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Effective conservation and land management require robust understanding of how
landscape features spatially and temporally affect population distribution, abundance
and connectivity. This is especially important for keystone species known to shape
ecosystems, such as the African elephant (Loxodonta africana). This work investigates
monthly patterns of elephant movement and connectivity in Kruger National Park
(KNP; South Africa), and their temporal relationship with landscape features over a
12-month period associated with the occurrence of a severe drought. Based on
elephant locations from GPS collars with a short acquisition interval, we explored
the monthly patterns of spatial-autocorrelation of elephant movement using Mantel
correlograms, and we developed scale-optimized monthly path-selection movement
and resistant kernel connectivity models. Our results showed high variability in patterns
of autocorrelation in elephant movements across individuals and months, with a
preponderance of directional movement, which we believe is related to drought
induced range shifts. We also found high non-stationarity of monthly movement and
connectivity models; most models exhibited qualitative similarity in the general nature
of the predicted ecological relationships, but large quantitative differences in predicted
landscape resistance and connectivity across the year. This suggests high variation in
space-utilization and temporal shifts of core habitat areas for elephants in KNP. Even
during extreme drought, rainfall itself was not a strong driver of elephant movement;
elephant movements, instead, were strongly driven by selection for green vegetation
and areas near waterholes and small rivers. Our findings highlight a potentially serious
problem in using movement models from a particular temporal snapshot to infer general
landscape effects on movement. Conservation and management strategies focusing
only on certain areas identified by temporarily idiosyncratic models might not be
appropriate or efficient as a guide for allocating scarce resources for management or
for understanding general ecological relationships.

Keywords: non-stationarity, movement models, path-selection function, connectivity, resistance surface
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INTRODUCTION

With increasingly negative synergies between changing climate
and expanding anthropogenic impacts on ecosystems, land
management and conservation face serious challenges to sustain
viable populations of many species in many parts of the world.
Effective conservation in this era of rapid global change requires,
more than ever, understanding the complex spatial and temporal
effects of landscape components on population abundance,
distribution and connectivity (Cushman, 2006).

Species ecology is simultaneously influenced by both fine-
and broad-scale environmental attributes (Wiens, 1976; Johnson
et al., 1992; Levin, 1992), and no single scale is typically sufficient
to elucidate species-habitat relationships. Thus, investigations
into habitat selection and movement should be conducted at
multiple, ecologically relevant scales (Wiens, 1989; Goodwin
and Fahrig, 1998; McGarigal et al., 2016b). The failure to do
so can undermine the performance of habitat selection and
movement models and their interpretation (Wasserman et al.,
2012; Mateo Sanchez et al., 2014; Shirk et al., 2014), potentially
leading to errors of inference and application (McGarigal and
Cushman, 2002). Reliable knowledge about the multi-variate and
multi-scale effects of environmental heterogeneity on organism
distribution, abundance and movement can be acquired through
robust multi-scale analytical methods supported by empirical
data (Cushman et al., 2013; Zeller et al., 2018a).

Recent technological advancements in satellite telemetry are
providing large quantities of data on animal locations for
many species. However, these new data have characteristics that
present both opportunities and challenges to statistical analysis of
movement behavior and habitat selection. For example, although
new satellite technology provides high frequency and highly
accurate information on animal location, these large amount of
data are often difficult to process and they introduce temporal
autocorrelation that violates the assumptions of many statistical
methods (Cagnacci et al., 2010; Patterson et al., 2017). To
provide clear guidance to ecological researchers and conservation
practitioners, it is essential to understand how stable the methods
to derive habitat suitability or movement models are over time,
and among study areas.

Although spatial and temporal autocorrelation are often
considered as a statistical nuisance (e.g., Legrande, 1993;
Segurado et al., 2006; Valcu and Kempenaers, 2010), one way
to investigate the spatial behavior of animals is to actually use
the patterns of autocorrelation provided by the telemetry data
(Rooney et al., 1998; Otis and White, 1999; Cushman et al.,
2005; Elliot et al., 2014a). Methods, such as moving window
Mantel correlograms, can provide a detailed picture of temporal
variability in animal movement patterns (Cushman et al., 2005;
Elliot et al., 2014a), which can then be linked to temporarily
changing environmental attributes. This kind of analysis can
help clarify the ecological processes affecting animal behavior
across different time periods, as well as detect anomalies in
movement patterns, serving as a potentially important indicator
of perturbation or change in ecological processes in an ecosystem.

To acquire a more complete picture of the drivers of
animal movement, patterns of spatial autocorrelation alone

are insufficient, as they are incomplete and often not clearly
associated with particular behavioral or resource selection
patterns (Elliot et al., 2014a). One alternative approach that
uses the full spatial information in high-frequency telemetry
data to understand animal space use and selection, is path-
selection functions (Cushman, 2010; Cushman et al., 2010;
Cushman and Lewis, 2010). Path-selection functions, like step-
selection functions, employ a “used” vs. “available” design to
estimate relationships between species and its habitat (Zeller
et al., 2016), representing a form of Johnson’s third order of
habitat selection (Johnson, 1980). However, the main difference
between step and path selection functions lies in the sampling
unit, which in step-selection is represented by a single step
between two consecutive locations, and for path-selection the
sample constitutes a movement path built from a set of sequential
locations of a length predefined by a selected time lag.

Zeller et al. (2016) showed that, for the purpose of developing
movement models, path-selection functions may be superior
to the widely used step- and point- selection functions.
Path-selection functions more effectively control for spatial
autocorrelation and allow optimization of selection across a range
of scales, not just the observed distribution of sequential step
lengths. Movement and habitat suitability models should also
account for spatial scaling of animals’ response to landscape
elements, as quantification of habitat selection and movement
strongly depend on the scales at which environmental context
is considered (e.g., Wiens, 1989; Levin, 1992; Zeller et al., 2014,
2016). Path selection functions have the particular advantage of
being able to optimize across multiple-scales of environmental
response (e.g., Cushman and Lewis, 2010; Elliot et al., 2014a),
which traditional step-selection functions do not.

Path selection models are “movement” models, in that they
can be used to predict the relationship between environmental
variables and movement choices. Connectivity models (sensu
Rudnick et al., 2012; Cushman et al., 2013) use the outputs of
movement models, such as resistance surfaces, as inputs into
connectivity algorithms, e.g., resistant kernels (Compton et al.,
2007), to predict rates and patterns of movement, core areas,
corridors and fracture zones. Both movement and connectivity
models have become important tools to address various problems
in research, biodiversity conservation and management (Rudnick
et al., 2012; Cushman et al., 2013), such as delineating functional
dispersal corridors and core habitats (e.g., Elliot et al., 2014b,
Almasieh et al., 2016; Kaszta et al., 2020a,b), restoration planning
(e.g., McRae et al., 2012; Tambosi et al., 2014; Kaszta et al.,
2019), evaluating animal road crossings (e.g., Lewis et al., 2011;
Cushman et al., 2014; Zeller et al., 2018b), and even disease
transmission (e.g., Kaszta et al., 2018; Merkle et al., 2018). Models
explaining the complexity and variability of species space use
patterns across the year provide insight into the functionality
of different parts of a landscape. They are therefore especially
important for decisions regarding threatened species (e.g., due to
the risk of poaching or shrinking habitats), or those that play an
important biotic role in shaping the ecosystem.

Movement and connectivity models are usually often
developed from GPS (Global Positioning System) data covering
a time period of at least a season, and often a year or even
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several years (Cushman et al., 2010; Hooten et al., 2017;
Patterson et al., 2017). Cushman and Lewis (2010) used multi-
scale path-selection models to show high quantitative and
qualitative differences between two seasonal movement models
for American black bear (Ursus americanus). Significant seasonal
differences in movement patterns were also found using step-
selection functions (Zeller et al., 2019) and when investigating
specific behavioral state of animals using Markov-chain models
(Buderman et al., 2018). Osipova et al. (2019) found a significant
variability in African elephant (Loxodonta africana) seasonal
resistance surfaces, leading to substantial seasonal changes
in landscape connectivity and predicted elephants movement
corridors. Furthermore, Cushman et al. (2005) showed that
elephant movement autocorrelation patterns were highly variable
at a scale of 15–30 days and non-stationary across the year.

The results of these and other studies strongly suggest
non-stationarity of movement and connectivity models across
seasonal periods, due to resource fluctuations and changes
in the behavior and distribution of population at different
times of the year. However, fine-scale, sub-seasonal temporal
variability of movement models and landscape connectivity
has been rarely investigated. In this paper we consider the
term “non-stationarity” as instability of statistical parameters
(variables influencing movement, their sign, their scale, their
coefficient) in movement models caused by a temporal change
in animal movements (selection and avoidance of resources)
as a response to change in ecological relationships. This is
different from strict non-stationarity, which focuses explicitly
on changes in statistical probability distributions of a measured
parameter in space or time, as discussed in the context of animal
movement by Benhamou (2014).

Temporal non-stationarity in animal movement patterns in
relation to resources and landscape structure has important
implications for generalizing animal movement behavior and
producing connectivity surfaces based on such generalizations.
Specifically, if there is substantial temporal non-stationarity
in movement behavior, then generalizing to annual, or even
seasonal models, without accounting for finer-scale temporal
variation in movement and space use behavior, can lead to
misleading conclusions (Cushman et al., 2011; Osipova et al.,
2019). Temporal variation in ecological relationships is also
species specific. Therefore, in addition to considering the effects
of spatial scale, evaluating temporal variability in ecological
pattern-process relationships is an important frontier in ecology
(McGarigal et al., 2016a,b).

The African elephant (Loxodonta africana) is a keystone
species that plays a major role in structuring semi-arid
ecosystems by driving dominant patterns of vegetation (e.g.,
Barnes, 2001; Brits et al., 2002; De Beer et al., 2006) and the
location and availability of seasonal waterholes (Kerley et al.,
2008). The elephant is also a species of high charisma value
(Macdonald et al., 2017), receiving attention from the global
public, making it an ambassador for conservation. At the same
time, however, the species suffers from catastrophic population
declines in parts of its range driven by an immense increase in
poaching in the past two decades (Burn et al., 2011; Wittemyer
et al., 2014), coupled with accelerating land use change across

its range (De Boer et al., 2013; Roever et al., 2013; Fitzgerald,
2015). In some protected areas, notably Kruger National Park,
South Africa, African elephant populations have increased, and
the management challenge in those locations is how to regulate
and manage an over-abundant local elephant population to avoid
degradation of habitat for other species (Ferreira et al., 2017).

From a research point of view, the African elephant is an ideal
species to study temporal dynamics of movement patterns in
relation to vegetation, seasonal climate, and human impacts given
its high mobility and large size, which allows instrumentation
with GPS devices that can record a high frequency of detections
over long periods. Furthermore, the species has been the focus
of several early studies of temporal variability in movement (e.g.,
Cushman et al., 2005; Wato et al., 2018), and was the focal
species in the original work developing path selection functions
(Cushman et al., 2010). These studies have shown complex,
long-range, and seasonally varying patterns of movement rate,
pattern and autocorrelation in relation to water and other critical
resources, making them a good species to evaluate sensitivity of
movement and connectivity models to temporal non-stationarity.

In this paper, we investigated the fine-scale temporal patterns
of African elephant movement and connectivity in Kruger
National Park (KNP), South Africa. Our goal was to investigate
how these patterns are related to landscape features, and how
relationships between landscape features and elephant movement
pattern change over a 12 month period, associated with the
occurrence of a severe drought. Cushman et al. (2005) found
that elephants in northern Botswana expressed long-term and
complex patterns of autocorrelation that changed seasonally with
water availability, such that, when water was widely available in
the wet season, elephants moved randomly within large home
ranges, while in the dry season elephants combined long distance
displacements with periodic movement patterns to reach and
move between few, scattered water holes. Based on this pattern
we expected that in the wetter part of our study period elephants
would likewise exhibit random movement patterns in fixed
home ranges. We expected that in wetter months path selection
functions would produce weak associations with landscape
features, particularly water, and primarily reflect selection for
optimal foraging areas. This change in resource selection is
expected due to the relaxation of water as a limiting factor (Smit
et al., 2007; De Beer and van Aarde, 2008; Birkett et al., 2012),
which would allow elephants to maximize movement in areas
with highest forage quality (Woolley et al., 2009). A similar
pattern has been seen in African buffalo (Syncerus caffer) foraging
in this same system (Kaszta et al., 2016). Conversely, in the
dry part of the study period, we expected an increase in long-
distance directional movement, and periodic movement patterns,
following Cushman et al. (2005), as elephants shift seasonal
ranges in response to water and forage limitations, which we
expected would be associated with stronger path selection with
distance to water and forage quality a primary drivers.

Our objectives in this study were to test: (1) whether the
pattern (directional, periodic, or random) of elephant movement
varied as a function of rainfall or seasonality, (2) if path-selection
functions and connectivity surfaces were stable across time, (3)
what were the main drivers affecting elephant movement path
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selection and their variation through time, and finally (4) what
observed differences in movement pattern and path selection
functions imply for conservation and management planning.

MATERIALS AND METHODS

Study Area
The study area is centered on the southern sectors
of Kruger National Park (KNP) (Orpen/Skukuza,
Satara/Nhlanguleni/Muzandzeni, Satara, Skukuza, and Lower

Sabie complexes) South Africa, including several private and
provincial reserves bordering KNP to the west (Sabi Sands,
Balule, Klaserie, Timbavati, Umbabat, and Manyaleti) (Figure 1).
Elephants can freely move between KNP and these private game
reserves, and only the western boundary of the protected areas is
separated from the neighboring communal lands by a fence. The
area is primarily covered by semi-arid to arid wooded savanna
(Mucina and Rutherford, 2006) with a strongly seasonal climate
characterized by pronounced wet (from October to March)
and dry (from April to September) seasons, with an average
annual rainfall of approximately 500–700 mm. Two transitional

FIGURE 1 | Study area with movement trajectories of seven tracked elephants.
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periods with intermediate rainfall can be also distinguished
(April/May and October/November). During the time elephant
movement data used in this study were recorded, Kruger
National Park experienced an extreme drought. The rainy season
of 2014/2015 received only 65% of the long-term average rainfall.
The intervening dry season received almost no precipitation. The
following rainy season of 2015/2016 received even less rain (52%
of the long-term average across the park; South African National
Parks [SANParks], 2020; Supplementary Figure 1).

Elephant Movement Data
We used movement data of seven prime adult female elephants
(age between 25 and 40 years) associated with different social
groups/clans. To ensure that the studied elephants were unrelated
and spatially independent in their movements, KNP was divided
into seven different spatial clusters (Delsink et al., 2013) and each
animal was sourced from a different cluster. A single female in
each herd was selected and collared, representing the movement
behavior of the breeding herd to which they belong. The collared
animals were not directly observed throughout the study period
due to the large extent of the study area, thus we assumed that
the behavior of the collared females is similar to other elephants
in their family group, and would join and leave other family
groups, but not those of other collared females given the distances
between them. We confirmed that no collared females were
traveling together in combined fission-fusion groups during the
period of this study.

The animals were fitted with GPS (Global Positioning System)
satellite collar collecting locations at 30-min intervals. The
data were collected between September 2015 and August 2016,
covering in total a period of 12 months. Data from one collar
ended in February 2016, and another in June 2016. The number
of fixes across the individuals varied between 10,289 and 16,608
(Supplementary Table 1).

Ethics approval for the capture, collaring and handling
of elephants was obtained from the University of KwaZulu-
Natal Animal Ethics Committee (Ref: 009/10/Animal). This
project was also approved by the South African National
Parks (Ref: SLOR660).

Mantel Correlogram Analysis
To investigate patterns of elephant movement in space and time,
quantified the variability of spatial and temporal autocorrelation
of the elephant GPS locations. We used Mantel correlograms,
which were first introduced in ecological research by Burgman
and Williams (1995). Cushman et al. (2005) first applied Mantel
correlograms to describe temporal patterns of animal movement;
it is in this sense and application that we are using it in this
study. The Mantel correlogram was tested and recommended by
Borcard and Legendre (2012), who demonstrated its high power
and reliability to quantify autocorrelation patterns in distance-
based questions such as we test here. In our application, Mantel
correlograms provide a correlation of distance between locations
for a given elephant in geographical space, against distance
between locations in time across different time lag distances.
The shape of the correlograms depict the nature of spatio-
temporal autocorrelation of locations. Distinct correlogram

shapes can identify random use of fixed home ranges, directional
movement and periodic movement (Cushman, 2010; Elliot et al.,
2014a). Previous work has shown associations of the shape of
Mantel correlograms with seasonal water availability (Cushman
et al., 2005), and with demography-dependent movement modes
(Elliot et al., 2014a).

To minimize the effects of temporal non-stationarity we
split the GPS locations of each elephant individual into full-
month windows, representing each month between September
2015 and August 2016. The monthly temporal window was
selected for two reasons. First, to reduce the frequency of “mixed-
patterns,” that result when long temporal windows include a
mixture of distinct movement patterns, and to eliminate the
spurious directional patterns seen in very short time-windows
with sequential locations going farther apart. Second, to compare
the monthly path-selection movement models and monthly data
on the rainfall patterns we needed to use a time unit that was
consistent between them (rainfall data is reported by month).

For each of these temporal windows, we calculated two
matrices: (1) geographical distance between each pair of
locations, and (2) the temporal distance (in decimal days)
between them. Using the R package ecodist (Goslee and Urban,
2007), we then computed Mantel correlograms assessing levels
of spatial autocorrelation in elephant movement across time
lags. Following Cushman et al. (2005), we classified each
correlogram into three types of movement: directional migration,
periodic (cyclical) use of focal areas when animal repeatedly
and sequentially visits the same location, or random use of
temporary home ranges. These are commonly considered the
most distinctive and important patterns that are depicted in the
shapes of correlograms (Legrande, 1993; Fortin and Dale, 2005;
Legendre and Legendre, 2012). Cushman (2010) showed using
simulation modeling that these characteristic shapes are highly
distinctive and reliable indicators of these three main categories
of movement pattern. The type of movement was assigned to the
most apparent and dominant form of correlogram.

We computed chi-square tests to evaluate if the frequency
of each type of movement exhibited by the seven elephants was
associated with months or seasonality. In the case of seasonality,
we evaluated four (wet, transition I, dry, transition II) or three
(wet, dry, and transition I and II combined) seasons.

Furthermore, to assess whether movement patterns were
associated with variation in rainfall or NDVI (Normalized
Difference Vegetation Index; also referred to as vegetation
greenness or productivity index), we performed ANOVA analysis
with Tukey HSD test to examine whether these variables were
different for months associated with each type of movement
pattern. Elephant movement behavior might be affected by the
current rainfall or previous rainfall (e.g., Cushman et al., 2005),
therefore we tested total rainfall for current month, previous
month, and sum of current and previous month.

Multi-Scale Path-Selection Models
To examine temporal differences in how elephants select
movement paths, we developed a multi-scale path-selection
model (e.g., Zeller et al., 2016) for each month from September
2015 to August 2016.
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Environmental Variables
We tested a set of environmental factors, which, based on
previous studies (Cushman et al., 2005; Young et al., 2009; De
Knegt et al., 2011; Wato et al., 2018), are known to influence
elephant habitat use. These included percentage of tree cover,
monthly NDVI, monthly rainfall, distance to waterholes, distance
to large perennial rivers, and distance to small perennial rivers
and non-perennial rivers. The percentage of tree cover was based
on 30 m resolution using the Hansen (2013) global tree cover
layer. For each month, we also calculated the mean of the
two 16-day NDVI layers from MODIS (MODerate-resolution
Imaging Spectroradiometer) for each month at 250 m resolution.
We used KNP meteorological records (South African National
Parks, SANParks) of total monthly rainfall from 23 monitoring
stations within KNP to create continuous spatial layers of
rainfall for each month, using Inverse Distance Interpolation
in ArcGIS 10.3.1. Data on active water points, including dams
and boreholes, were provided by SANParks and were visually
verified using Google Earth Imagery. Additionally, we mapped
waterholes to the west of Kruger up to the boundary fence by
visually identifying and digitalizing dams and boreholes using
Google Earth Imagery. We classified the river layer (South Africa
environmental information database ENPAT, 2002) into two
categories: large rivers (perennial rivers of class 1 or 2 and small
perennial rivers of class 3), and small rivers (non-perennial rivers
and perennial rivers of class 3). We then calculated Euclidean
distance from water points, small, and large rivers. All layers were
resampled to 20 m resolution with bilinear interpolation.

Monthly Path Selection and Scale Optimization
The elephant GPS locations were divided into monthly subsets.
For each month and individual, we converted the series of
sequential locations into separate daily movement path segments.
We then used these data to develop monthly path-selection
movement models. The “used” data for our path-selection model
were acquired by extracting the mean value of each covariate
along each daily path segment. To generate “available” paths
in a multi-scale framework, we applied a Gaussian density
kernel around each path, varying the smoothing parameter
across 250 m, 500 m, 1 km, 2 km, 4 km, 8 km (Zeller et al.,
2016, 2018a). Our choice of scales was based on the scales of
environmental heterogeneity and the rate of elephant movement.
The use of density kernels around the used path provides
multi-scale quantification of available environmental factors,
sampling the environment in a continuous manner within a given
distance (Zeller et al., 2016). Importantly, it enables multi-scale
optimization, which is essential for reliable inference in habitat
selection and movement modeling (McGarigal et al., 2016a,b).

Our path selection analysis involved three steps. First, for
each month we developed a univariate conditional mixed-effect
logistic regression model (Duchesne et al., 2010) for each variable
at each scale, with elephant ID as a random factor (sensu Elliot
et al., 2014a) using the coxme package in R (Therneau, 2017). This
enabled us to identify the best scale for each variable individually
(McGarigal et al., 2016a), while also accounting for variation
among individuals (e.g., Elliot et al., 2014b). To determine the
best scale for each environmental covariate, we first ran a set

of univariate mixed-effect conditional logistic regression models
across all considered scales for each variable. We used the Akaike’s
Information Criterion (AIC) to identify the variable’s scale of
strongest response (Burnham and Anderson, 2002).

In the second step of path selection function analysis, from
all the covariates at their best scales we excluded those with
p > 0.01, and we further checked for multicollinearity between
the remaining covariates by calculating Pearson’s correlation, and
excluding correlated variables with a correlation threshold of |
0.7| (Nettleton, 2014). For each pair of correlated variables we
kept the one with the lower AIC value.

In the final step of path selection function modeling, all the
remaining variables were used to assemble a global model, with
each variable at its most supported scale (e.g., Elliot et al., 2014b;
Zeller et al., 2016). To identify the most parsimonious model we
employed all subsets mixed-effect conditional logistic regression
with model averaging (1AIC < 4), using the function “dredge” of
the R package MuMIN (Bartoń, 2018).

Temporal Resistance
The monthly movement models developed in the previous step
provide quantitative information on selection or avoidance of
landscape features and environmental resources by elephants
traversing the landscape. This information can be used directly
to parametrize the surface of landscape resistance to elephant
movement. Typically, resistance surfaces are derived either based
on expert opinion or, most commonly, by inverting habitat
suitability model predictions from point selection functions,
assigning low movement cost to highly suitable areas. However,
recent studies have shown that movement models based on either
genetic data or GPS locations are superior in deriving landscape
resistance surface (Mateo-Sánchez et al., 2015; Ziółkowska et al.,
2016; Zeller et al., 2018a). Therefore, we used the results of the
monthly movement models described in the previous section
to produce resistance surfaces for each month, by calculating
z = β1V1 + β2V2 + . . . + βnVn, where βi is the coefficient
for variable V i, and then inverting and rescaling the z values
such that max z = 1 and min z = 100. These resistance
surfaces (outputs of “movement models”) constituted the base for
connectivity modeling.

To compare the monthly resistance surfaces and to evaluate
potential non-stationarity of relationships between landscape
features and elephant path selection, we calculated Pearson’s
spatial correlation between these 12 monthly resistance surfaces.
We used Mantel tests to evaluate whether there was a relationship
between the strength of the correlation between monthly
resistance surfaces and difference in rainfall between months
(current year month and long-term average for a month), as well
as time interval between months.

Variables Across Time
We compared all the monthly movement models by quantifying
the consistency of variables in these models over time. We
generated a histogram of variable frequency, showing presence
of each variable in the path selection model, and the sign of its
coefficient. We then tested the influence of each variable on the
performance of the monthly models by calculating the difference
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in predicted resistance to elephant movement when the variable
increases from the 10th to 100th percentile, and holding all other
variables constant at their medians.

We also examined relationships between rainfall and the
strength of elephant preference/avoidance of resources across the
12-month period of study. For each variable we fitted logistic
regression, and calculated Pearson’s correlation between monthly
models’ coefficients and total monthly rainfall (current, previous
month, previous plus current month, long-term averaged total
for a previous and current month) to determine if there
were relationships between the sign and magnitude of model
coefficients and amount of rain.

Connectivity Analysis
To compare connectivity surfaces across months, we evenly
distributed 4,500 source points across the study area, with
distance between points of circa 1.5 km. This represents
approximately 25% of the park’s elephant population, which
was estimated in 2015 to be approximately 17,000 individuals
(Ferreira et al., 2017). We explicitly controlled the distribution
of source points to only show the effect on connectivity given
the same set of points, and to separate the effect of habitat
suitability. Furthermore, a lower number of source points in
comparison to the total population size does not impact the
results which are interpreted relatively and are proportionally
comparable across months, and it significantly decreases the
processing time of cumulative resistance kernels analyses. We
used the source point layer, and the 12 resistance surfaces from
each months’ path selection function as inputs to resistant kernel
analysis (Compton et al., 2007) in UNICOR (Landguth et al.,
2012). The cumulative resistant kernel generates a prediction of
the total movement density across the landscape to identify the
main pattern of synoptic connectivity, reflecting the connectivity
of every location relative to every other location in the landscape
(Cushman et al., 2013; Kaszta et al., 2018). This is done by
summing all individual least-cost kernels from all dispersal
source points (Compton et al., 2007). The real dispersal threshold
for elephants, as for a majority of species, is unknown. Therefore,
for a sensitivity analyses we tested two dispersal distance
thresholds, 250,000 and 500,000 cost units (dispersal distance in
cost units), which in our analysis represent movement of 25 and
50 km in the uniform landscape of resistance equal to 10 (10% of
the maximum resistance value = 100).

To investigate similarity between the resistant kernel
connectivity surfaces produced for each month, we calculated
Pearson’s correlation and absolute average difference between
them (e.g., Hearn et al., 2018a). As in our comparison of
resistance surfaces, we also ran Mantel tests to quantify the
relationship between the correlation of kernel connectivity
surfaces and difference in rainfall and time.

RESULTS

Correlograms and Movement Patterns
The monthly Mantel correlograms for seven elephants showed
high variation in movement pattern across months, and between

individuals (Supplementary Table 2 and Supplementary
Material 2). Based on the shape of Mantel correlograms, we
distinguished three main patterns of autocorrelation: a gradient-
like pattern associated with directional movement, periodic
autocorrelation linked to cyclical use of focal areas, and an
irregular pattern associated with random use of temporary home
ranges (Supplementary Figure 2 and Supplementary Material
2). Almost half of the monthly correlograms (47%) were classified
as directional movement. Periodic and random movement
constituted 27 and 26% of all correlograms, respectively. The
Chi-square test indicated significant differences between these
movement type frequencies (p < 0.05), with significantly more
directional correlograms than expected by chance.

However, the Chi-square tests showed no significant
association between movement types and month or season
(Supplementary Table 3). Likewise, ANOVA and Tukey
HSD test showed no significant relationship between elephant
movement pattern (directional, random, or periodic) and average
monthly rainfall across the study area for the current, previous
and sum of previous and current month (Supplementary
Table 4). However, there was a significant relationship between
elephant movement patterns and averaged monthly NDVI for
the whole study area (Supplementary Table 4). The Tukey test
revealed that this relationship was significant between random
and directional movement, with random movement occurring
when NDVI was higher in comparison to directional movement,
which predominated when NDVI was low (difference in NDVI
equal 0.07 and p = 0.05).

Movement Models
Scale-optimization of variables showed that the majority of
variables across all 12 models were selected at largest scales
of 4 or 8 km (Table 1 and Figure 2). Furthermore, the
12 movement models were mainly consistent in the model
structure represented by the final set of variables (Table 1
and Figure 2). Specifically, four out of six tested variables
were present in every model (distance to waterholes, distance
to small rivers, NDVI, and tree cover), and distance to large
rivers was present in a majority of models (Figure 2). The
signs of these variables’ coefficients were mainly consistent
across the models, with distance to waterholes and small rivers
negatively associated to path selection across all 12 models,
and NDVI positively associated across 11 models (Table 1 and
Figure 2). Furthermore, rainfall, although the least frequent
variable across all models, exhibited a positive impact on elephant
path selection (Figure 2).

The analysis of variables’ effect size in driving the values of
the predicted resistance surfaces also revealed a relatively high
level of variability across months (Table 1). All months, distance
to water, either to waterholes or rivers, had a large effect on
resistance value. Specifically, at the end of the dry season, in July
and August, increasing distance to large rivers from the 10th to
100th percentile increased the resistance value by 13 (July) and
75 (August), reflecting strong avoidance of areas far from water
sources in these months, which indicates strong selection of areas
near rivers in these periods. The strong selection of areas near
main rivers is also highlighted by the change of scale for this
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TABLE 1 | Monthly movement models, with coefficients, best scales selected
through scale-optimization process, and a variable importance measured by
change in resistance value when a variable changes from 10th percentile to
100th percentile.

Month Variable Scale Coefficient p-value Change in
resistance

September’ 15 Tree cover 250 m 4.613157 0.001 –1.7

Rainfall 8 km 0.212059 0.41 –8

NDVI 8 km 64.792118 0.001 –21

Waterholes 8 km –0.000394 0.01 +9

Rivers main – – − –

Rivers small 8 km –0.001268 0.001 +16

October’15 Tree cover 500 m 0.3 0.72 –1.7

Rainfall – – − –

NDVI 500 m 304.4 0.001 –40

Waterholes 8 km –0.000437 0.001 +3

Rivers main 8 km –0.000255 0.001 +2.5

Rivers small 8 km –0.001125 0.001 +3

November’15 Tree cover 1 km 0.8121 0.40 –1.7

Rainfall 2 km 2.313 0.33 –30

NDVI 4 km 104.2 0.001 –15

Waterholes 8 km –0.000145 0.26 +1.2

Rivers main 8 km –0.000268 0.01 +4

Rivers small 8 km –0.000718 0.05 +2.2

December’15 Tree cover 1 km –3.375789 0.001 +0.2

Rainfall – – − –

NDVI 500 m 299.452495 0.001 –2

Waterholes 250 m –0.042954 0.001 +20

Rivers main 250 m –0.032593 0.001 +20

Rivers small 250 m –0.057886 0.001 +14

January’ 16 Tree cover 2 km 0.296 0.83 –0.1

Rainfall – – – –

NDVI 4 km 24.7 0.01 –1.2

Waterholes 8 km –0.000594 0.001 +1

Rivers main – – − –

Rivers small 500 m –0.03888 0.001 +26

February’16 Tree cover 500 m 2.654932 0.001 –4.5

Rainfall – – − –

NDVI 4 km 49.900718 0.001 –8

Waterholes 8 km –0.000274 0.001 +1.1

Rivers main 8 km 0.000198 0.016 –1.4

Rivers small 8 km –0.001701 0.001 +3.5

March’16 Tree cover 8 km 1.003134 0.024 –5.9

Rainfall – – − –

NDVI 8 km 22.63656 0.001 –9

Waterholes 8 km –0.000388 0.004 +3.5

Rivers main 8 km 0.000279 0.001 –5

Rivers small 8 km –0.000765 0.001 +4.5

April’16 Tree cover 2 km 0.011989 0.9 0

Rainfall 8 km 0.185345 0.002 –4

NDVI 8 km –3.590213 0.6 +0.8

Waterholes 8 km –0.001091 0.001 +6.5

Rivers main 8 km 0.000082 0.33 +0.7

Rivers small 8 km –0.002321 0.001 +8

May’16 Tree cover 1 km –2.494475 0.002 +5

Rainfall – – – –

(Continued)

TABLE 1 | Continued

Month Variable Scale Coefficient p-value Change in
resistance

NDVI 8 km 2.220019 0.001 –3.5

Waterholes 8 km –0.000056 0.53 +0.3

Rivers main – – − –

Rivers small 8 km –0.000446 0.02 +1

June’16 Tree cover 8 km –3.92624 0.001 +1.7

Rainfall 4 km 0.287357 0.91 –0.2

NDVI 8 km 60.042759 0.002 –1.5

Waterholes 500 m –0.022774 0.008 +20

Rivers main 8 km –0.000302 0.04 +0.7

Rivers small 4 km –0.001862 0.001 +0.8

July’16 Tree cover 1 km 0.721254 0.59 –1.7

Rainfall 4 km 8.211562 0.21 –10

NDVI 500 m 324.835 0.055 –21

Waterholes 4 km –0.000958 0.002 +3

Rivers main 4 km –0.001702 0.001 +13

Rivers small 8 km –0.000833 0.01 +2.5

August’16 Tree cover 500 m –1.337381 0.001 +1

Rainfall 4 km 0.597576 0.001 –0.7

NDVI 500 m 225.5069 0.001 –3.5

Waterholes 8 km –0.000382 0.001 +0.6

Rivers main 250 m –0.028199 0.001 +75

Rivers small 8 km –0.001061 0.001 +0.8

variable from 4 km in July to 250 m in August. In contrast, change
in NDVI values from the 10th to 100th percentile at the end of
the dry season and beginning of the wet season, in September,
October and November, strongly decreased the resistance by 21,
40, and 30, respectively (Table 1), indicating strong selection for
green vegetation in this time period.

We did not find any correlation between monthly variable
coefficients and averaged rainfall in the study area (current
month, previous month, sum of current and previous months,
and long-term monthly average). However, a weak correlation
(r = –0.5; linear regression p = 0.09 and R2 = 0.25) was found
between the coefficients of distance to small rivers and long-term
average rainfall for current month (Supplementary Material 1
and Supplementary Table 4).

The spatial patterns of predicted landscape resistance were
highly variable across months (Figure 3). The correlations
between monthly resistance surfaces were generally quite
low. Often, but not always, surfaces from adjacent months
were more correlated with each other than months that
were not temporally proximate (Table 2). This was also
supported by the Mantel test, where correlation between monthly
resistances was significantly negatively correlated with difference
in long-term average rainfall from previous month, and a
time lag between months (Table 2). Furthermore, landscape
resistance in September was somewhat correlated with 8 other
months (r ≥ 0.54), and strongly correlated with 6 months
(r ≥ 0.62), also exhibiting relatively small absolute average
difference in resistance values between the other surfaces
(<30 for 9 months).
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FIGURE 2 | Variables presence and coefficient sign across monthly path-selection models. NDVI was negative only in April 2016, tree cover in December 2015 and
May-June 2016, main rivers in October-December 2015 and June-August 2016.

Connectivity
The cumulative resistant kernel surfaces (connectivity surfaces)
for each month varied greatly in their spatial pattern across
months, with core areas of high density elephant movement
shifting across the landscape (Figure 4).

The Pearson’s correlation and average absolute difference
between connectivity surfaces for both tested dispersal thresholds
did not exhibit strong temporal patterns (Table 2). In general,
adjacent months exhibited higher correlation (r > 0.61) and
lower average absolute difference of kernel values (<400;
Table 2). Results of Mantel test of association between the
correlation of monthly connectivity surfaces and time lag
between months supports this pattern for both tested dispersal
thresholds (r = –0.3 and p < 0.05; Table 3). The highest
correlation between connectivity surfaces was for February and
March for both dispersal thresholds (r > 0.90 and absolute
average difference of kernels values < 6; Table 4). Mantel tests
also revealed significant negative association between correlation
between connectivity surfaces for dispersal threshold 500,000,
and difference in total monthly rainfall from previous and current
month (r = –0.27 and p = 0.04; Table 3).

DISCUSSION

This paper evaluated monthly movement patterns of female
elephants in Kruger National Park, South Africa, over a period
of 12 months to quantify the degree to which movement pattern,
factors driving path selection, predicted landscape resistance, and
predicted landscape connectivity were stable through time, and
the degree to which their variability was related to seasonality,
forage quality, water available, rainfall, and their interactions. We

found high variability in patterns of autocorrelation in elephant
movements across individuals and months, and high non-
stationarity of path-level movement models and connectivity
surfaces developed based on them. Our results also indicate that
even during a severe drought, rainfall itself was not a strong
driver of elephant movement. Instead, our results indicate that
elephants were primarily selecting areas with green vegetation,
near waterholes and small rivers, likely attracted by riparian
vegetation along the drainages. Finally, our findings suggest
that conservation and management strategies developed based
on temporarily idiosyncratic models might not be appropriate
or efficient as a guide to identify crucial areas for allocating
scarce resources.

Patterns of Movement Type and Seasonality/Rainfall
Our results showed that the patterns of autocorrelation
in monthly elephant movements were highly variable and
complex, as also seen by Cushman et al. (2005). Cushman
(2010) used simulation modeling to show that three distinct
behavioral movement patterns (directional random and periodic)
could be reliably distinguished from the shape of Mantel
correlograms. Nearly half of the monthly correlograms in
this study were identified as directional trend, significantly
more than expected by chance, which we believe was an
effect of a prolonged drought, and substantially more than
reported for elephants in Botswana in a non-drought year
(Cushman et al., 2005). Cushman et al. (2005) and Wato
et al. (2018) found that directional movement in African
elephants is usually associated with dry season orientation toward
water sources or areas of quality forage that persist in the
dry season. Furthermore, Thaker et al. (2019) showed that
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FIGURE 3 | Resistance surfaces developed in multi-scale framework for each month from September 2015 to August 2016. Brown line indicates sections of Kruger
National Park: 1- Crocodile Bridge; 2- Houtboschrand; 3- Kingfisherspruit; 4- Letaba; 5- Lower Sabie; 6- Mjejane Contractural; 7- Malelane; 8- N’wanetsi;9- Olifants;
10- Pretoriuskop; 11- Phalaborwa; 12- Pretoriuskop (outside KNP); 14- Satara; 15- Skukuza/private reserves (outside KNP); 16- Skukuza; 17- Stolsnek; 18-
Tshokwane. Red color indicates high resistance (elephants repelled) and blue low resistance (elephants attracted).

TABLE 2 | Pearson’s correlation and absolute average difference between 12 resistance surfaces representing 12 months from September 2015 to December 2016.

Sept’15 Oct’15 Nov15 Dec’15 Jan’16 Feb’16 Mar’16 Apr’16 May’16 Jun’16 Jul’16 Aug’16

Absolute average difference

Sept’15

C
or

re
la

tio
n

– 15 13 17 30 34 28 24 34 24 20 21

Oct’15 0.73 – 8 30 44 19 13 12 48 39 10 28

Nov’15 0.72 0.65 – 28 42 21 16 15 46 36 16 27

Dec’15 0.62 0.39 0.38 – 16 49 43 39 19 10 34 14

Jan’16 0.67 0.21 0.33 0.57 – 63 57 53 9 12 48 26

Feb’16 0.72 0.63 0.44 0.29 0.56 – 6 10 67 58 17 44

Mar’16 0.74 0.60 0.43 0.30 0.54 0.92 – 5 61 51 12 39

Apr’16 0.54 0.24 0.20 0.49 0.64 0.66 0.72 – 57 47 10 36

May’16 0.23 0.15 –0.03 0.39 0.33 –0.05 0.14 0.33 – 11 51 25

Jun’16 0.57 0.31 0.27 0.78 0.39 0.26 0.46 0.51 0.42 – 42 21

Jul’16 0.15 0.43 –0.02 0.37 –0.11 0.27 0.14 0.16 0.15 0.10 – 28

Aug’16 0.03 0.18 0.14 0.59 –0.08 –0.15 –0.32 –0.08 0.06 0.10 0.65 –

Highly correlated months (>0.6) and of high absolute average difference (>30) are in bold.

thermoregulation is a strong driver of elephants movement
to water. However, in a drought period, availability of forage
might be even a stronger limiting factor than the water

itself (De Beer and van Aarde, 2008; Woolley et al., 2009;
Birkett et al., 2012), which is suggested by our movement
models showing overall a strong attraction to areas of
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FIGURE 4 | Cumulative resistant kernels surfaces developed for each month from September 2015 to August 2016. Red line indicate sections of Kruger National
Park: 1- Crocodile Bridge; 2- Houtboschrand; 3- Kingfisherspruit; 4- Letaba; 5- Lower Sabie; 6- Mjejane Contractural; 7- Malelane; 8- N’wanetsi;9- Olifants; 10-
Pretoriuskop; 11- Phalaborwa; 12- Pretoriuskop (outside KNP); 14- Satara; 15- Skukuza/private reserves (outside KNP); 16- Skukuza; 17- Stolsnek; 18- Tshokwane.
Dark blue indicates areas of low density elephants’ movement and dark red—areas of high density movement.

high vegetation productivity. Importantly, supporting this
conclusion, we found a significant association between NDVI
and frequency of directional and random movement patters,
with directional movement more frequent when NDVI is
low and random movement when it is high. Our results
showed that, during the months with higher average NDVI,
associated with more abundant and widespread forage, elephants
randomly used temporary home ranges. This appears to
be consistent with the pattern reported by Cushman et al.
(2005) for elephants in Botswana, which were more likely to
have random movement patterns (as judged by correlogram
shape) in wetter periods when forage would be greener, and
hence NDVI would be higher. Elephants, as mixed-feeders,
respond spatially to variable resources during the drought by
changing their normal movement patterns, and adopt longer
distance movements in search for water and forage (Smit
et al., 2020). Therefore, the preponderance of directional
long-distance movement in our study might reflect the need
to move from water sources to distant areas with forage,
as in the dry periods vegetation near waterholes becomes
highly overgrazed (Kaszta et al., 2016). Despite the drought,
vegetation productivity was characterized by higher intra-
annual and spatial variability than rainfall. The significantly
elevated frequency of random movement in times of high

NDVI suggests that when foraging is not limiting (high NDVI)
elephants move randomly to maximize foraging efficiency in
local areas, while when NDVI is low elephants engage in
directed, long-distance movement, presumably seeking quality
forage or water.

Surprisingly, however, we did not find any significant
relationships between the type of movement and seasonality
or rainfall. Cushman et al. (2005) found such relationships in
elephant movements in Botswana, specifically that the correlation
of movement patterns was highly associated with rainfall across
current and prior months. The lack of strong association of
movement pattern and rain in this study could be, again, related
to the effects of the extreme drought. Specifically, during the
normal pattern of seasonality, with clearly pronounced wet and
dry season, rainfall has been reported to be a limiting factor for
elephants’ spatial behavior (Cushman et al., 2005; De Beer and
van Aarde, 2008; Birkett et al., 2012). However, the unusually
severe drought with very low rainfall throughout our entire
study period (Supplementary Figure 1) could have perturbed
the expected relationship between elephant movement patterns
and typical patterns of rainfall and seasonality. Additionally,
rainfall might have not been a limiting driver in this system
because of the provision of artificial water holes in Kruger
National Park. These provide water throughout the year even in a
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TABLE 3 | Mantel test between correlation of monthly resistances/cumulative resistance kernels and difference in rainfall across months (current month, previous month,
current plus previous month, long-term average for a month, long-term average for a previous month and long- term average for current plus previous month) and time
lag between months.

Variable r p1 (r ≤ 0) p2 (≥ 0) p3 (r = 0) llim ulim

Resistance

Rainfall current 0.06 0.48 0.51 0.76 –0.11 0.18

Rainfall previous 0.09 0.37 0.63 0.62 0.04 0.16

Rainfall current + previous –0.18 0.88 0.12 0.23 –0.29 –0.08

Rainfall LT average current –0.06 0.75 0.25 0.59 –0.23 0.12

Rainfall LT average previous –0.19 0.95 0.04 0.06 –0.49 –0.007

Rainfall LT average current + previous –0.14 0.88 0.11 0.19 –0.37 0.06

Time lag –0.31 0.99 0.02 0.02 –0.44 –0.19

Kernels 250,000

Rainfall current 0.09 0.38 0.62 0.62 –0.14 0.19

Rainfall previous –0.05 0.70 0.32 0.80 –0.14 0.18

Rainfall current + previous –0.19 0.90 0.09 0.18 –0.34 –0.05

Rainfall LT average current –0.02 0.63 0.37 0.87 –0.17 0.15

Rainfall LT average previous –0.19 0.93 0.07 0.08 –0.35 –0.04

Rainfall LT average current + previous –0.09 0.70 0.22 0.44 –0.25 0.08

Time lag –0.35 0.99 0.01 0.01 –0.48 –0.22

Kernels 500,000

Rainfall current 0.06 0.49 0.51 0.81 –0.12 0.19

Rainfall previous –0.14 0.77 0.23 0.48 –0.25 0.20

Rainfall current + previous –0.27 0.95 0.04 0.05 –0.40 –0.13

Rainfall LT average current 0.001 0.58 0.46 0.99 –0.17 0.16

Rainfall LT average previous –0.18 0.92 0.08 0.10 –0.36 –0.03

Rainfall LT average current + previous –0.07 0.77 0.23 0.53 –0.25 0.07

Time lag –0.32 0.98 0.02 0.02 –0.50 –0.17

LT, long-term; p1, one -tailed p-value (null hypothesis: r = 0); p2, one -tailed p-value (null hypothesis: r = 0); p3, two -tailed p-value (null hypothesis: r = 0); llim, lower
confidence limit; ulim, upper confidence limit. Correlation with p ≤ 0.05 is marked in bold.

TABLE 4 | Pearson’s correlation and absolute average difference between cumulative kernels resistance surfaces at dispersal threshold 500,000.

Sept’15 Oct’15 Nov15 Dec’15 Jan’16 Feb’16 Mar’16 Apr’16 May’16 Jun’16 Jul’16 Aug’16

Absolute average difference

Sept’15

C
or

re
la

tio
n

– 20 17 97 992 32 29 27 435 238 24 131

Oct’15 0.79 – 8 115 1,011 12 10 8 455 258 8 142

Nov’15 0.76 0.64 – 111 1,008 16 14 13 451 254 14 139

Dec’15 0.43 0.44 0.30 – 897 127 124 122 340 143 118 73

Jan’16 0.62 0.46 0.42 0.51 – 1,023 1,021 1,019 582 757 1,014 882

Feb’16 0.61 0.56 0.41 0.21 0.42 – 2 4.85 467 270 10 153

Mar’16 0.67 0.59 0.40 0.16 0.44 0.95 – 2.69 464 267 8 150

Apr’16 0.33 0.28 0.14 0.13 0.20 0.65 0.71 – 462 265 7 148

May’16 0.50 0.45 0.22 0.62 0.63 0.50 0.48 0.17 – 205 457 314

Jun’16 0.53 0.53 0.26 0.82 0.67 0.22 0.28 0.13 0.67 – 261 171

Jul’16 0.01 0.21 –0.11 0.30 –0.23 0.26 0.16 0.22 0.13 0.07 – 143

Aug’16 0.01 0.16 0.07 0.64 –0.01 0.03 –0.13 –0.10 0.34 0.24 0.59 –

Highly correlated surfaces (r > 0.60) and of high absolute average difference in kernel values (>450) are in bold.

drought. Dependence on these scattered water sources, however,
likely leads to intense local grazing pressure in their proximity,
requiring longer and longer foraging bouts to reach quality forage
as the drought period continues. Our results show this pattern
both in the selection of forage quality and increasingly directional
and long-distance movements in the dry periods of the study.

Temporal Non-stationarity of Movement Models and
Connectivity
Perhaps the most important finding of this study is the
high temporal non-stationarity of movement models developed
based on path-selection functions. Although the monthly
models largely included the same variables with the same
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sign (e.g., qualitative similarity among months), they varied
quantitatively across the 12 months. Furthermore, we found that
the correlations between resistance surfaces across 12 months
were generally low, and the absolute average difference between
them was high. This highlights a potentially serious problem in
using movement models in general, and path selection functions
in particular, to infer landscape effects on movement and to use
these interpretations to develop conservation plans.

Movement models are widely used in conservation planning
(Squires et al., 2013; Elliot et al., 2014a,b; Carvalho et al.,
2016; Hearn et al., 2018b; Kaszta et al., 2019, 2020a,b;
Osipova et al., 2019). These studies often extrapolate results
from analysis of data collected over a short period of
time. However, if fine-scale temporal non-stationarity is often
as high as we observed it in this study, then pooled
seasonal or yearly movement or connectivity models may not
be reliable, especially when they are developed to inform
ecological understanding and to guide conservation planning
over different time periods.

Fine-scale temporal variation in animal movement has not
been widely investigated. To our knowledge there have been few
past studies that focus on temporal non-stationarity of movement
patterns and resource selection, and almost no published studies
have addressed temporal variation in path-level analysis or
connectivity, especially when also accounting for variability in
spatial scale of movement and resource use. The non-stationarity
of temporal scale-optimized path-selection models has been
reported previously (e.g., Cushman and Lewis, 2010). In that
study the authors found that two seasonal bear movement models
qualitatively and quantitatively differed in response to changing
seasonal limiting factors. Similarly, Cushman et al. (2011) found
differences in resistance models from path-selection functions for
American marten (Martes americana) in a pre-harvest landscape
and the same landscape after it experienced extensive and highly
fragmenting timber harvest. As in the Cushman and Lewis (2010)
study, the difference was explained based on dramatic changes in
limiting factors that affected movement differently between the
two temporal periods compared.

Seasonal non-stationarity of movement models has also been
reported in step-selection analysis (Osipova et al., 2019; Zeller
et al., 2019). For example, Osipova et al. (2019) used single scale
step-selection models and found large differences in seasonal
movement models and corridors predicted from them for African
elephants in the borderland area between Kenya and Tanzania.
The authors stressed that movement corridors for elephant
designated without accounting for seasonal resource fluctuations
do not protect elephant movement across the full scope of space
and time relevant for conservation. In contrast, Squires et al.
(2013), modeling step-selection and connectivity of Canada lynx
(Lynx canadensis) in the Northern Rocky Mountains, found
only small seasonal variation. However, even when seasonal
models appear to be stationary, there may be, as in our study,
highly variable movement patterns at finer temporal scales that
limit the general utility of the seasonal models. This suggests
that movement and resource selection models should be jointly
optimized for both spatial and temporal scale, as suggested by
McGarigal et al. (2016a,b).

Our study evaluated the effects of finer temporal and scale-
dependent variation in animal movement than typically has
been studied. Most published studies report annual or seasonal
models, whereas we compared 12 adjacent monthly periods,
which allowed us to evaluate temporal non-stationarity at a scale
finer than seasons. Finding very high temporal non-stationarity
within years and within seasons suggests that more attention
should be paid to temporal non-stationarity, and to optimization
of temporal scale in resource selection and movement modeling.

We found nearly universal and strong non-stationarity in
the predictions of path-selection functions, and the connectivity
surfaces we developed based on them, and this high non-
stationarity was generally not associated with the expected effects
of limiting factors. For example, we did not see greater similarity
in resistance and connectivity models as a function of similarity
in rainfall. We did see a weak association in resistance and
connectivity as a function of proximity in time, suggesting the
models developed near in time are likely to be more similar
than those developed at more different periods. This association
was, however, only significant for adjacent months and was
not particularly strong. We also found a significant association
between resistance and connectivity predictions and similarity
in NDVI between months, suggesting that, for elephants, forage
seems to be the one factor among those we studied that has
a consistent effect on resistance and connectivity. This is in
accordance with a study of Smit et al. (2020) investigating effects
of the 2015–2016 drought in KNP on megaherbivores. The
authors suggest that food rather than water is a limiting factor for
elephants during the drought and increased water provisions of
artificial water does not increase megaherbivores survival during
drought. Our results, for the same species, in the same system,
at the same time, are fully consistent with this and suggest that
forage quality and how it changes in accessibility during drought
periods is the primary limiting driver of elephant movement
in KNP. Our findings are also consistent with Loarie et al.
(2009), who showed that African elephants consistently selected
greener vegetation across 6 years of data, despite the season, by
utilizing vegetation with different phenologies, and by selecting
landscapes when they are greener than their surroundings.
Similarly, our findings show that elephants have strong attraction
to green vegetation in times of drought, as well as frequent long
distance directional movements from waterholes and rivers to
areas provisioning high quality forage during these periods of
resource scarcity.

Factors Affecting Elephant Movements
We found that monthly path selection by elephants in Kruger
National Park was dependent on the spatial scales at which
environmental context was considered. Although, in general,
elephants selected resources in relation to broad scales of their
availability (especially those related to water accessibility), the
spatial context of selection/avoidance of habitat components was
not temporarily consistent. Several previous studies have shown
the critical importance of spatial scale when investigating species-
environment relationships (e.g., De Knegt et al., 2010; McGarigal
et al., 2016a,b). De Knegt et al. (2011) explicitly evaluated
the spatial scaling of habitat selection by African elephants in
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Kruger National Park, supporting our finding that quantification
of resource use is scale dependent, and that optimizing scale
relationships increases the predictive ability of habitat suitability
models. Likewise, Cushman et al. (2010), in the introductory
publication describing the path-selection approach, found that
elephant movement path selection in Botswana was highly scale
dependent. Furthermore, similar to our results, Cushman and
Lewis (2010) found that the two investigated seasonal path-level
movement models for American black bear varied in spatial
scales at which same landscape features were represented in each
model. However, the fine-scale temporal variability of functional
scale at which landscape variables are most related to the selection
of movement paths has never been investigated before.

Our results show that the most important and consistent
factors affecting elephant movement across nearly all months
was access to high quality and quantity of forage, as well
as proximity to waterholes and small rivers. The importance
of forage and water availability for elephants was previously
reported by De Knegt et al. (2011), who suggested that elephants
optimize efficiency of movement and foraging by selecting
areas sufficiently close to water and of high forage availability.
Furthermore, Smit et al. (2020) found that during the 2015–
2016 drought in KNP elephants exhibited regional movement
patterns and were attracted to higher water provision densities.
The same general pattern was reported by Loarie et al. (2009).
However, we also found that the extent to which water and forage
availability impacted elephant movement and the resistance
surfaces generated by path-selection functions greatly varied
across months. NDVI, a proxy for vegetation quality and
quantity, seemed to have the highest impact on resistance surface
during the transition period ending the dry period and starting
the wet season (September, October, and November). This is the
time when females and weaned calves are susceptible to stress
caused by the decreased nutritional value of forage (Woolley
et al., 2009). We also found that proximity to main rivers,
although present in nine models, had disproportionally high
impact on resistance values at the end of the dry season (July and
August) when other water sources might have dried up.

We expected that elephant resource selection would be
strongly driven by spatial and temporal patterns of rainfall
in the study area. However, rainfall appeared to be one of
the weakest and universal abundant predictors across all path-
selection models. Similar results were found by MacFadyen et al.
(2019), showing that density of elephant herds in KNP across
three decades of census records collected during dry seasons
was not driven by spatial pattern of rainfall, but by proximity
to water sources and forage quality. Here, we confirm this, and
our results emphasize the importance of green vegetation as a
driver of movement, in relation to its distance from water sources.
Furthermore, the study of Ndlovu et al. (2018), points out that
during the drought period water quality might be a far more
important factor driving elephant preference across waterholes
than water availability.

Implications for Conservation and Management
The fact that the path-level movement models we developed
showed very high temporal non-stationarity of their predictions

has important implications for future studies investigating
resistance to movement and connectivity, as well as for
conservation and management actions. Traditionally, the design
of movement modeling studies has not accounted for temporal
non-stationarity, unless it was related to questions of seasonal
movement patterns (e.g., Cushman and Lewis, 2010; Osipova
et al., 2019; Zeller et al., 2019) or pre-post landscape change (e.g.,
Cushman et al., 2011). The investigation of an appropriate time-
window for developing a movement model should constitute
a necessary step in order to account for behavioral variation
in animal space use patterns, so as to produce stable, reliable,
and useful predictions of landscape resistance and connectivity
that can inform conservation (McGarigal et al., 2016a,b). This
especially applies to African elephants, which are subjected
to often intensive management due to their role in shaping
ecosystems, potential to drive habitat degradation, and their
exposure to poaching. In Kruger National Park, where the current
elephant population is presumed to have negative effect on
vegetation (Seloana et al., 2017; Robson and van Aarde, 2018),
there is growing interest in managing the elephants by restricting
the availability and distribution of water sources.

The high intra-annual variability of resistance and
connectivity surfaces we produced suggests high variation
in space-utilization and temporal shifts of core habitat areas
for elephants in Kruger National Park. This information is
important for managers, as conservation and management
strategies focusing only on certain areas identified by temporarily
idiosyncratic models might not be appropriate or efficient
as a guide for allocating scarce resources. For example, our
approach, expanded by additional data from other collaring
projects in KNP, can be used to identify specific areas where
elephants respond to green vegetation and waterholes most
strongly during drought, and to identify specific waterholes
to be closed to promote natural demographic processes, such
as weaned calf mortality, to play out in regulating the KNP
elephant population (Hilbers et al., 2015). This may be especially
important in the private reserves to the west of Kruger, which
have a very high density of waterholes, and where waterholes
have not been closed (Mwakiwa et al., 2013). In other parts of the
elephant range, where the management goals are not population
reduction, understanding temporally varying patterns of
elephant movement in relation to water and forage quality
could be used to guide conservation strategies to maximize
resource complementation and supplementation to increase the
landscape-scale carrying capacity for the elephant population
and to increase its connectivity to facilitate recolonization.

We strongly advocate that conservation and management
actions of any species of interest should be informed by
rigorous models that account for scale dependence, both spatial
and temporal (McGarigal et al., 2016a,b), landscape-dependent
limiting factors (Cushman et al., 2011), and, following the
results of this paper, that account for and explain temporal
variation in space use. Furthermore, we urge researchers studying
other species or ecosystems to evaluate temporal variability
and non-stationarity to quantify how general are the patterns
we observed in this study. If movement patterns do not
strongly and stably reflect how landscapes affect movement at
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spatial and temporal scales relevant to population processes and
conservation decisions, then other approaches that have more
temporal stability, such as landscape genetics (Balkenhol et al.,
2015) might be needed. However, methods such as landscape
genetics typically substitute long time lag effects, which often
result in non-equilibrium between current landscape conditions
and inferences of landscape resistance (e.g., Landguth et al.,
2010), for short-term temporal non-stationarity.

The ability of researchers to reliably use empirical data on
species occurrence and movement to infer the factors that drive
patterns of occurrence and movement is the foundation of data-
driven conservation science. Our results suggest more attention
must be paid to how stable and reliable these predictions are,
and what methods, sampling designs, and analytical frameworks
produce the most reliable and stable predictions of landscape
resistance and connectivity.

Scope and Limitations
In this work, we investigated a time window of a month, to
be consistent with previous elephant autocorrelation (Cushman
et al., 2005) and path selection function studies (Cushman
et al., 2010). Our observation of high non-stationarity of the
movement models and connectivity predictions is within this
temporal scale of analysis. It is unknown how the stability
of resistance and connectivity models changes with changing
temporal scale of analysis. Further study should evaluate models
based on varying time-windows, such as 2-weeks (Elliot et al.,
2014a) to 1 year (Cushman et al., 2010). In particular, McGarigal
et al. (2016b) noted that almost no published habitat selection
studies address temporal scale, and none that they reviewed
optimized models to the best temporal scale for prediction.
They suggest that in addition to optimizing spatial scale in
habitat and movement modeling, researchers should also and
simultaneously optimize temporal scale. The observation of
high temporal non-stationarity in this and other studies that
have assessed it highlights the importance of addressing and
accounting for temporal scale and temporal variability in animal
movement and resource selection functions. To reliably associate
observed results with known drivers we suggest that multi-
temporal and multi-spatial scale optimization studies should
be evaluated through a controlled process by applying agent-
based simulations.

Our study was limited to a 12-month period during an
extreme drought. It would be informative to extend the study
period to observe changes in movement behavior in this system
in non-drought periods. Furthermore, it is possible to extend
study period extent, which will enable better quantification of
temporal stationarity, through improved collar technology or by

setting the location fix rate to a lower frequency. In our study
we used a 30 min frequency. Setting the frequency to 1 h would
nearly double the temporal extent of the study. However, as Zeller
et al. (2016) has shown, movement models, such as path selection
functions, are highly sensitive to the temporal grain (fix rate) of
movement data and care must be taken in evaluating the tradeoff
between temporal grain (fix rate) and extent (collar life).
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Kaszta, Ż, Cushman, S. A., Hearn, A. J., Burnham, D., Macdonald, E. A.,
Goossens, B., et al. (2019). Integrating Sunda clouded leopard (Neofelis diardi)
conservation into development and restoration planning in Sabah (Borneo).
Biol. Conserv. 235, 63–76. doi: 10.1016/j.biocon.2019.04.001

Frontiers in Ecology and Evolution | www.frontiersin.org 16 April 2021 | Volume 9 | Article 553263

https://doi.org/10.1371/journal.pone.0038363
https://doi.org/10.1371/journal.pone.0038363
https://doi.org/10.1890/11-1737.1
https://doi.org/10.1046/j.0141-6707.2001.00344.x
https://doi.org/10.1046/j.0141-6707.2001.00344.x
https://doi.org/10.1186/s40462-018-0140-6
https://doi.org/10.1186/s40462-018-0140-6
https://doi.org/10.1111/j.1442-9993.1995.tb00561.x
https://doi.org/10.1111/j.1442-9993.1995.tb00561.x
https://doi.org/10.1371/journal.pone.0024165
https://doi.org/10.1371/journal.pone.0024165
https://doi.org/10.1098/rstb.2010.0107
https://doi.org/10.1098/rstb.2010.0107
https://doi.org/10.1007/s10980-015-0326-x
https://doi.org/10.1111/j.1523-1739.2007.00674.x
https://doi.org/10.1016/j.biocon.2005.09.031
https://doi.org/10.1016/j.biocon.2005.09.031
https://doi.org/10.1007/978-4-431-87771-4
https://doi.org/10.1007/s10980-010-9534-6
https://doi.org/10.1007/s10980-010-9534-6
https://doi.org/10.3390/d6040844
https://doi.org/10.1007/s10980-011-9645-8
https://doi.org/10.1007/s10980-011-9645-8
https://doi.org/10.1016/j.jaridenv.2005.06.015
https://doi.org/10.1016/j.jaridenv.2008.07.002
https://doi.org/10.1016/j.biocon.2012.10.015
https://doi.org/10.1890/09-1359.1
https://doi.org/10.1890/09-1359.1
https://doi.org/10.1111/j.1365-2656.2010.01764.x
https://doi.org/10.1016/j.biocon.2013.07.035
https://doi.org/10.1111/j.1365-2656.2010.01670.x
https://doi.org/10.1111/j.1365-2656.2010.01670.x
https://doi.org/10.1890/13-1793.1
https://doi.org/10.1111/1365-2664.12282
https://doi.org/10.4102/koedoe.v59i1.1427
https://doi.org/10.18637/jss.v022.i07
https://doi.org/10.1126/science.1244693
https://doi.org/10.1126/science.1244693
https://doi.org/10.1016/j.biocon.2018.04.016
https://doi.org/10.1371/journal.pone.0200828
https://doi.org/10.1371/journal.pone.0200828
https://doi.org/10.1890/14-0322.1.sm
https://doi.org/10.1890/14-0322.1.sm
https://doi.org/10.1007/bf02573958
https://doi.org/10.2307/1937156
https://doi.org/10.2307/1937156
https://doi.org/10.1016/j.biocon.2019.04.001
https://www.frontiersin.org/journals/ecology-and-evolution
https://www.frontiersin.org/
https://www.frontiersin.org/journals/ecology-and-evolution#articles


fevo-09-553263 April 21, 2021 Time: 16:34 # 17

Kaszta et al. Temporal Non-stationarity of Movement Models
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