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The growth of biodiversity data sets generated by citizen scientists continues to
accelerate. The availability of such data has greatly expanded the scale of questions
researchers can address. Yet, error, bias, and noise continue to be serious concerns
for analysts, particularly when data being contributed to these giant online data sets are
difficult to verify. Counts of birds contributed to eBird, the world’s largest biodiversity
online database, present a potentially useful resource for tracking trends over time
and space in species’ abundances. We quantified counting accuracy in a sample
of 1,406 eBird checklists by comparing numbers contributed by birders (N = 246)
who visited a popular birding location in Oregon, USA, with numbers generated by a
professional ornithologist engaged in a long-term study creating benchmark (reference)
measurements of daily bird counts. We focused on waterbirds, which are easily visible at
this site. We evaluated potential predictors of count differences, including characteristics
of contributed checklists, of each species, and of time of day and year. Count differences
were biased toward undercounts, with more than 75% of counts being below the daily
benchmark value. Median count discrepancies were −29.1% (range: 0 to −42.8%;
N = 20 species). Model sets revealed an important influence of each species’ reference
count, which varied seasonally as waterbird numbers fluctuated, and of percent of
species known to be present each day that were included on each checklist. That
is, checklists indicating a more thorough survey of the species richness at the site
also had, on average, smaller count differences. However, even on checklists with the
most thorough species lists, counts were biased low and exceptionally variable in their
accuracy. To improve utility of such bird count data, we suggest three strategies to
pursue in the future. (1) Assess additional options for analytically determining how to
select checklists that include less biased count data, as well as exploring options for
correcting bias during the analysis stage. (2) Add options for users to provide additional
information that helps analysts choose checklists, such as an option for users to tag
checklists where they focused on obtaining accurate counts. (3) Explore opportunities to
effectively calibrate citizen-science bird count data by establishing a formalized network
of marquis sites where dedicated observers regularly contribute carefully collected
benchmark data.

Keywords: biodiversity benchmarks, birder behavior, citizen science, eBird, statistical bias, statistical error,
wildlife counts
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INTRODUCTION

Contributions of volunteers to scientific databases are increasing
as the popularity of citizen science continues to grow (Miller-
Rushing et al., 2012; Chandler et al., 2017). Many citizen
science projects are open-access and anyone can contribute
observations without required training in best data collection
practices (Cohn, 2008). eBird is an open online database with
more than 560,000 users (eBirders) contributing millions of
bird observations annually via checklists (Sullivan et al., 2009).
Each checklist contains a list of bird species identified on a
particular date and, ideally, counts of each species, as well
as information on location visited, basic protocol used while
birding (traveling, staying stationary, etc.), and duration of
effort (Wood et al., 2011). The huge spatial extent of presence-
absence data in eBird has facilitated efforts to model species
distributions across continental and global spatial scales once
data have been filtered to exclude potentially problematic
checklists (Fink et al., 2013). The degree to which the count
data may reliably inform scientific and management objectives
remains unclear.

Although efforts to quantify issues associated with bird species
detection have been studied and continue to be developed, both
in citizen science databases and in structured scientific surveys
(Buckland et al., 2008; Hutto, 2016; Walker and Taylor, 2017), less
is known about potential counting errors and biases leading to
noisy data. Counting birds is difficult, even by the most proficient
observers (Robbins and Stallcup, 1981; Robinson et al., 2018).
Methods to account for detection issues in bird counting studies
continue to expand with development of new data collection
and analytical methods (Buckland et al., 2008; Barker et al.,
2018). Nearly all the methods, however, require a sophisticated
sampling protocol that would exclude most volunteer birder
contributions and therefore limit the advantages of gathering
data at massive geographic scales. Yet, the potential windfall
from large quantities of data can quickly be eroded if a lack of
structured protocols leads to data quality concerns (Kelling et al.,
2019). Given that abundance is one of the fundamental influences
on population dynamics, functional roles in ecosystems, and
even extinction risk (Brown, 1984), a better understanding of
the potential value of count data contributed to massive online
databases by untrained volunteers is needed (Greenwood, 2007).
For example, species count errors in eBird data could limit our
abilities to observe important abundance trends (Horns et al.,
2018). Effective processes for evaluating and handling such errors
need further development, owing to the potentially huge value of
tracking population changes at continental and even global scales
during this era of rapid environmental change (Bird et al., 2014;
Fink et al., 2020).

Among the primary concerns are errors, bias and noise.
Errors, for our purposes here, are differences in counts between
a reference (benchmark) value and values included in eBird
checklists for the same species on the same date. Errors are
comprised of both bias and noise. Bias is the tendency for the
errors to be consistently higher or lower than the reference value.
Noise is the additional random counting error that increases
variance of the counts. All three impede efforts to determine

true count values, and are challenges common to many branches
of biology (West, 1999; Guillery, 2002). We acknowledge that
labeling such count differences as errors risks offending some
eBird contributors. Errors, bias and noise all have objective
statistical definitions. Our applications of the terms here are
intended to improve understanding of the sources of variability in
eBird count data. To acknowledge that there are sources of error
in all measurements, however, we often refer to such deviations
as count differences. We consider the terms “error” and “count
differences” to be synonymous.

Robust comparisons of count differences are improved when
data are collected in situations where detectability challenges
are expected to be low. Such situations are rare but uniquely
valuable. We used an extensive data set focused on benchmarking
the richness and abundances of birds at a water treatment
site in Oregon, USA. We compared count data gathered by
a professional ornithologist focused specifically on creating
an accurate benchmark measurement of daily fluctuations in
waterbird counts with counts submitted by birders to eBird. We
quantified the magnitude and directionality of count differences.
Our data span 10 years and include 1,406 eBird checklists
contributed by 246 observers, as well as 2,038 checklists in
the benchmark data. The site is well suited for rigorous
comparisons because all waterbirds are in the open, largely
tolerant of human activity, and so provide a best-case scenario for
detection, identification, and counting of birds. No adjustments
for detectability or availability issues should be needed because
all parts of the ponds are visible. Thus, discrepancies in counts
between a professional observer focused on obtaining accurate
numbers and data reported to eBird should be attributable
to counting errors instead of availability and detectability
issues. While there could be very minor detectability issues,
like some diving waterbirds being under water briefly, the
vast majority of error in this setting should be attributable
to counting error.

We first quantified count differences then sought to
understand potential factors explaining the magnitude and
directionality of count differences. We hypothesized that count
differences would be influenced by traits associated with the
species being counted, with an index of observer experience
(percent of species detected), and with seasonal changes in
numbers of birds present. For example, we expected count
differences might be slightly greater for diving ducks, which are
sometimes briefly under water while foraging, and lower for
dabbling species, which sit in the open continuously. We expected
smaller count differences in checklists that included a higher
proportion of the species present each day. We also hypothesized
that count differences would be greater when overall total number
of waterbirds present was high, potentially causing observers to
be overwhelmed and therefore more prone to counting errors.
Finally, we explored the possibility that, even if count data were
biased on individual checklists, the waterbird community might
be adequately characterized as a whole by combining count
data from multiple observers and checklists. We conclude by
proposing additional approaches that may reveal the extent to
which citizen-science bird count data may be used to estimate
abundances reliably.
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MATERIALS AND METHODS

Study Area
Bird count data were gathered from 2010 to 2019 at the
Philomath Wastewater Treatment facility, in Philomath, Oregon
USA. The site contained two 35-ha ponds until 2011 when two
additional 35-ha ponds were added. Each pond is rectangular
and enclosed by a berm with a single-lane road. Birders
circumnavigate the ponds typically by vehicle, rarely by walking
or bicycling; WDR drove. Vegetation does not obscure the view at
any pond. All shores are covered by large rocks (riprap). Birders
circle all four ponds during a visit, very rarely restricting visits
to fewer ponds. We found that the distribution of visit durations
was unimodal (median = 60 min; Median Average Deviation
(MAD) = 37; skew = 1.161; N = 1,646 checklists) suggesting that
birders use similar methods while at the ponds.

Study Species
We included 20 species we refer to as “waterbirds,” species that
swim in the open while on the ponds and should be easily seen
(Table 1). The species are primarily ducks and geese, but also
include grebes, American Coot (Fulica americana), and gulls.
These are species birders identify by sight, not by sound. We
excluded species that occurred primarily as fly-overs, such as
Cackling Goose (Branta hutchinsi), species whose counts rarely
exceeded two per day, and species whose numbers varied strongly
within a day. The number of waterbirds present at the site varied
seasonally from a few dozen during mid-summer (June) to 5,000
or more during fall migration (October-November).

Benchmark Counts
All birds of all species were counted during each site visit by
WDR. We call these our benchmark counts (R∗) and they serve
as the reference values against which all other count data are
compared. Waterbird counts were made to plus or minus one
individual except for Northern Shoveler (Spatula clypeata), which
were plus or minus 10 because they forage in constantly moving
dense aggregations rendering more precise counts problematic,
and Bufflehead (Bucephala albeola), which were counted to plus
or minus 5 because they dive so frequently while foraging in
the early morning period surveyed by WDR that more accurate
counts were difficult. Counts were tallied separately for each
species on each pond then aggregated later. On average, except
for shovelers and coots, the two most numerous species at the
site, the number of individuals of the remaining 18 species was
less than 15 individuals per pond on 90% of dates. Numbers
of several species were greater for 5 weeks in fall but the same
method of individually counting birds was employed. In the
time frame of the daily counts, movements between ponds were
normally minimal. Duration of counting time was recorded
separately for each pond.

On some days (N = 84), WDR counted birds more than
once. These second-visit data, which we call Ref2 counts, were
also complete counts of the study species and averaged 13%
shorter in duration. Ref2 counts were used to characterize within-
day variability in numbers across the 10-year study period. We

consider them to provide a conservative estimate of variability
in R∗ counting accuracy because they were largely conducted
on days with exceptional levels of migratory movements. Thus,
they estimate a probable upper bound on the expected amount
of within-day variability in waterbird numbers and R∗ count
accuracy (averaging 0 to −8% across the 20 species). We also used
these Ref2 data to evaluate time-of-day effects when comparing
WDR counts with data from the ten observers contributing
the most study site data to eBird, because eBirders tended to
count birds later in the day than did WDR. The times of day
eBird checklists were initiated as well as the difference in start
times of eBird and benchmark checklists were unimportant in
predicting percent error in our across-species and species-specific
model sets. Therefore, we concluded that comparisons of count
differences between R∗ and eBird checklists were appropriate and
that possible time-of-day effects could be ignored.

Our R∗ counts are from one expert observer. R∗ counts are not
without error. Aside from comparisons with Ref2 counts made by
the same observer, our data lack contributions from other experts
as independent quantifications of accuracy and potential error
of R∗ counts. To estimate the error in R∗ counts, we compared
counts made in the field with counts in photos taken within 2 min
of count completion. Comparisons were made in November and
December, 2020, and included a range of count values from 1 to
1,050 for 17 of our 20 waterbird species (2 gulls and the scoter are
not normally detected in November and December).

eBird Checklists
We downloaded eBird checklists from the Philomath Sewage
Ponds eBird hotspot as well as eBirder personal locations within
1 km from 2010 to 2019. Only data obviously restricted to the
ponds were included. No other waterbird sites are present within
4 km of the site. Most eBirders used the pre-established hotspot
as the checklist location but some created new personal locations
each time. We included eBird checklists following the stationary,
traveling, and area protocols. We removed checklists with greater
than ten observers or durations of over 5 h. We included only
complete checklists with all birds reported and removed any
checklists where observers reported no waterbirds. From each
complete eBird checklist, we collected data on date, start time,
observer, duration of count, identity of waterbird species reported
(to allow calculation of percent richness; see below), and count
data for our 20 focal species. When species were recorded as
present but not counted (X noted instead of a number), those data
were excluded because no count difference could be calculated.

Comparisons of Count Data
We restricted our comparisons to dates where WDR counted
birds and at least one eBird checklist was contributed on the
same day (N = 767 dates). Our questions were about counting
differences and not detection rates of rare species, so we further
restricted our comparisons to counts of greater than three for
each species detected on WDR’s first visit (R∗). We calculated
the Count Difference for each species by subtracting R∗ from
eBird counts on each checklist. Count differences were positive
when eBird checklists reported higher numbers than R∗ or
negative when eBird checklists reported fewer birds than R∗.
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TABLE 1 | Twenty species were included in the study. Scientific names, sequence, and short-hand codes follow American Ornithological Society
(http://checklist.aou.org/taxa).

English name Scientific name Code Dabbler (0) or diver (1) Dispersed (0) or aggregated (1) Plumage dichromatism

Wood duck Aix sponsa wodu 0 0 1

Cinnamon teal Spatula cyanoptera cite 0 0 0

Northern shoveler Spatula clypeata nsho 0 1 1

Gadwall Mareca strepera gadw 0 0 1

American wigeon Mareca americana amwi 0 1 1

Mallard Anas platyrhynchos mall 0 0 1

Northern pintail Anas acuta nopi 0 0 1

Green-winged teal Anas crecca gwte 0 1 1

Canvasback Aythya valisineria canv 1 0 1

Ring-necked duck Aythya collaris rndu 1 1 1

Lesser scaup Aythya affinis lesc 1 0 1

Surf scoter Melanitta perspicillata susc 1 0 0

Bufflehead Bucephala albeola buff 1 0 1

Hooded merganser Lophodytes cucullatus home 1 0 0

Ruddy duck Oxyura jamaicensis rudu 1 1 0

Pied-billed grebe Podilymbus podiceps pbgr 1 0 0

Eared grebe Podiceps nigricollis eagr 1 0 0

American coot Fulica americana amco 0 1 0

Ring-billed gull Larus delawarensis rbgu 0 0 0

California gull Larus californicus cagu 0 0 0

See text for definitions of dabbler vs. diver and dispersed vs. aggregated foragers. Plumage sexual dichromatism was scored based on the period of year in which the
species is most numerous at the study site: weak or no dichromatism (0) and moderate to strong dichromatism (1).

Numeric values of count differences spanned three orders of
magnitude, so we focus on reporting Percent Error, which
we calculated by converting each difference to a proportion
of R∗.

Hypothesized Predictors of Percent Error
To evaluate factors hypothesized to be associated with percent
error, we included variables associated with species, checklists,
time of year and observer experience. Species characteristics
included categorization as dabbler vs. diver, degree to which
species form dense aggregations, and the degree of sexual
dimorphism. Checklist characteristics included start time,
duration and number of observers. Time-of-year characteristics
were associated with daily numbers of waterbirds (R∗, Ref2 and
their sums for all 20 species) and waterbird species richness
present at the study site [measured as the richness detected by
the professional (proRichness) as well as the aggregate of species
listed in eBird checklists and proRichness]. Because observer
experience at the site might also influence counting accuracy, we
compared data from the 10 observers who contributed the most
checklists with the R∗ and Ref2 benchmark data. Additional
details on each variable are explained below.

Species Characteristics
To explore patterns of species-specific variability in count data,
we created categorical variables for species traits that might
impact counts (Table 1). We categorized birds as dabblers vs.
divers. Dabblers were any species that foraged primarily by
swimming on the surface of the water, which included gulls,
American Coot, and Aix, Anas, Mareca, and Spatula ducks.

Divers foraged below water regularly and included scoters,
grebes, and Aythya and Bucephala ducks.

We also included an index of spatial aggregation on the ponds.
Some species, for example Northern Shoveler, often forage in
densely packed groups, creating challenging circumstances to
accurately count birds, while other species forage singly or as
spatially-distanced groups where enumeration should be much
easier. The aggregation index was simply a subjective binary
classification (0 for foraging alone or in loose aggregations vs. 1
for foraging in aggregations that might render counting difficult)
based on our years of experience at the site.

The degree of plumage dimorphism and similarity to other
species could influence error and bias in counts because of species
misidentification. We categorized species as those with weak or
no obvious plumage dichromatism during most of the period of
time when each species was present (e.g., geese, coots) vs. strong
dichromatism (males and females distinctly visually different).

To evaluate the possibility that species identification of similar
species might influence count differences, we used another
subjective binary category called “Doppelganger;” 1 indicated the
species co-occurred with a similar species whereas 0 indicated the
species was unique in appearance and unlikely to be confused
with other species. The categorization may vary seasonally,
especially in late summer when many waterbirds molt to eclipse
plumage. Because total waterbird numbers were low during late
summer, we utilized one value for each species.

Checklist Characteristics
Daily start time among eBird checklists was highly variable,
covering all daylight hours. The mean start time was 4 h
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later than the mean start time for WDR visits. Although we
only compared counts conducted on the same day, we wanted
to evaluate potential effects of time-of-day and temporal lag
between the eBird checklist counts and R∗. To do so, we
converted checklist start time to minutes since midnight then
calculated the difference in start time between eBird checklists
and WDR first visits.

Because our Ref2 counts occurred later in the day when more
eBird checklists were initiated, we included Ref2 as an “additional
observer” in some comparisons to provide an important check
on within-day variability in counts as a possible explanation for
count differences between R∗ and eBird checklists. Because Ref2
counts were generated on days with high levels of migratory
movement, we consider the count differences between R∗ and
Ref2 to represent an upper bound on expected levels of within-
day variability in waterbird numbers.

Additional factors associated with each checklist could
influence count differences. We reasoned that duration of time
spent at the site should be positively related to count accuracy.
All complete eBird checklists are required to have a measurement
of event duration.

Number of observers might also influence counting accuracy,
so we included the reported number of observers for each eBird
checklist. The R∗ and Ref2 counts were made when WDR was
alone more than 99% of all dates.

Time-of-Year Characteristics
Date influences the number of species present as well as the
abundances of each species. Both richness and abundance could
influence counting accuracy so we included day of year in
our models. Because we hypothesized that total number of
all waterbirds combined may influence counting accuracy, we
included R∗ counts of all 20 study species and the combined
daily total of all waterbirds in our model sets. In that way,
we established the baseline numbers of waterbirds known to
be present as a function of date. In calculating total waterbird
abundance, we used data limited to the 20 study species and
excluded a subset of species known to have high daily variability
in counts, such as geese, which occurred primarily as fly-overs.
The other species excluded from our focal group of 20 species
were numerically rare. Further, to determine if percent error was
influenced by the number of each particular species as opposed
to overall waterbird abundance, we included R∗ of each relevant
species in our model sets.

We hypothesized overall waterbird species richness present at
the site on a given date may influence counting accuracy. A higher
number of species to identify could reduce focus for achieving
accurate counts, particularly for the more regularly-occurring
and common species (e.g., Mallards, Northern Shovelers).
Therefore, we included in our models the total waterbird richness
detected by WDR each day. Our analyses indicated that richness
observed by WDR and total waterbird richness detected by all
eBird contributors were highly correlated. We calculated daily
Percent Richness based on the 35 possible waterbird species
at the site and included that richness in our models (see
Supplementary Text for a list of species). The other 15 species
that formed our set of 35 waterbird species included: Snow

Goose (Anser caerulescens), Greater White-fronted Goose (Anser
albifrons), Cackling Goose (Branta hutchinsii), Canada Goose
(Branta canadensis), Blue-winged Teal (Spatula discors), Eurasian
Wigeon (Mareca penelope), Redhead (Aythya americana), Tufted
Duck (Aythya fuligula), Greater Scaup (Aythya marila), White-
winged Scoter (Melanitta deglandi), Black Scoter (Melanitta
americana), Long-tailed Duck (Clangula hyemalis), Common
Goldeneye (Bucephala clangula), Barrow’s Goldeneye (Bucephala
islandica), and Common Merganser (Mergus merganser).

Observer Experience
Observer experience at the site could also be influential, so
we compared percent error in counts from the ten observers
contributing the most eBird checklists at our study site with the
R∗ and Ref2 counts.

Data Analyses
We used the “lmer” package in R (R Core Team, 2020) to
run mixed-effects models. Our overarching goal was to identify
factors informative for explaining variation in Percent Error, our
dependent variable in all models. We included observer ID and
species as random effects to account for observer- and species-
specific error when appropriate. We included four categorical
species characteristics as fixed effects in our model sets: Dabbler
or Diver; Sexually Dichromatic or not; Doppelganger or not;
and Aggregated or not. Five checklist-related characteristics were
included as fixed effects: start time (minutes since midnight),
difference in start time between WDR’s first count of a day and
each eBird checklist, duration (minutes), number of observers,
and day of year. Four fixed-effects related to time-of-year were
also included: R∗ (WDR’s reference count of each species, which
varied seasonally), waterbird abundance (aggregated across all
species), total waterbird species richness and percent richness,
our index of observer skill at species identification. We included
models with the quadratic effects of species-specific abundance,
waterbird abundance, waterbird richness, duration, number of
observers, day of year, and percent richness to examine potential
non-linear shapes of their effects.

Before running mixed effects models, we scaled and centered
all numeric variables. We assessed model performance through
BIC and propagated best-performing shapes for each variable
to multi-variable models. We used a forward stepwise approach
and added additional potentially influential variables to the best-
performing model until a stable (i.e., model remained the top
model after the inclusion of additional variables) top-performing
BIC model was identified.

Although count difference was normally distributed, percent
error was not. Non-detections of species that were detected by
WDR (eBird counts of zero) equal negative 100 percent error.
Non-detections caused a bimodal distribution of percent error
with a second peak at negative 100 percent. We removed non-
detections to create a unimodal distribution of percent error.
When non-detections were removed, percent error was heavily
right-skewed due to the high number of negative percent errors
and the few very large positive percent errors. To adjust skew,
we added a constant to make all values positive and log (base
10) transformed percent error. In addition to adjusting skew,
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removal of non-detections improved the focus of our analyses
on count errors, reducing chances that inclusion of zero counts
of species might actually be species detection or identification
problems instead of counting errors. Our restriction of counting
error analyses to species detected in numbers of 3 or greater
probably limited most effects of zero counts. In this paper we
focus on analyses of data excluding non-detections but report
some analyses in Supplementary Materials to show the effects
of including non-detections (zero counts) on results. It is possible
that an unknown number of zero counts were a result of reporting
errors (data entry mistakes), but we assume this type of error is
relatively rare.

Species-Specific Model Sets
To understand the (in)consistency of variables influencing
species-specific percent error, we ran standardized linear model
sets of the effects of the explanatory variables described above
on transformed percent error for each species. As above, we
included models with quadratic effects of species abundance,
waterbird abundance, waterbird richness, duration, number
of observers, day of year, and percent richness. As each
model set was species-specific, we excluded variables of species
characteristics from these model sets. We included observer ID
as an explanatory variable to examine its comparative influence.
In these standardized model sets, we included separate models
of the main effect of each variable and propagated the best shape
for each variable into more complex models. Since start time and
difference in start time were highly correlated, we use the top-
performing of the two in subsequent models. We used a forward
step-wise approach to determine the top-performing model of
checklist covariates. We then ran models with pairs of all non-
checklist explanatory variables with and without the variables in
the top checklist covariate model. We used BIC to compare model
performance and select top models.

Non-metric Multidimensional Scaling (NMDS)
To compare the overall communities described in eBird
checklists, we conducted ordination in species space with NMDS
on count data. We grouped checklists by observers to simplify the
analysis. To visualize differences in community characterization,
we chose to contrast January and October because January
represents a time of year when waterbird migration is minimal
and so daily numbers are relatively stable, whereas migration
is at its peak during October, so richness is high and volatility
in numbers can be high. To evaluate how characterization of
waterbird abundance at these times varied with respect to eBirder
checklists, we first removed all checklists that included an “X”
for the count of any of our 20 study species. We then calculated
the mean and median values of species counts across checklists
for each observer during each month. To evaluate the idea that
group collective contributions of multiple eBird checklists might
characterize the waterbird community more similarly to R∗, we
calculated mean counts of species across observers in January and
October to create combined count values, which we call the Borg
number (B). We similarly aggregated WDR’s first-visit species
counts as a Reference community. To ensure that our B NMDS
positions in species space were not driven overwhelmingly by

an eBirder with the largest number of checklists, we reran the
NMDS without checklists from the top-contributing observer
included in B. We used two dimensions and a maximum of
20 iterations to run NMDS with the “vegan” package in R
(version 3.6.1).

RESULTS

We compared benchmark counts of waterbirds (R∗) and at
least one eBirder on 672 dates, representing a total of 1,406
comparisons (checklists). eBird checklist contributions varied
seasonally with lows during winter and summer and highs
during migration periods (Supplementary Figure 1). Our
analyses included 246 different eBirders who contributed from 1
to 321 checklists.

Benchmark Count (R∗) Error
Comparisons of R∗ counts with photographic evidence indicated
a mean percent error across 17 species of −0.4% (SD = 2.1%;
N = 222 comparisons) indicating that R∗ counts were lower,
on average, than numbers revealed in photos. The median
differences varied from 0% for multiple species with counts
below 200 to −1.2% for Northern Shoveler. We assume temporal
consistency in counting errors for the duration of the study
because the R∗ count data were gathered by the same observer
using the same methods. Another estimate of R∗ count errors
can be inferred from comparisons with Ref2 counts, which
averaged −8%. Ref2 counts occurred throughout the 10-year
duration of the study.

Percent Error
Across all twenty species, 76 percent of all counts were less
than R∗ (Figure 1 and Supplementary Figure 2), indicating that
count data in the eBird checklists regularly contained apparent
counting errors. eBird checklists with species non-detections
excluded (that is, no counts of zero included, even if the species
was known to be present that day) had counts below R∗ values
by a median of 29.1% but count differences were quite variable
across species (Figure 1A), with median absolute deviations of
percent error averaging 44.6% (Supplementary Table 1). At the
extremes, count differences across waterbird species ranged from
negative 99% for severe under-counts to more than 3,788% too
large. In real numbers, count differences ranged from being too
low by 1,443 to too high by 1,048 (both for Northern Shoveler;
Figure 1B). Median percent error was negative, indicative of
undercounting, for all waterbird species except the uncommon
Surf Scoter (0%; R∗ was at most 11).

Percent error, when averaged across species and all observers,
was fairly consistent at 30% when counts were 30 or greater.
Below 30, counts were more accurate, being closest to zero
error when counts were of 8–10 birds (Figure 2A). Percent
error was related to the percent richness (our index of observer
skill where higher percentages indicated an observer included
more of the species known to be present that day on their
checklists) in a curvilinear fashion. Checklists including the
lowest richness tended to overcount (Figure 2B). Those including
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FIGURE 1 | Percent error (A) and count differences (B) in counts of 20 waterbird species reported on eBird checklists at the Philomath Ponds, Oregon USA,
2010–2019. Medians, quantile plots and outliers are indicated, as well as number of checklists reporting counts of each species. Only checklists reporting counts
greater than zero were included. For checklists including counts of zero on dates when R* counts were non-zero, see Supplementary Figure 2.

50% of the expected species undercounted by 50% on average,
while checklists including 90% or more of the species reported
on R∗ checklists averaged deviations of 15% or less in count.

BIC Top Models
In our multi-species mixed-effects model set, our top model
garnered 70 percent of the model weight and was over four
BIC from the next most competitive model (Table 2). Our

BIC top model indicated that a quadratic effect of R∗ and
a linear effect of percent richness best explained variation
in percent error.

Seasonality in bird numbers was also captured when
the second-order R∗ was included as the most informative
variable predicting percent error. Numbers of all species
varied considerably across each year (Figure 3). Likewise,
total waterbird abundance varied several-fold from its
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FIGURE 2 | Percent error in eBird waterbird counts as a function of
(A) reference (benchmark) counts (R*), and (B) percent richness of waterbird
species detected at Philomath ponds. Lines are Loess regression lines with
95% confidence intervals.

nadir in June to a maximum in October and November
(Supplementary Figure 3). Yet, total waterbird abundance was

rarely an informative variable in our model sets. Only in counts
of American Coot did it appear in the most parsimonious models
(in combination with percent richness). In California Gull,
waterbird abundance appeared as an informative variable but
only in a weakly competitive model (19% of the model weight).

Within the species-specific model sets, the combination of
R∗ and percent richness carried most of the model weight
(mean = 0.83, SD = 0.18) in 13 of our 18 non-gull species
(Supplementary Table 2). For gulls, top models struggled to
outcompete the null. Altogether, R∗ and/or percent richness were
in the top model sets for 17 of 18 non-gull waterbirds.

Associations With Bird Characteristics
Within our full model, bird characteristics were rarely influential
on percent error (Table 2). Similarly, species-specific models
rarely discovered bird traits to be informative variables
(Supplementary Table 2).

Observer Effects
Our models often identified percent richness as an influential
variable on percent error, so we related percent richness to
percent error as means across all checklists contributed by
each observer (Figure 4A). The two were positively related, yet
only six of the 246 observers averaged percent errors of less
than 10%. The range in percent error for observers detecting
90% or more of waterbird species was actually greater than
the range for observers who detected less than 60% of species,
indicating that percent error alone is an unreliable predictor
of counting accuracy. The relationship was not necessarily
driven by site experience because four of the six observers
with the most accurate counts were contributing very few
checklists (Figure 4B).

We then selected checklists from the ten observers who
contributed the most. Those checklists also showed evidence of
undercounting. In nearly all 20 species, percent error was 10–60%
greater than even the Ref2 counts (Figure 5). Percent error was
highly variable across species. In some species, such as American
Coot, three of the 10 observers reported counts averaging very
near the Ref2 counts, whereas in others, such as Pied-billed
Grebe, all observers undercounted by at least an average of 20%.
Again, percent error was highly variable in all species even when
median percent error did not deviate far from zero.

TABLE 2 | Model results of variables most influential on percent error.

df Log likelihood BIC Delta Weight

R*2_percent richness 7 −9751.3 19565.0 0 0.696

R*2_percent richness_duration 8 −9749.0 19569.4 4.44 0.075

R*2_percent richness_starttime 8 −9749.2 19570.1 4.72 0.066

R*2_percent richness_dichromatic 8 −9749.4 19570.4 5.19 0.052

R*2_percent richness_date2 9 −9745.0 19572.7 5.41 0.047

R*2_percent richness_prorichness 8 −9750.7 19573.0 7.79 0.014

R*2 is the quadratic of the daily reference (benchmark) count; percent richness is the fraction of the waterbird species present each day that were included on each eBird
checklist; duration was the length (minutes) of eBird checklist observation period; starttime was time of day each checklist was initiated; dichromatic was whether each
waterbird species exhibited plumage dichromatism or not; date2 was the quadratic of day of year; and proRichness was the total species detected by WDR on each
date. See Supplementary Materials for the full model results.
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FIGURE 3 | Variation in reference (benchmark) counts (R*) as a function of date (lower panel) and counts reported in eBird (gold triangles in upper panel) alongside
second-visit counts (Ref2; blue circles) at Philomath ponds, Oregon USA, 2010–2019. Counts in the upper panels are indicated with respect to the R* count (zero
line) each day. Loess regression lines with 95% confidence intervals are included. (A) American Coot; (B) Mallard; (C) Lesser Scaup; (D) Northern Shoveler.
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FIGURE 4 | (A) Observers reporting a greater percentage of waterbird
species present at Philomath ponds, Oregon USA, tended to have lower
percent counting errors in their eBird checklists (linear regression and 95%
confidence intervals; y = −110 + 0.68x). (B) Observers submitting more total
checklists tended to have lower counting errors (y = −60 + 0.17x). Note that
these are means of all applicable checklists for each observer, so each point
represents a unique observer.

Community Visualization
We visualized characterization of the richness and abundance of
the daily waterbird community with NMDS through ordination
of checklists (grouped by observer) in species space. Observers
characterizing the community and its species abundance patterns
similarly to R∗ fell nearer to R∗ whereas those positioned
increasingly further from R∗ described the community in
increasingly dissimilar details. In both January (Figure 6A) and
October (Figure 6B) high inter-observer variability in how their
checklists characterized the waterbird community led to a general
lack of clustering near R∗. In both months, observers reporting
more species, contributing more checklists, and surveying for
more time tended to group nearer R∗. The collective average,
B, was nearer R∗ than any individual observer during January
but one observer was closely positioned near B during October.
Removal of checklists from the observer contributing the most
data had minimal effects on results.

DISCUSSION

Benchmark data are often designed to understand temporal
change in biodiversity (Curtis and Robinson, 2015; Curtis et al.,
2016; Robinson and Curtis, 2020). Here, we show that they can
also be used to establish standards that aid in quantification of
count accuracy in citizen-science data. Through comparisons
with such a standard, we discovered that bird count data
contributed to eBird from our study site were consistently
biased toward undercounting. Counts averaged approximately
30% too low whenever benchmark counts were of 30 or
more birds. By comparison, estimates of errors in the R∗ data
averaged −0.4 (SD = 2.1%) based on comparisons with photos.
Importantly, however, eBird count data exhibited high variability
across species and observers. Because of the magnitude of
count deviations and the high variability, standards like our
benchmark data are needed to inform decisions regarding what
subsets of abundance data should be selected to most rigorously
address particular scientific questions or management decisions,
analogous to how checklist calibration indices help researchers
choose suitable eBird checklists based on site- and time-specific
expectations of species richness (Yu et al., 2010; Kelling et al.,
2015; Johnston et al., 2018). Yet, situations in which such
informative standards may be developed and compared appear
to be rare currently.

Our study site presented a unique opportunity to compare
bird count data contributed to a citizen science database (eBird)
with benchmark reference data collected by a professional
observer focused on generating accurate daily counts.
Characteristics of the site, where all birds were in the open
and identified by sight, minimized issues of availability and
therefore the need for detectability adjustments to compare
counts. Data were contributed by 246 observers and included
676 dates across 10 years, providing an unusual opportunity to
explore patterns and potential sources of error. Although the
extent to which our results may be generalized to other sites
remains unclear given the rarity of opportunities like this one, the
situation probably represents a best-case scenario because birds
were in the open and easy to observe. Despite the advantages,
count differences in 20 species of waterbird were highly variable
across the calendar year, species, and observer. Coefficients of
variation were high, averaging 6.6 across the 20 species and
ranging from 1 to 35.6. For comparison, in an experimental
study of observer counting errors of singing birds, which should
have been much harder to detect and identify but had a lower
range of abundances than our waterbird community, coefficients
of variation averaged 0.1 (Bart, 1985).

An assessment of count differences between benchmark data
and citizen science contributions will be most robust when
estimates of count variability exist for both sets of counts.
Estimates of variability in counts from citizen science data are
easier to generate because of the large number of visits by
multiple observers. Our benchmark (R∗) data were gathered
by one professional ornithologist beginning in 2006 prior to
widespread eBird use by the birding community (only data since
2010 are included here). The goal was to use those waterbird
count data to track population trends and to be able to detect

Frontiers in Ecology and Evolution | www.frontiersin.org 10 February 2021 | Volume 9 | Article 568278

https://www.frontiersin.org/journals/ecology-and-evolution
https://www.frontiersin.org/
https://www.frontiersin.org/journals/ecology-and-evolution#articles


fevo-09-568278 February 4, 2021 Time: 15:12 # 11

Robinson et al. Benchmarks as Bird Count Standards

FIGURE 5 | Comparison of percent count errors in eBird checklists contributed by the 10 observers with the most checklists (top row of numbers) and waterbird
observations (second row of numbers; each checklist includes multiple species). The zero line is R*. Ref2 is the second-visit data from WDR. Quantile plots show the
median, 25th percentiles as boxes and whiskers, plus outliers. Species-specific plots are available from the authors upon request.

annual changes as small as 2%, thus a high degree of count
accuracy was required. No internal check of R∗ counting errors
was implemented consistently, in part because of the unique
circumstances of the study site where all birds were in the open
and easy to detect. On 90% of the days, the number of birds of
18 of our 20 species present averaged less than 15 individuals on
each pond, increasing the likelihood of accurate counts. Average
numbers were higher for Northern Shoveler and American Coot
and during 5 weeks of peak fall migration. Our commonest
measure of potential variability in the benchmark data derives

from same-day counts (Ref2) by the same observer. Those counts
from a later time on the same day averaged 8% lower. However,
use of the same observer’s second counts addresses repeatability
of count data, not necessarily count accuracy. To assist in
quantification of errors, our implementation of comparisons of
R∗ counts with photographic evidence revealed average counting
errors of −0.4%. Involvement of additional experts counting
independently could be an alternative solution to use of photos to
effectively quantify counting errors in benchmark data, which we
encourage when circumstances allow such opportunities. Overall,
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FIGURE 6 | Ordinations using NMDS of eBird checklists’s characterization of
the waterbird community during (A) January and (B) October at Philomath
ponds, Oregon USA, 2010–2019. The most influential vectors included
Observer Richness (percent of known richness reported on each checklist),
Checklist Number (total number of checklists per observer), observation start
time each day, and the duration of each observation period. Relative positions
of species in species space are noted by species English names. Benchmark
counts are noted by R*. Individual observers are noted by lower case letters;
those nearest to R* produced characterizations of the waterbird community
most like R*. B is the collective average of eBird checklists, showing that from
the perspective of generally characterizing the community, averaging across
checklists contributed by many observers aligns more closely with R* than do
checklists from most individual observers, although observer a occupies
nearly the same location in species space.

our efforts to estimate error in R∗ data reveal that those counts
may be 0.4–8% under-counts, on average, compared with eBird
average count deviations of approximately 30% under-counts.

Our quantification of count differences in eBird data is
conservative because we excluded counts of zero on eBird
checklists, even for species known to be present. We did so
to minimize the potential confound of misidentifications and
reporting errors (failing to enter a count for a species that was
actually observed) from our analysis of counting errors. Yet,
it is possible that some fraction of 100% undercounts were
indeed counting errors in the sense that the species was one that
observers were knowledgeable enough to identify but failed to
count or report. The median percent error across the 20 species
was −48.6 plus or minus 50.9% (MAD) when zero counts were
included vs. −29.1 plus or minus 44.6% when zero counts were
excluded. Inclusion of zero counts, therefore, has a large influence
on the median, but percent errors were highly variable regardless.

Our top overall mixed-effects model carried nearly 70% of
the model weight and contained only two variables. The species-
specific R∗ count as a quadratic, which captured the seasonality
in numbers present at the site, was the most informative variable
when combined with a linear effect of percent richness. The
inclusion of R∗ indicates that eBird count data were related to the
benchmark numbers but that other factors were also influential.
Checklists with a more complete list of the species known to
be present each day had lower counting errors. Yet, checklists
including 100% of expected species still undercounted by an
average of 15%. Count differences on checklists from the ten
observers who most often visited the site were still exhibiting
undercounts even compared to the Ref2 values, which were
benchmark counts made later each day during weeks with high
levels of migratory movements.

We documented strong directional bias toward undercounts
and also a smaller percentage of large overcounts, leading to
inconsistent patterns in count differences across species. Our
comparisons revealed that undercounting was pervasive, yet very
large numbers of a species being present sometimes led to severe
overcounting as well. Interestingly, the influence of number
of birds appeared to be species-specific. The total number of
waterbirds of all species present on a given day was not an
influential variable in our overall model explaining percent error,
except for one species, American Coot. This pattern suggests that
count differences were unlikely to have been caused by observers
being overwhelmed by the total number of birds to observe,
identify and count. Instead, it appears that each species presented
different challenges to observers. Given that our models rarely
identified species’ traits as being informative, it remains unclear
what species-specific factors are responsible.

The degree of variability across species in count differences
should influence potential decisions regarding use of eBird count
data. Our analyses clearly reveal that off-the-shelf acceptance
of count data for assessments of absolute abundance should
be done with great care and thoughtfulness. In addition, if
researchers wish to avoid focus on absolute abundance by
instead evaluating relative abundance, our results suggest further
caution is warranted. We found great interspecific variability in
count differences. That is, although bias was nearly uniformly
directional toward undercounting, the magnitude of undercounts
varied substantially across species indicating that processes
generating errors are inequivalent across species. Therefore,
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judging differences in one species’ abundance relative to others
requires careful thought. If explorations of relative abundance
are focused on within-species changes across sites, care is
also warranted because we found substantial differences among
observers in count accuracy. If different sites have different
observers, then error/bias processes will be expected to be
different as well. Effective use of relative abundance data
depends on assumptions of consistent errors across species
and sites, which appears to be largely untrue in our data.
Further exploration of techniques to determine the degree to
which assumptions of similar counting errors across species
might be relaxed to preserve the utility of relative abundance
analyses are warranted. The use of abundance categories could
be explored to maximize the information content gleaned
from count data.

What role might species misidentifications have played in
counting errors? Count differences were regularly so large that
we conclude species misidentification was unlikely to be an
important factor. Probably the most challenging identifications
involved female or eclipse-plumaged ducks, which observers
might ignore and exclude from checklists if identification is
uncertain. We consider such omissions to be unlikely for at least
three reasons. First, degree of dichromatism was uninformative
in our models explaining percent error. Second, assuming that
females represent approximately half of each species present
during most months of a year, count differences might be
expected to average 50% if males were counted accurately
but females were not. Instead, percent error varied widely
across species. Finally, count differences of monochromatic vs.
dichromatic species were not obviously different. However, it
is possible that observers were more accurate for some species
than others because of paying greater attention to unusual or
favorite species (Schuetz and Johnston, 2019). At our site, most
charismatic species of great interest to birders are rarities and so
were not included in our analyses. Counts of Surf Scoter, a species
that occurs during a narrow window of time in fall, were generally
accurate, but we cannot attribute the accuracy to celebrity alone
given its occurrence in such small numbers.

Aside from a predominantly directional bias toward
undercounts, we found few consistent species-specific patterns
in percent error. Errors differed in magnitude across species,
observers, and time of year. Therefore, development of some
type of calibration effort, where checklist numbers are adjusted to
more closely approximate species-specific abundances poses an
interesting challenge. The variability in raw count data suggests
that tracking trends across time without additional steps to
filter data or analytically adjust for noise could be especially
problematic. Depending on the particular scientific question
of interest, needs for precision might decline, so other analytic
approaches could be implemented. For example, if abundances
can be binned into categories and approaches such as ordinal
or quantile regression used (Ananth and Kleinbaum, 1997;
Koenker and Hallock, 2001; Howard et al., 2014), less precisely
defined trends over time might be identified. Furthermore,
our observation that percent richness, which we assume to be
a correlate of observer experience, was often an informative
variable, suggests that additional exploration of count calibration

approaches for data contributed by the most experienced
observers might be informative.

If questions about patterns in abundances among species
in the waterbird community are of interest, our NMDS
ordination results suggest that combining checklists across
multiple observers rather than selecting data from any single
contributor may produce results closer to those generated by
professional benchmark data. The vectors in NMDS results
may also inform decisions about which criteria to use when
filtering data to maximize inclusion of checklists with the
greatest value for specific scientific questions. For example, the
waterbird community at our site was better characterized by
observers who included more species on their checklists, invested
more time searching the site each time, and contributed more
checklists overall. Although species-specific numbers remained
inconsistently related to the R∗ counts, the level of general
characterization of the entire community was improved. In
a detailed comparison of eBird data with structured survey
results near Sydney, Australia, overall characterization of the bird
communities was similar as well, but the collectively greater effort
expended by eBirders resulted in discovery of a greater number of
uncommon species (Callaghan et al., 2018).

Determining the extent to which results from our site
and observers may be generalized more widely will require
identification of other sites with benchmark data sets. We also
recommend further investigation of approaches for identifying
checklists with higher probability of having the most accurate
count data. New approaches for categorizing checklists based
on expected numbers of species have recently been developed
but it remains unclear if these same criteria also apply to bird
counting accuracy (Callaghan et al., 2018). Our index of checklist
quality was based solely on the percent of species reported on
checklists that were also detected that day by the professional
observer. Percent richness was regularly in top models, so
it does have explanatory influence on count differences. Yet,
direct comparisons of data from those observers and the R∗

and Ref2 numbers still showed substantial differences, primarily
of undercounting.

If a sufficiently detailed benchmark data set is available,
however, adjustments for seasonal fluctuations in numbers of
each species could conceivably be implemented. Such calibrations
might be conducted more effectively if individual observers
exhibited consistency in counting errors, an issue we have not
explored here. It is unknown if observers improve their counting
skills over time in the same way that observers are expected to
improve abilities to detect species or if temporal stochasticity
drives counting errors. A goal could be to develop a count
calibration metric for each observer so that it can be extended
and applied to counts from sites lacking benchmark data if those
sites are likely to have similar species composition and relative
abundances. However, given the high level of variability in count
data we quantified across observers, species and time, such
calibration metrics may be quite challenging to develop. Complex
models such as the Bayesian hierarchical models using Markov
chain Monte Carlo approaches implemented with Christmas Bird
Count data (Link et al., 2006), might be helpful in the absence
of additional information on checklist accuracy and reliability.
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Our community ordination results suggested that combining
data across multiple checklists from multiple observers (the
group collective effort) might more closely approximate the
community characterization than most single contributors did.
Further exploration of similar approaches and sensitivities to
checklist characteristics could identify necessary checklist quality
criteria that must be met prior to use in such analyses. In the end,
use of any checklist count data will be influenced strongly by each
project’s specific objectives (Isaac and Pocock, 2015).

We hypothesize that the high variability in species count
information on eBird checklists could be influenced by common
aspects of birder behavior. Prior to the advent of eBird, most
birders, in North America at least, focused their efforts on listing
species and watching behavior (Eubanks et al., 2004). Intentional
counting was done by a small percentage of particularly avid
observers, while most others only counted during organized
activities such as Christmas Bird Counts (Boxall and McFarlane,
1993). A much smaller percentage contributed count data to
scientific projects with structured protocols such as the North
American Breeding Bird Survey. eBird has revolutionized the
degree of attention birders pay to numbers of birds around them
(Wood et al., 2011). It has pushed birders to value data beyond the
day’s species list. The novelty of this effort to count all birds every
time one goes birding, may contribute to the variability in quality
of the count data. Contributors are largely untrained about
best practices for counting, especially when birds are present
in large numbers, flying, or inconspicuous because they are
secretive or available only by sound. We encourage development
of additional training opportunities for eBird contributors to
improve their knowledge of the value of accurate count data as
well as their counting skills. Training improves data quality even
for professional observers (Kepler and Scott, 1981).

An indication on checklists in the eBird database that such
training had been accomplished might facilitate selection of
checklists by researchers who wish to use count data only from
trained observers. Furthermore, the addition of a qualitative
categorization of counting accuracy for each checklist, designated
by the observer at time of checklist submission to eBird, might be
useful. Currently, users may code species using presence-absence
information instead of counts or select a checklist protocol
(incidental) indicating that not all species detected were included
in the list. A count accuracy designation could allow observers to
rate their own level of confidence in the accuracy of their counts
or the level of attention they paid to counting accurately, which
could serve as additional criteria by which researchers might
choose checklists for their particular scientific question. Given
that many contributors may not focus on producing accurate
counts but have a variety of other motivations (Boakes et al.,
2016), allowing observers to categorize quickly and easily their
personal confidence in their count data would be useful.

Finally, exploration of the sources of variation in count
data needs additional attention (Dickinson et al., 2010). The
potential value of the vast quantities of information from citizen
science databases is great. Such data have the potential to be
effective at informing conservation and management decisions
(McKinley et al., 2017; Young et al., 2019), but a thorough
understanding of sources of error should be a priority before

their use (Lewandowski and Specht, 2015). An additional strategy
that may contribute to refinement of information on count data
quality in citizen science databases could be development of a
network of sites with trained counters. These marquis sites could
be chosen to represent major habitat types where citizen science
data are often gathered or where researchers specifically need
high-quality information. Creating a network of high-quality
benchmark sites would have the added advantage of leaving a
legacy of reliable abundance data for future generations.
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Supplementary Figure 2 | Counts of waterbirds in eBird checklists included in
our analyses as a function of their percent error.

Supplementary Figure 3 | Relationship between mean percent error on eBird

checklists (blue line) and mean waterbird abundance (green line) as a function of

day of year at Philomath ponds, Oregon USA, 2010–2019. Waterbird abundance
is the mean of all the counts (R∗) of all of the possible 20 study species present
each day across the 10 years.

Supplementary Table 1 | Species-specific measurements of central tendency
and variation in percent counting errors. (A) excluding species non-detections
from checklists; (B) including species non-detections (zero counts) in checklists.

Supplementary Table 2 | Species-specific BIC model results. Full model results
are presented for each species alphabetically.

Supplementary Table 3 | Full mixed-effects model results supplementing the
abbreviated results presented in Table 2.
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