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Algal blooms have been reported in some tributary bays since the initial impoundment
of Three Gorges Reservoir, which has seriously affected the water ecology and
drinking water safety. Hydrodynamics plays a crucial role in algae growth. The recent
numerical models of hydrodynamics and water quality are effective to identify the
effects of hydrodynamics on phytoplankton and find potential strategies for controlling
algal blooms. In this study, the CE-QUAL-W2 model was applied to simulate the
hydrodynamics and algal blooms in the Xiangxi Bay (XXB) of the Three Gorges Reservoir.
The model performed well in simulating flow patterns, water temperature profile, and
algal blooms. The results indicated that the hydrodynamics showed the spatial and
temporal differences in the XXB. In the mouth area, the intensity and plunge depth
of density currents were dynamic and characterized by a typical seasonal pattern.
The transformation of density currents from interflow to overflow will provide more
opportunities for vertical mixing, resulting in un-stratification and reducing of algal blooms.
However, in the middle and upper areas, strong stratification and low velocity at upstream
provide enough favorable conditions for the growth of algae and increase algal blooms.
The simulation results revealed that the variation of mixing depth explains the spatial
and temporal differences of Chl.a. It played a vital role in seasonal stratification and the
dynamics of phytoplankton succession in XXB.

Keywords: density current, flow patterns, algal blooms, CE-QUAL-W2, three gorges reservoir

INTRODUCTION

The act of damming and impounding a river imposes fundamental physical changes upon the
river continuum, which in turn fragments habitats (Grill et al., 2014; Winemiller et al., 2016;
Anderson et al.,, 2018), disrupts the hydrological cycle of floodplain (Hu et al., 2008; Zeilhofer
and De Moura, 2009; Guo et al., 2012), releases large amounts of methane (Lima et al., 2008;
Fearnside and Pueyo, 2012; DelSontro et al., 2016), and causes eutrophication and even harmful
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algal blooms (Wang et al., 2013; Rafiee and Jahangirirad, 2015).
The Three Gorges Reservoir (TGR) is a typical flooded river
valley reservoir and the world’s largest reservoir. It has produced
substantial social and economic benefits in flood control, power
generation, shipping, and storage of water resources for irrigation
and potable water supplies, since the operation of the Three
Gorges Dam (TGD) at full capacity at the end of 2008.
However, it cannot be ignored that TGR has also caused new
hydrodynamic conditions (Bie et al., 2013; Long et al., 2020),
water temperature stratification (Long et al., 2016a; Liu et al,
2018), water eutrophication and frequent occurrence of algal
blooms (Dai et al., 2010; Xu et al., 2013; Wu et al., 2017;
Yang et al, 2017) in tributaries, threatening the downstream
water ecology.

A large number of studies show that algal blooms in the
tributaries of TGR are mostly affected by hydrodynamics (Liu
et al, 2012; Xiong et al, 2013; Yang et al, 2018a), thermal
stratification (Cui et al., 2012; Yang et al,, 2012; Zhou et al,
2016), and nutrient loads (Zheng et al., 2009a; Yang et al., 2018b;
Nwankwegu et al,, 2020). From the long-term water quality
monitoring in the tributaries of TGR, it was found that the
nutrient levels in TGR are high and difficult to control because
nitrogen and phosphorus loads in several major tributaries are
mainly from non-point source pollution (Zheng et al., 2009b).
In addition, it is known that bidirectional density currents are
a common flow pattern in the tributaries of TGR, which are
caused by the density difference due to the water temperature
and the sediment concentrations, for TGR water temperature
is the dominant factor (Liu et al.,, 2016). It is a consensus that
the significant change in hydrodynamic condition is a key factor
to control algal blooms by affecting the thermal stratification,
nutrient transport, and the relationship between the mixing
depth and euphotic depth (Ji et al., 2017; Yang et al., 2018a; Chuo
etal., 2019).

It is a huge challenge and of great significance to understand
the ecological effects produced by density currents in the
tributaries of TGR. Compared with the expensive and time-
consuming field monitoring method, it is acceptable to use a
numerical model to simulate the development and progression of
hydrodynamics and water quality. At the present, many authors
have successfully applied the CE-QUAL-W2 model to simulate
the density currents in the tributaries of TGR (Ma et al., 2015;
Ji et al., 2017; Jin et al., 2019; Long et al., 2019). However, it is
hardly used to simulate the hydrodynamic effects on the outbreak
of algal blooms. Therefore, in this study, a two-dimensional
laterally averaged hydrodynamic and ecological model (CE-
QUAL-W?2) was implemented to (1) simulate density currents,
water temperature, and algal blooms in a typical tributary of the
TGR and (2) investigate the mechanism that affect algal blooms.

MATERIALS AND METHODS

Study Area

The Xiangxi River (XXR), a typical tributary in the lower reach
of the Three Gorges Reservoir (32km from the Three Gorges
Dam), runs from north to south and drains a watershed whose
area is about 3,099 km?. It has a total length of 97.3km and

extends from 110°25'E to 111°06’E and from 30°57'N to 31°34'N
(Figure 1). After initial filling in June 2003 to a water level of
135m, a deep riverine bay formed in the Xiangxi Bay (XXB),
with the lower 24km submerged by a backwater reach. The
backwater of the XXR reach extended to 30 and 40 km when the
TGR was filled to a water level (156 m) and a normal water level
(175m), respectively.

Model Application

CE-QUAL-W2 is a two-dimensional, longitudinal/vertical,
hydrodynamic, and water quality model, and it is best suited for
relatively long and narrow waterbodies exhibiting longitudinal
and vertical water quality gradients under the assumption that
lateral gradients are negligible (Wells, 2019). It is a coupled
model system in which a hydrodynamic module is combined
with a water quality module. The model has been successfully
and widely applied to rivers, lakes, reservoirs, estuaries, and
combinations thereof including entire river basins with multiple
reservoirs and river segments (Berger and Wells, 2008; Afshar
et al,, 2011, 2013; Park et al., 2014; Zou et al., 2014; Noori et al.,
2015; Glubt, 2017). The CE-QUAL-W2 model was selected for
this study because it can well-reproduce the dominant density
currents and water temperature profiles in the tributaries of the
TGR (Ma et al,, 2015; Long et al., 2016b, 2019; Ji et al., 2017).

Model Design and Data Collection

This study covers a total length of 30.7 km, and five sampling
sites (S1~S5) were set from the mouth of the Xiangxi River
to the vicinity of Zhaojun town (Figure 1C). Field data in this
study were collected from January 2010 to December 2011, and
the model was used to input files, calibration, and validation.
The outputs in 2012 are used to analyze the spatiotemporal
dynamics of hydrodynamics, stratification, and algal blooms.
The hydrodynamic and algal modeling required the following
input data:

O Bathymetry data. The computational grid of the XXB
developed from bathymetric and geometric data was 500 m in
length and 1m in thickness, with a total of 64 longitudinal
segments and 109 vertical layers. The accuracy of the bathymetry
data was confirmed by comparing the observed and simulated
storage water elevation curves.

O The meteorological parameters (i.e., air temperatures,
cloud cover, wind, direct solar radiation, et al.). Daily
meteorological data were available from measurements
obtained from a hydrological station at Xingshan (Figure 1C),
approximately 36 km upstream from the confluence of XXB and
the Yangtze River.

O Upstream inflow temperature, discharge, and water quality.
Daily upstream inflow rates and weekly inflow temperature
data were obtained from Xingshan station. Data gaps for
water temperature were determined by statistical regression
equations of water temperature and air temperature (Ma
et al., 2015). Surface water samples at S5 were collected for
water quality parameters. Monitored water quality variables
included phosphate phosphorus (PO4-P), nitrate nitrogen (NO3-
N), ammonium nitrogen (NHy4-N), dissolved silicate (D-Si),
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FIGURE 1 | (A) Location of the Three Gorges Reservoir (TGR) in China; (B) location of the Xiangxi Bay (XXB) in the TGR outlined in red and its drainage system; and
(C) location of the sampling sites in the XXB.

dissolved oxygen (DO), chlorophyll a (Chl.a), and phytoplankton
species and biomass.

O Downstream temperature and water quality profile.
Downstream temperatures profiles (4-m vertical spacing) were
collected weekly at the river mouth (S1) of the XXB using a
multiprobe sensor (Hydrolab DS 5X). Monthly water samples at
S1 were collected from the surface, mid-depth, and near-bottom
layers for obtaining vertical profiles.

0 Water level data. Daily water level data were obtained from
the China Three Gorges Corporation (https://www.ctg.com.cn/).

O Calibration data. Monthly water temperature and velocity
profiles measured at S2, S3, and S4 were used for the calibration.
Surface algal density and Chl.a concentration were measured at
S3 for calibration.

Model Calibration

Model performance was evaluated based on the absolute mean
error (AME) and the root mean square error (RMSE) statistics.
The AME provides an indication of model performance and
is one measure of average error. The RMSE is statistically
well-behaved and is another indicator of the average difference

between observations and predictions.

> |Simulated — Observed|

AME = 1
number of observations M
RMSE — \/ > (Simulated — Obs‘erved)2 @
number of observations

Based on previous CE-QUAL-W2 model studies in XXB (Ma
et al., 2015; Chuo et al, 2019; Jin et al, 2019), the most
sensitive model parameters are the longitudinal eddy viscosity,
longitudinal eddy diffusivity, Manning’s roughness coefficient,
wind sheltering coefficient, dynamic shading coefficient, the
fraction of incident solar radiation absorbed at the water
surface, and the light extinction for pure water (Table 1). The
parameter values are listed in Table 1. The model performed
well in simulating the hydrodynamics, including density current
patterns (overflow, underflow, or interflow), velocities profiles
(Figure 2). Predictions of water temperature in 2010-2011
yielded a good match to the measured profiles at three sites:
S2 (downstream), S3 (middle reaches), and S4 (upstream)
(Figure 3). The model performance was also evaluated by
comparing the simulated results and observations at sites S2-54,
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TABLE 1 | The main control parameters of the hydrodynamic model in the Xiangxi

and these comparisons showed excellent model-data agreement.

Bay. The overall averaged absolute mean error (AME) and averaged
— root mean square error (RMSE) were 0.21°C and 0.35°C,
Parameters Coefficient Value respectively, at site S2, 0.30°C and 0.53°C, respectively, at site
A Lonaitudingl eddy viscosity e/ 0 S3, and 0.37°C and 0.47°C, respectively, at site S4. Most of
Ongfu fn ¢ yVI. O.SI.ymZS ' the vertical profiles have AMEs <0.7°C and RMSEs <0.8°C.
DX Longitudinal eddy diffusivity m*/s 1.0 The error statistics show that the model effectively captured the
FRICT Manning's N s/ m'/® 0.04  characteristics of thermal stratification.
WSC Wind sheltering coefficient 0.9 This study added water quality and algal module in the
) . . previous hydrodynamic model (Ma et al, 2015; Long et al,
SHADE Pynamic shading coefficeent 08 2019). Ten controllable parameters affecting the growth of
BETA Solar radiation absorbed in surface layer 045 phytoplankton species are selected in the study. Taking into
EXH20 Extinction coefficient for pure water m-1 045  account the algal occurrences in XXB, five common algal species
ALG1-5 (peridiniopsis, peridinium, diatoms, chlorophyta, and
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FIGURE 2 | Observed and modeled vertical profiles of velocity at sites S2, S3, and S4.
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FIGURE 3 | Observed and modeled water temperature profiles of velocity at sites S2, S3, and S4.
TABLE 2 | The main control parameters of algal model in the Xiangxi Bay.
Parameter Description Chlorophyta Diatoms Chlorophyta Cyanophyta
(ALG3) (ALG4) (ALG5)
ALG1 ALG2
AG Maximum algal growth rate, day~" 2.7 3.0 2.5 2.2 1.9
AS Algal settling velocities, m day~" 15 1.0 0.55 0.35 0.08
AT1 Lower temperature for algal growth, °C 9.5 15 11 7 20
AT2 Lower temperature for maximum algal growth, °C " 18 12 13 28
AT3 Upper temperature for maximum algal growth, °C 14 24 28 29 32
AT4 Upper temperature for algal growth, °C 17 27 31.5 35 33
AK1 Fraction of algal growth rate at AT1 0.1 0.1 0.1 0.1 0.1
AK2 Fraction of maximum algal growth rate at AT2 0.99 0.99 0.70 0.85 0.99
AK3 Fraction of maximum algal growth rate at AT3 0.95 0.79 0.90 0.95 0.99
AK4 Fraction of algal growth rate at AT4 0.1 0.1 0.1 0.1 0.1

cyanophyta) were selected for simulation (Table 2). Observed
chlorophyll a (Chla) at S3 and four kinds of algal blooms
(pyrrophyta, diatom, chlorophyta, and cyanophyta) were used for
model calibration (Figure 2). All parameters for each species are
repeatedly calibrated and listed in Table 2.

As shown in Figure4, the simulated four algal blooms
(chlorophyta, pyrrophyta, diatom, and cyanophyta), and Chl.a
concentration were used to compare field data to model
predictions. The simulated results indicated that the algal model
can capture the temporal dynamics of each phytoplankton

biomass and algal blooms events from Chla concentration
(Figure 4). Four algal densities have a relatively high level in
spring and summer and nearly narrow almost to vanishing
point. Figure 4 shows that there are good agreements between
the model predictions and the field data on the occurrence
time. Occasionally, the algal peaks vary considerably, especially
in pyrrophyta, but the model can simulate the seasonal
distribution of each phytoplankton. For example, the biomass
of pyrrophyta increased in the spring, and cyanophyta prefer
stratified water with high temperature. On the whole, predictions

Frontiers in Ecology and Evolution | www.frontiersin.org 5

January 2021 | Volume 8 | Article 610622


https://www.frontiersin.org/journals/ecology-and-evolution
https://www.frontiersin.org
https://www.frontiersin.org/journals/ecology-and-evolution#articles

Xu et al.

Hydrodynamics-Stratification-Algal Model

— Simulated © Observed

Pyrrophyta (ALG1+ALG2)

Algal density (10° cells/L)

AME = 13.0
RMSE =23.6

AME = 108.2
RMSE=165.1

Algal density (10°cells/L) Algal density (10° cells/L)

AME =76.1
RMSE = 131.5

800 -+

Algal density (10° cells/L)
=~
=Y
3

Chl.a (mg/m®)

Date (mm/yyyy)
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of Chl.a concentration in 2010-2011 yielded a good match to
the measured variations, indicating that the model effectively
captured the growth and disappearance of phytoplankton.

Model Output and Post-processing

In this model, segments 63, 25, and 09 represent the three field
measurement sites [mouth site (S1), middle site (S3), and upper
site (S2)] in Figure 1C. The daily simulated velocity, temperature,

and Chl.a concentration profiles at these three segments were
outputted and processed in Matlab 6.0 for further analysis. In
addition, the euphotic depth (Z,,), which is the suitable light
zone for the phytoplankton photosynthesis, was estimated when
the solar radiation intensity was attenuated to 1% of that at the
surface. The mixed layer depth (Z,ix) was determined as the
depth at which the water temperature was 0.5°C lower than that
of the surface water (Montegut et al., 2004).
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RESULTS

Dynamics of Density Currents in the
Xiangxi Bay
The temporal and spatial dynamics of flow velocity at the mouth,
middle, and upper sites of XXB and upstream inflow discharge
rate are shown in the Figure 5. The positive velocity indicates
water flowing into the tributary bay from mainstream, and the
reverse represents the water flowing out from the tributary bay. A
two-layered flow structure of density currents was clearly visible
at three sites (S2-S4), but the magnitude and direction of the
velocity differed. It can be seen that the intensity and the plunge
depth of the density current were dynamic and characterized
by a typical seasonal pattern. The density currents can be
distinguished by overflow, interflow, and underflow according
to the plunge depth. As shown in Figure 5A, the water from
the mainstream started to flow into the XXB from the middle
layer (interflow) at early February and gradually moved to the
bottom (underflow) until mid-March. Then, the intrusion water
suddenly ran up to the upper layer, ~5m below the surface,
until the end of August. Meanwhile, it increased in strength with
the double magnitude of the flow rate, but twice upon a time it
turned into overflow, e.g., in mid-May and mid-August. Another
sharp and significant shift occurred in the end of July, a short
downward flow in the middle of the long overflow period.

With the impoundment of TGR in September, the depth
of intrusion water moved down over again, and it was

transformed into underflow in October, then gradually weakened
after November. This longer-term variability is most likely
related to changes in mainstream water density (mainly due
to the temperature change) and the seasonal fluctuation of
water level in TGR. Compared to the mouth site, the flow
structures at the middle and upper sites are more stable and
simple (Figures 5B,C); nevertheless, the velocity magnitudes of
intrusion water were significantly decreased. The features of
flow velocity at S3 and S4 were similar in spite of the large
differences in water depth. The cold river inflow along the
bottom (underflow) occurred within a maximum thick layer of 10
(S3)—15m (S4) most of the time. However, it was also seen that
upstream inflow entered into the bay as an interflow, and even
as an overflow, e.g., from mid-March to early May. This short-
time shift of inflow density can be caused by the warming of air
temperature and reducing of inflow discharge in spring.

Spatiotemporal Variation of Stratification

Figure 6A shows temporally simulated water temperature at
the mouth, middle, and upper reach of the Xiangxi Bay from
January 1, 2012 to December 31, 2012. The results show that
stratification varied in space and time. In space, the vertical
thermal structure at the mouth is markedly different from
that of the upstream sites (mid and upper site). There is no
persistent stratification at the mouth site, even in summer when
mixing goes through the bottom layer (Figure 6A). The mixing
depths (Zix) have consistently exceeded 90m from the end

) Velocity (m/s)
180 0.15
~ 160 0.1
E 0.05
8 140 .
2 0
S 120
2 100 0.05
w -0.1
80
-0.15
B
180 0.15
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FIGURE 5 | Temporally simulated horizontal velocities at the mouth (A, S2), middle (B, S3), and upper (C, S4) sites of Xiangxi Bay in 2012. Positive flow velocity
corresponds to upstream flow (from TGR into the Xiangxi Bay); negative velocity is in the direction of the river flow. The black and red dotted boxes show the sharp
shift of density currents, respectively.
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FIGURE 6 | Time series of simulated water temperature at the mouth (S2), middle (S3), and upper (S4) sites of the Xiangxi Bay in 2012 (A-C). The white dash line

of September to the middle of March, with the highest water
level operation in TGR. In spring and summer, the short-time
and weak stratification were broken, exactly as the frequent
up-and-down jumps of Z,;,. The bottom water column was
energetic and active without visible hypolimnion. Compared to
the mouth area, the middle and upper part of the tributary
bay had a 6-months period of thermal layering (Figures 6B,C).
It started from the late of March when the surface layer got
warmer due to the increase in solar radiation. With the vertical
transfer of heat to deeper water layers, the thickness of the bottom
cold layer gradually decreased, while the water temperature
differences between the surface and bottom gradually increased
until May. Stratification reached its maximum level during May-
August when the temperature difference of >6°C between the
top and the bottom layers occurred. It is worthy to note that
the strong thermal laying in summer also showed short-time
synoptic variability, e.g., short-time mixing over all depths due
to intensification of river inflow at the end of June (Figure 6C).
However, this break of stratification caused by storms only
occurred locally in the upstream area, and its effects in the
middle part of the river (Figure 6B) were notably weakened. By
the beginning of September, the mixing layer increased rapidly
with the rise in water levels. From early September to mid-
March, the water column was nearly completely mixed and had
no significant vertical temperature differences (MTD < 2°C).
During this period, there was little spatial difference in water
temperature indicating a complete mixed regime of the tributary.

Dynamics of Chl.a and Phytoplankton

Composition

Figure 7A shows the seasonal variation of Chla during a
stratified period from April 1 to September 31, when surface
Chla > 1 pug/L. The results indicated five algal bloom events
when Chla > threshold (30 wg/L) in the XXB, in April 6-
11 (~37 ng/L), June 2-28 (~79 ug/L), July 7-21 (~65 pg/L),
August 2-15 (~79 pg/L), and August 8 to September 8 (~55
pg/L), respectively. High levels in Chl.a mainly occurred within
5m below the water surface, except at the end of the bloom
events, e.g., in early September. Figure 7B displays the seasonal
succession of surface phytoplankton, which was associated with
changes in water temperature. Diatoms and chlorophyta were the
widespread species of algal over the entire stratification period.
Diatoms predominated in April-May (>50%) and chlorophyta
in June-July, especially in mid-June (>90%). There were two
brief periods with pyrroptata cells (~5-10%) in mid-April and
September. In addition, a significant increase in cyanophyta cells
occurred after July. Cyanophyta, diatom, and chlorophyta were
evenly distributed from the end of August to mid-September.
Variations in phytoplankton biomass and succession were both
associated with seasonal stratification and Z,,;x. Figure 7C shows
the spatial distribution of surface Chl.a at one algal bloom
event (June 12) in the XXB, indicating that the algal blooms
were prone to occur in the intermediate and upstream zones
of the bay (16-28km distance from the mouth of the river).
The downstream zones where the hydrodynamics were mainly
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affected by the mainstream were not propitious for the formation
of algal blooms. The riverine hydrodynamic conditions at the
upstream end of the river were also unfavorable for the growth of
phytoplankton. The spatial distributions of phytoplankton were
associated with longitudinal differences in hydrodynamics.

Effect of Hydrodynamics on Seasonal Chl.a

Variation

Figure 8 displays the seasonal variations of Chla that were
associated with changes in the vertical mixing driven by density
current and water level fluctuations. As mentioned above, the
algal bloom events always occurred in the stratification period
(April-September) when external environment conditions were
appropriate, e.g., temperature, flow, and nutrition. In the
stratification period, the Z,;, at the upper site gradually
decreased with the increasing stratification (Figure 8B), except
in the end of July. It can be seen that Z,,;, varied from >Z,, to
<Zey, corresponding, respectively, to the lower level of Chl.a in
spring and the high level in summer, although the relative depths
of intrusion water from the estuary had little change (Figure 6C).
Two short-term and rapid decreases in Chl.a are highlighted by
two narrow gray filled boxes in July (Figure 8). One occurred
in the end of June with lower Chl.a concentration, which can
contribute to an upstream flood. In the flood period, surface
water temperature decreased by ~10°C and caused a completed
mixing over the entire depths and phytoplankton extinction
(Figures 8A,B). Another reduction in Chl.a happened in the end
of July when the water level quickly increased. Compared to
the impacts of upstream flood, the Z,,;, also slightly increased,
which is caused by the moving down of the plunge depth at
the end of July. As a result, the growth of phytoplankton was

inhibited when Z,,ix > Z,. Then the algal bloom erupted again
subsequent to the decrease in Z,;, in August. However, the depth
variation between Z,;, and Z,, cannot explain all increases in
Chl.a in XXB. For example, in early September, the short-time
and sharp increase of Chl.a may be just a scum of alga due to the
reservoir filling. The Z,,;, rapidly increased to a range well over
Zey due to the filling in early September. The unfavorable mixing
regime and dilution effect of the intrusion water resulted in the
decrease in Chl.a and phytoplankton extinction (Figure 8A). The
strong mixing was driven by the kinetic energy of the intrusion
water in early September and then maintained by winter
convective overturn.

DISCUSSION

The Effects of Density Currents on the

Stratification and Algal Blooms

In this study, the two-dimensional CE-QUAL-W2 model
successfully captured the dynamics of density currents,
stratification, and  phytoplankton. Through numerical
simulation, the results show the spatiotemporal difference
of hydrodynamics and stratification in the tributary bay of
the Three Gorges Reservoir (Figures 5, 6). At the mouth area,
frequent water exchange driven by a dynamic density current
led to complete mixing over the entire water column. The
changes in intensity and plunge depth of density current created
more vertical mixing in this area. Even during summer, the
bottom water was energetic and active. The mixing driven
by dynamic density current was sufficient to break down the
vertical stratification and inhibit algal growth in the downstream
area (0-16km), consistent with previous reports (Dai et al.,
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2013). Temperature differences (resulting in density differences)
have been identified as the main cause of density currents
in the tributary of the Three Gorges Reservoir (Ma et al.,
2015; Long et al., 2019). In rivers and reservoirs, the density
variation can result in density flow intrusion that sometimes
sinks and sometimes rises up. The simulation results also
showed that temperature differences between the mainstream
and the tributary bay (Figure 8D) had a good agreement with
the frequent shift of density flow intrusion (Figure5A). In
addition, the results revealed that the intensities (magnitude of
velocity) of the density currents were larger in summer than in
winter (Figure 5A). The greater the temperature difference, the
energy of intrusion water would be larger (Ma et al., 2015). The
temperature differences frequently varied due to the changes
in water temperature in mainstream, which is affected by
reservoir operation, e.g., rapid filling and massive flood discharge

(Figure 8D). Ma et al. (2015) and Ji et al. (2017) had examined
the rapid filling in September and found that it can increase
flow rates of intrusion water and create more mixing to break
down the stratification. Thus, the reservoir operation can be a
controllable way to affect the density currents and further change
the hydrodynamics in the tributary.

By contrast to the downstream area, the upstream area
(16-28km) is the most sensitive and high-risk area for algal
blooms due to the favorable conditions for phytoplankton
growth, e.g., right temperature, flow, and enough nutrients
(Paerl et al., 2001; Paerl and Paul, 2012). Many studies have
reported that the hydrodynamics play a vital role in seasonal
dynamics of phytoplankton succession in the TGR (Ji et al,
2017, Liu et al., 2012). In the shallower bay, it presented a
period of ~5 months of stratifications with nearly complete
mixing from September to the following February. We found
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that most of the time, the upper layer water was pushed forward
upstream by a downstream intrusion water (Figure 5C), and
the bottom cold water flowed out along the riverbed as an
underflow (except during spring). When the upper density flow
intrusion and bottom inflow were separated, they formed a two-
layered flow structure of density current. With the upstream
movement of the surface water, flow rates gradually slowed
down, and the stratification intensified. The development of
flow created a favorable environment for phytoplankton and
resulted in the increases in the Chla concentration (Figure 7).
It can be seen that the hydrodynamics of the upper water
was dominated by the downstream density flow intrusion.
However, the upstream inflow still cannot be ignored. For
example, in March-April, the warmer upstream inflow entered
into the bay from middle or surface layers and met the density
flow intrusion from downstream (Figure 5C). Nevertheless,
this spring shifts of inflow water from upstream failed to
inhibit the diatom growth of phytoplankton because the inflow
discharge was small enough so that it did not create a large
area of mixing. However, in flood season, a mass of cold
inflow water can easily completely break density flow and
stratification, such as in the end of June (Figure 8D). As a
consequence of floodwaters, water temperatures rapidly dropped,
and phytoplankton vanished suddenly. When the floodwater
receded, a favorable environment was created again with a
rapid warming in water temperature and stratification, and
then algal blooms occurred again. Thus, upstream inflows
are an important factor to affect fast the stratification and
phytoplankton. Considering this, the cascade dams at the
upstream of the XXB can provide a controllable inflow condition,
either the discharge or temperature.

Main Factors Affecting the Vertical Mixing
in the Tributary

A lot of studies have revealed that vertical mixing is an important
physical parameter, which can affect algal growth in eutrophic
water (Elliott et al., 2001; Liu et al., 2012; Gao et al., 2017).
That is true from our simulation results that show that the
variation of mixing depth can reveal seasonal stratification in
XXB, and it plays a crucial role in the growth of phytoplankton
in the XXB. The mixing regimes can be affected by density
current, including intrusion water from the mainstream and
inflow water from upstream. This explanation was confirmed
earlier by Liu et al. (2012) from field measurement. However,
in lakes or reservoirs, the mixing regime changes in spatial or
temporal scales can also be driven by the other forces, such
as heat balance, wind stress, seiching, or internal waves (Serra
et al.,, 2007; Preusse et al., 2010). The surface stratification
can inhibit vertical mixing in spring and summer, while
convective overturn occurring in autumn and winter promotes
deeper mixing, even to the bottom. Similar to natural lakes
in the temperate zone (Ullyott and Holmes, 1936; Boehrer
and Schultze, 2008), the XXB undergoes seasonal variations
in stratification and shows a dimictic annual stratification
pattern caused by climate. However, the stratification in the
XXB breaks down rapidly, even within 1 week, and has a

longer complete mixing period, resulting in a strong artificial
property. The water level fluctuations occupy a pivotal position
in the annual cycle of stratification (Jin et al.,, 2019). In lakes
and reservoirs, wind stress has also been demonstrated to be
the other key factor in the mixing and circulation processes
(Bengtsson, 1978; Findikakis and Law, 1999). By increasing the
surface mixing, it not only influences the intensity and duration
of stratification but also contributes to the heat storage of
water bodies (Zhang et al., 2020). In this study, the frequent
changes in surface flow direction could be driven by periodic
wind speed (Figure 5). Nonetheless, it is difficult to identify
the wind effect in detail because the sub-daily or small-scale
variation cannot be resolved with daily averaged boundary
conditions and 1-m vertical cells. High-frequency wind and fine
vertical flow measurements in the surface layer are necessary
to quantify the influence of wind on surface mixing in density
current flow.

Internal waves are a universal feature in stratified aquatic
system, which are the most important driving force for horizontal
and vertical transport of energy and matter below the surface
mixed layer during the stratified period (Hodges et al., 2000;
Bocaniov et al, 2014). Yu et al. (2012) first reported from
numerical modeling that the existence of internal wave generated
by tidal flow can have a remarkable effect on hydrodynamic
and stratification in the XXB. Soon afterward, the artificial tide
flow and its effects on the water environment were further
studied by Sha et al. (2015). Driven by tide flow, the water
level and flow velocity in the tributary bay can represent a so
far overlooked high-frequency oscillated feature. Recently, Long
et al. (2020) first reported the high-frequency bay oscillations
with a period of ~2h in the XXB, which contributed to flow
velocity and caused a frequent reversal of the density current,
resulting in more mixing at the interface (Long et al., 2020).
It indicates that the oscillation seiching is also an important
factor to affect the mixing regimes in the tributary bay of the
Three Gorges Reservoir. Under the effects of external forces,
e.g., density current, wind, surface heat exchange, or seiching,
the temporal and spatial scale of mixing are complex and
flexible, particularly in space and time. This study highlights the
importance of considering both high-frequency temporal and
spatial measurements to better understand the hydrodynamics
of reservoirs.

CONCLUSIONS

The two-dimensional hydrodynamic and algal model of XXB
based on CE-QUAL-W2 was able to adequately simulate the
shift in density current, seasonal stratification, and algal blooms.
The CE-QUAL-W2 model performed well in hydrodynamics
and algal bloom forecasts in XXB. The hydrodynamics show
significant temporal and spatial differences in XXB. In the
mouth area, the intensity and plunge depth of the density
current were dynamic and characterized by a seasonal pattern.
The frequent transformations of plunge depth provide more
opportunities for vertical mixing, resulting in no stratification
and low risk of algal blooms at the mouth. However, in the
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middle and upper areas, a two-layered flow structure of density
current (upper layer driven by density flow intrusion from
mainstream, lower layer driven by upstream cold inflow) is
long standing. Strong stratification and low velocity at upstream
provide enough favorable conditions for the growth of algae
and increase the risk of algal blooms. The rapid variations
in upstream inflow caused by floodwater can have a short-
term change in the stratification and phytoplankton. The study
further proves that the mixing depth plays a vital role in
seasonal dynamics of phytoplankton succession in the XXB,
which can be affected by density current, reservoir operation in
the water level, upstream inflow, weather, etc. High-frequency
fine vertical flow measurements in the surface layer are necessary
to quantify the influence of multifactorial on surface mixing
in density current flow. To improve the understanding of
mixing will be helpful to the physical mechanism of algal
bloom elimination.
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