AUTHOR=Labandeira Conrad C. TITLE=Ecology and Evolution of Gall-Inducing Arthropods: The Pattern From the Terrestrial Fossil Record JOURNAL=Frontiers in Ecology and Evolution VOLUME=9 YEAR=2021 URL=https://www.frontiersin.org/journals/ecology-and-evolution/articles/10.3389/fevo.2021.632449 DOI=10.3389/fevo.2021.632449 ISSN=2296-701X ABSTRACT=

Insect and mite galls on land plants have a spotty but periodically rich and abundant fossil record of damage types (DTs), ichnotaxa, and informally described gall morphotypes. The earliest gall is on a liverwort of the Middle Devonian Period at 385 million years ago (Ma). A 70-million-year-long absence of documented gall activity ensues. Gall activity resumes during the Pennsylvanian Period (315 Ma) on vegetative and reproductive axial organs of horsetails, ferns, and probably conifers, followed by extensive diversification of small, early hemipteroid galler lineages on seed-plant foliage during the Permian Period. The end-Permian (P-Tr) evolutionary and ecological crisis extinguished most gall lineages; survivors diversified whose herbivore component communities surpassed pre-P-Tr levels within 10 million years in the mid-to late Triassic (242 Ma). During the late Triassic and Jurassic Period, new groups of galling insects colonized Ginkgoales, Bennettitales, Pinales, Gnetales, and other gymnosperms, but data are sparse. Diversifying mid-Cretaceous (125–90 Ma) angiosperms hosted a major expansion of 24 gall DTs organized as herbivore component communities, each in overlapping Venn-diagram fashion on early lineages of Austrobaileyales, Laurales, Chloranthales, and Eurosidae for the Dakota Fm (103 Ma). Gall diversification continued into the Ora Fm (92 Ma) of Israel with another 25 gall morphotypes, but as ichnospecies on a different spectrum of plant hosts alongside the earliest occurrence of parasitoid attack. The End-Cretaceous (K-Pg) extinction event (66 Ma) almost extinguished host–specialist DTs; surviving gall lineages expanded to a pre-K-Pg level 10 million years later at the Paleocene-Eocene Thermal Maximum (PETM) (56 Ma), at which time a dramatic increase of land surface temperatures and multiplying of atmospheric pCO2 levels induced a significant level of increased herbivory, although gall diversity increased only after the PETM excursion and during the Early Eocene Climatic Optimum (EECO). After the EECO, modern (or structurally convergent) gall morphotypes originate in the mid-Paleogene (49–40 Ma), evidenced by the Republic, Messel, and Eckfeld floras on hosts different from their modern analogs. During subsequent global aridification, the early Neogene (20 Ma) Most flora of the Czech Republic records several modern associations with gallers and plant hosts congeneric with their modern analogs. Except for 21 gall DTs in New Zealand flora, the gall record decreases in richness, although an early Pleistocene (3 Ma) study in France documents the same plant surviving as an endemic northern Iran but with decreasing associational, including gall, host specificity.