails released from a benthic diatom
(Achnanthes biasolettiana) were attractive to the Wandering
snail (Radix ovata) (Fink et al., 2006a). Yet, another diatom
species (Gomphonema parvulum) was not attractive to the snail,
demonstrating that differences in oxylipin cocktails between
species were detected and elicited a differential response from the
snail (Fink et al., 2006a,b; Fink, 2007).

Preliminary research suggests that oxylipins may strongly
influence ecosystem processes and fine-scale community
structure, through structuring planktonic food webs, and
influencing patchiness of consumers within ecosystems (Pohnert
et al., 2007; Moelzner and Fink, 2015a; Saha et al., 2019).
Gastropods respond to oxylipin cues from food sources and
shift their behavior in response to food resource quality
(Moelzner and Fink, 2014, 2015a). As snails actively grazed
upon food sources, chemicals released by the snail and its
prey provide information about the quality and types of food
resources in the environment (Moelzner and Fink, 2015b).
The perception of these cues is a potential mechanism behind
the patchy distribution of herbivores within communities
(Moelzner and Fink, 2015a).

Parasites themselves use chemoperception of host-generated
oxylipins to facilitate transmission to hosts (Daugschies and
Joachim, 2000; Noverr et al., 2003; Chaisson and Hallem, 2012).
For example, host-seeking by sea lice (Lepeophtheirus salmonis)
is mediated by the parasite’s attraction to isophorone, an oxylipin
expressed by salmon hosts (Salmo salar and Scophthalmus
maximus) (Ingvarsdóttir et al., 2002; Bailey et al., 2006). Similarly,
aquatic transmission of larval blood flukes (Schistosoma spp.)
to invertebrate (miracidia stage) and vertebrate (cercariae stage)
hosts is increased in the presence of particular host-derived
oxylipins (Fusco et al., 1986; Allan et al., 2009). In this system,
not only do a larger percentage of cercarial blood flukes penetrate
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hosts, but the parasite also alters the biosynthesis of some of
their own oxylipins (Fusco et al., 1986; Nevhutalu et al., 1993;
Chaisson and Hallem, 2012). If the host’s behavior is affected by
this change in the parasite oxylipins, this could be an instance
where oxylipins mediate NCEs in host-parasite interactions.
But, despite the potential importance of oxylipins in structuring
community interactions, oxylipin cocktails are not well studied
in aquatic systems and most of this research has focused on two-
way interactions between free-living species (Fink, 2007; Saha
et al., 2019). Given the preponderance of parasites in aquatic
systems, more work is needed to understand the key molecules
in chemoperception by parasites, whether parasites alter their
oxylipins after receiving host cues, and whether these in changes
parasite cues induce changes in community interactions (Fink,
2007; Pohnert et al., 2007; Sures et al., 2017).

PARASITE IMPACTS ON CHEMICAL
COMMUNICATION

Parasitism of aquatic hosts can lead to behavioral and
physiological changes in the host, including the alteration of
feeding rates, stress response, survival, and competition (Park,
1948; Rivero and Ferguson, 2003; Bedhomme et al., 2005; Lefèvre
et al., 2009; Friesen et al., 2020). Host behavioral modifications
can include changes in activity levels, aggression, boldness,
microhabitat use, and attraction of uninfected host species (Kunz
and Pung, 2004; Mikheev et al., 2010; Reisinger et al., 2015;
Friesen et al., 2018; Eliuk et al., 2020). It is often suggested that
chemical cues may be mediating these types of behaviors and
interactions albeit through indirect evidence (e.g., Rohr et al.,
2009; Eliuk et al., 2020). As a result, our understanding of how
parasites may impact chemical communication in an ecological
context is not well understood.

Although a few hypotheses have been proposed to explain
changes in host behavior, the potential mechanisms, including
the role of chemical communication, are rarely explored (Poulin,
2010; Heil, 2016; Herbison et al., 2018). One hypothesis proposes
that parasites may cause pathology to their host, and the side
effects or byproducts of this pathology may lead to changes
in host behavior and physiology (Pohnert, 2002; Poulin, 2010;
Heil, 2016). Oxylipins may be one potential mechanism for this
hypothesis as oxylipins are released by some hosts in response
to an attack, or tissue damage (Morishima et al., 1997; Funk,
2001). Wound-activated lipases can start to liberate oxylipins as
disease progresses and even mediate symptoms (Pohnert, 2002;
D’Ippolito et al., 2004; Maibam et al., 2014). During this process,
the oxylipin cocktail released by the host may include these novel
or upregulated oxylipins, altering its composition and thereby
affecting interactions relying on this chemical communication.

An alternative hypothesis proposes that an adaptive response
to infection may be a mechanism for alterations in host behavior
due to parasites (Poulin, 2010). The host may change its behavior
or physiology in order to either mitigate the consequences of
this infection or to be rid of the infection or infestation all
together (Poulin, 2010; Heil, 2016). Oxylipins are known to
modulate the immune response of insects and plants in response

to pathogens and predation in a variety of ecosystems (Stanley-
Samuelson et al., 1991; Noverr et al., 2003; Pozo et al., 2004;
Pieterse and Dicke, 2007). Hosts may produce different amounts
or combinations of oxylipins in attempts to remove infection
(Noverr et al., 2003; Heil, 2016).

Finally, parasites may directly manipulate their hosts through
biochemical interference (Poulin, 2010). Many parasite species
are known to produce a variety of oxylipins (Noverr et al., 2003;
Chaisson and Hallem, 2012). Parasites may use oxylipins to their
advantage and produce oxylipins that modulate host immune
systems as a way to protect themselves (Noverr et al., 2003).
Parasites have evolved mechanisms to suppress the host defense
response by interfering with key pathway regulators (Angeli
et al., 2001; Pozo et al., 2004). We suggest that altering oxylipins
released by the host or the release of oxylipins by the parasite
are adaptive avenues by which the parasite could directly modify
their host behavior in a manner that would benefit the parasite,
such as increased transmission.

Parasite modification of chemical cues released by their host,
through any of the mechanisms described above, will affect
interactions and other physiological processes involving these
cues. Oxylipins have crucial hormone-like functions within
species and play roles in secondary metabolite biosynthesis
(Holighaus and Rohlfs, 2019). If parasites release novel or higher
amounts of oxylipins than their hosts or induce changes in the
production of oxylipins by their host, this may induce behavioral
changes in their host, such as boldness and feeding rates, as many
oxylipins are well-known as extracellular signaling molecules
(Noverr et al., 2003; Gabbs et al., 2015). Additionally, if an
altered oxylipin cocktail contains novel or an increased amount of
oxylipins that induce chemotaxis by conspecifics (e.g., oxylipins
used in mate finding, prey seeking), the change in cocktail may
lead to attraction of novel hosts (including predators) increasing
the chances of successful transmission.

NON-CONSUMPTIVE EFFECTS OF
PARASITISM MEDIATED BY ALTERED
CUES

To avoid parasitism, host species may adjust their behavior and
physiology (Rohr et al., 2009; Horn et al., 2020). These NCEs of
parasites are an ecological consequence of novel host responses to
infection risk (Rohr et al., 2009; Koprivnikar and Penalva, 2015).
The importance of NCEs of parasites and the role of chemical
cues in these interactions has been recognized but much is still
not understood (Rohr et al., 2009). For example, tadpoles (Bufo
americanus) exhibited avoidance behavior and elevated activity
in response to chemical cues produced by a snail (Planorbella
trivolvis) shedding Echinostoma trivolvis cercariae (Rohr et al.,
2009). A potential mechanism for these effects is manipulation
of oxylipin cocktails by the parasite, by altering the production of
host oxylipins or releasing oxylipins of its own.

If parasites alter the oxylipin cocktail of their host, parasites
can alter the signaling web. Other individuals within the
community may receive different signals and as a result alter
their behavior because of the modifications in the oxylipin
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cocktails (Vos et al., 2006). In some cases, other conspecifics and
heterospecifics may have evolved to respond to these changes,
like responses to alarm cues, by reacting to an imminent risk
of becoming infected themselves. Alterations could include an
uninfected individual actively changing phenotypic traits, like its
behavior, physiology, or habitat use to avoid becoming infected
(Hill and Weissburg, 2013). A naïve host may prime their
immune system in response to the perceived risk of becoming
infected, which is likely to be energetically costly (McPherson
et al., 2018). The defense priming of other naïve species may
have additional consequences to the transmission success of
other parasites within the ecosystem, which in turn may have
cascading impacts on the entire community (Friesen et al., 2020).
As a defense to the perceived risk, individuals may spend time
trying to avoid the threat, but in turn this may increase their
vulnerability to predation by reducing time spent on effective
defenses and foraging, reducing their ability to compete for
resources, and reducing energy available to reproduce, develop
and/or grow (Koprivnikar and Penalva, 2015). These altered

cues within aquatic signaling webs could also provide one
mechanism driving the “ecology of fear” in these communities
(Buck et al., 2018; Weinstein et al., 2018; Zanette and Clinchy,
2019). Further, modified cues may ultimately lead to altered
species abundance and distribution, and competition resulting
in potentially dramatic impacts on ecosystems (Thiemann
and Wassersug, 2000; Marino et al., 2014; Buck et al., 2018;
Horn et al., 2020).

FUTURE DIRECTIONS AND MODEL
SYSTEMS

Due to our limited understanding of the extent that oxylipins
mediate interactions, including NCEs, many effects of oxylipin
modification remain speculative and require further research.
Gastropods and trematode parasites are ubiquitous, have
essential functional roles, and their interactions are fundamental

FIGURE 1 | Interactions in a freshwater community potentially mediated by chemical cues originating from a trematode-infected gastropod. Many of these
interactions include non-consumptive effects of parasites that may be mediated by oxylipins [Dotted lines (and labels in bold)]. All interactions would be impacted by
any change in the gastropod’s oxylipins, which would then have far reaching consequences for the surrounding community. Figure created with BioRender.com.
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to community dynamics within aquatic ecosystems (Hawkins
and Furnish, 1987; Fink et al., 2006a; Wojdak and Mittelbach,
2007; Strong et al., 2008). Thus, they present promising
systems to test hypotheses related to the role of oxylipins
in mediating NCEs of parasites. Gastropods serve as
intermediate hosts to trematode parasites, which infect a
wide variety of other host species to complete their life
cycles. As trematodes penetrate, migrate, develop, and feed
in gastropods, the oxylipin cocktails emitted by these hosts
may change. For example, as redial stages of trematodes
consume gonad tissue, oxylipins important for reproductive
activities of gastropods may be reduced or eliminated.
Gastropod hosts may also alter their oxylipin cocktail to
increase their reproductive output in order to mitigate the
costs of infection, such as a shortened life span or castration
(Sorensen and Minchella, 2001).

As gastropods and trematodes are known to both produce
and respond to oxylipins and represent a crucial interaction
within aquatic communities, these model systems are ideal for
testing the role of oxylipins in mediating NCEs of parasites
within aquatic environments (see Figure 1). Currently, the
chemical cues of schistosome and echinostome trematodes have
received the most attention (e.g., Haas et al., 1995; Noverr
et al., 2003; Chaisson and Hallem, 2012; Langeloh and Seppälä,
2018). These trematodes could be further explored to test if
the behavior or physiology (e.g., immune function) of their
conspecific or heterospecific snail hosts are altered in response
to exposure to the chemical cocktails produced by infected
snails compared to cocktails produced by uninfected snails, or
trematodes themselves (Figure 1; Rohr et al., 2009; Langeloh and
Seppälä, 2018; Eliuk et al., 2020). Oxylipin cocktails produced by
infected snails can be characterized, isolated and used to directly
test the role of chemical signals in mediating NCEs of parasites.
Further, exposure to these modified chemical cocktails alone
could be used to test differences in behavior by other snails and
other aquatic community members, such as their foraging time,
habitat use, reproductive output, competition, and the ability
to evade predators. The generality and strength of alterations
to oxylipins in response to infection and their consequences in
mediating interactions could be assessed by testing across the
diversity of trematodes and snail hosts, between hosts within
a life cycle, and according to host-specificity of the trematode.
Further, the dynamic nature of chemical communication in snail
trematode-systems can be investigated in different contexts such
as in controlled laboratory, semi-natural, and natural conditions.

As oxylipins are impacted by shifts in temperature, we can
test whether signaling webs and pathway crosstalk involving
gastropods and trematodes are being affected by climate change.
Emerging research has demonstrated that alterations in oxylipin
cues change the outcome of predator-prey interactions (Zupo
et al., 2015). Many non-target individuals will be receiving and

responding to parasite-modified cues within the signaling web,
which may lead to unpredictable changes to the community
(e.g., freshwater fish, Fisher et al., 2006). Given the indirect
evidence available, we think it is reasonable to suggest variation
in parasite diversity and abundance, which ultimately alters the
signaling web of a community, may have similarly dramatic
impacts on aquatic communities by mediating NCEs of parasites
within the community.

In addition, as trematode parasites are ubiquitous throughout
aquatic ecosystems and often dominate the biomass of
communities, the alteration of chemical cues, like oxylipin
cocktails, through parasite infection, may have far reaching
effects, modifying the signaling web and affecting pathway
crosstalk (Mitchell, 2003; Kuris et al., 2008; Lagrue and Poulin,
2016; Paseka, 2017). Because gastropod-trematode systems can
be readily studied in nature and the lab, the impacts of NCEs of
parasites mediated by chemical cues can be explored in a variety
of contexts. They provide an ideal opportunity to investigate the
role of chemical cues in influencing ecological interactions (from
individual to community level) and ecosystem processes.
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