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A Commentary on

Commentary: Lake or Sea? The Unknown Future of Central Baltic Sea Herring

by Meier, H. E. M., Börgel, F., Frauen, C., and Radtke, H. (2020). Front. Ecol. Evol. 8:55.
doi: 10.3389/fevo.2020.00055

Recently (Dippner et al., 2019; hereafter D19) have applied the mediator concept (Dippner, 2006)
to demonstrate that themean weight of 3-year-old central Baltic Sea (BS) herring (Clupea harengus)
is indirectly influenced by the Atlantic Multi-decadal Oscillation (AMO). The proposed mediator
chain is increased sea surface temperature (SST) in the North Atlantic (NA), increased precipitation
in the BS catchment area, increased river runoff, decreased surface layer salinity in the Baltic
Proper, decreased marine zooplankton biomass of Pseudocalanus acuspes and herring weight. D19
addresses a comment (Meier et al., 2020; hereafter M20).

The reason for this comment is not clear because three of the four authors had recently published
a paper (Börgel et al., 2018; hereafter B18) in which they showed that under anomalous warm NA
SST, moisture is advected into the BS region leading to increased precipitation, increased river
runoff, and decreased salinity in the BS. Aside from the biological aspect in D19, both papers B18
and D19 identify the same mechanism for the decrease in BS salinity, which has been identified
by Vuorinen et al. (2015). The differences between B18 and D19 are first that B18 analyzed the
output of a regional climate model run of 850 years whereas D19 analyzed observations. Secondly,
the signal of climate variability occurred in different periods, on the decadal scale in D19 and on
longer time scales in B18. The AMO index calculated from annual HadlSST data (Rayner et al.,
2003) shows a peak around 64 years in the global wavelet spectrum and no significant peaks in
shorter time scales (Figure 1 in M20). From this finding, the authors of M20 concluded that the
time series in D19 are too short to verify a causal relationship between AMO and herring weight.
This argument can be reduced to the simple question “What is wrong with the decadal scale?” and
if we consider the Bjerknes hypothesis, to the extended question “Who drives whom?”

The AMO index is originally defined as monthly mean detrended NA SST anomalies in the
region from 0◦ to 70◦N (Kerr, 2000; Enfield et al., 2001). After filtering the AMO time series, a
multi-decadal variation in SST with a period of 60–90 years appeared, which is of major interest
for climatologists (e.g., Schlesinger and Ramankutty, 1994; Sutton and Hodson, 2005; Knight et al.,
2006). However, this does not mean that no inter-annual or inter-decadal oscillatory modes exist.
In fact, an examination of observed AMO data [Figure 2 in (Harris et al., 2014)] shows pronounced
decadal variability with amplitudes in the same range as the 60–90 year oscillation. Lau and Weng
(1995) presented a wavelet analysis of observed northern hemisphere SST and found significant
oscillatory modes from inter-annual (2–5 years), inter-decadal (10–12, 20–25, and 40–60 years) and
century to inter-century (90 and 180 years) scales at different periods of the data set. Furthermore,
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FIGURE 1 | Correlation between AMO and precipitation rate (Upper) and

NAO and precipitation rate (Lower). The correlation is based on un-lagged,

unfiltered monthly mean anomalies for the period 1950–2000.

using the Comprehensive Oceans Atmosphere Data Set
(COADS; Slutz et al., 1985; Woodruff et al., 1987), Chang et al.
(1997) identified with a spectral analysis of the tropical Atlantic
Ocean a dominant spectral peak at around 13 years.

Similar inter-decadal modes have also been identified in
coupled ocean-atmosphere general circulation models. Zorita
and Frankignoul (1997) identified in a 325-years integration of
the ECHAM1/LSG model two distinct oscillatory modes in the
NA SST with dominant periods of 10 and 20 years. The 20-years
mode is the most energetic, but it is not seen in the atmosphere.
The 10-years mode can be found in the temperature variation
of the upper ocean and is also detected in the atmosphere, and
thus appears to be a coupled ocean-atmosphere mode. Based on

results from another numerical model integration, Timmermann
et al. (1998) detected a Northern Hemisphere coupled air-sea
mode with a 35-years period.

This is evidence that inter-annual and inter-decadal variability
exists in the NA SST, in observations as well as in model results.
It is not clear why these periods do not exist in the global wavelet
spectrum ofM20. Furthermore,Mehta et al. (2000) demonstrated
in an atmosphere only model, driven by observed SST and sea-ice
boundary conditions, that the North Atlantic Oscillation [NAO,
(Hurrell, 1995)] exhibits multiple variations from inter-annual to
multi-decadal time scales. The quintessence of this paper is the
existence of inter-annual, inter-decadal, multi-decadal, century,
and inter-century periods in both modes, AMO and NAO, an
aspect which is completely ignored by M20.

A complaisant consideration of the M20 argument leads to
the Bjerknes “who drives whom” conjecture. Bjerknes (1964)
suggested that the character of large-scale air-sea interaction
over the mid-latitude NA differs with time scales, such that
the atmosphere directly drives most short-term SST variability
and the ocean contributes significantly to long-term SST
and atmospheric variability. Gulev et al. (2013) have recently
investigated the characteristic time scales over which these
drivers dominate. They provide observational evidence that in
the mid-latitude NA and on time scales longer than 10 years,
surface turbulent heat fluxes are driven by the ocean and may
force the atmosphere. On shorter time scales the opposite is
true. From this confirmation of the Bjerknes hypothesis it can be
concluded that AMO is the driver of the air-sea system on time
scales longer than 10 years in the NA.

The following points in the M20 comment need a
detailed inspection.

1) The authors of M20 argue that the observational records
are too short, specifically mentioning the time series of
herring weight. It is correct that the time series of herring
weight covers 35 years. However, the authors ignore in their
argumentation that most of the time series cover 63 years (see
Table 1 in D19), which allows the resolution of oscillatory
modes on the inter-annual scale of 2–5 years and inter-decadal
modes around 10 and 20 years.

2) The authors of M20 picked out a sentence from the D19
abstract, “This observed trend is also projected for the future
in regional climate change scenarios,” and argue that “past
correlations between multi-decadal climate variations and
herring weight should not be extrapolated into the future.”
This is a misinterpretation. It is important to note that in D19
no extrapolation into the future is presented. The paper deals
with climate variability only and not with climate change.
In the D19 abstract, the sentence before reads, “Observations
show that the mean weight of central BS herring, a quantity
unbiased by fisheries, is indirectly influenced by the AMO
via a complex mediator chain, in which a transition from a
marine to a freshwater state plays a major role.” That means
that “the observed trend” is clearly related to salinity, i.e., the
transition from a marine to a freshwater state. This aspect
is further outlined in the discussion of D19: “The trend of
reducing salinity might continue into the future. Different
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climate change emissions scenarios (IPCC SRES A2 or B2)
with regional climate models for the BS (Meier et al., 2006;
BACC author team, 2008) project a decline in salinity of
between 8 and 50%.” These climate change projections were
calculated by the first author of M20.

3) M20 mentioned that “correlations between high-pass filtered
(or unfiltered) NA SSTs and precipitation or river runoff data
are statistically not significant.” However, based on unfiltered
monthly observations, D19 showed significant correlations
between these time series (Table 1 in D19). An obvious
difference between D19 andM20may result from the different
precipitation data. M20 used the HiResAFF data set (Schenk
and Zorita, 2012) for the area 9.6◦ to 32◦E and 52.4◦ to 67.4◦N.
The disadvantage of this area is the northwest corner, which
covers a part of the Norwegian Sea and the Norwegian coast.
Both areas are characterized by high precipitation and do
not belong to the BS catchment area. In contrast, D19 used
NCEP/NCAR reanalysis data (Kalnay et al., 1996) of monthly
mean precipitation rate. The area of BS catchment was
constructed in a sophisticated way by dividing the catchment
area into 10 slabs, which ensure the highest possible accuracy
in resolution of the BS catchment area. Details were given in
D19. The use of different data sets and areas might cause the
different results.

4) M20 mentioned that “variations of precipitation and river
runoff on time scales smaller than 35 years cannot be explained
by variations of NA SST” and speculated that the driving
mechanism, which transports moisture into the BS region, is
the NAO. Using NCEP/NCAR reanalysis data (Kalnay et al.,
1996), un-lagged and unfiltered monthly mean precipitation
over the BS catchment area for the period 1950–2000 is
correlated to the AMO index and the NAO index (Figure 1).
Precipitation is significantly positively correlated to the AMO

index, indicating a link of positive NA SST anomalies to higher
rainfall, whereas NAO is negatively correlated to precipitation.
Both results do not support the argument of M20.

5) The authors of M20 avoid a discussion on the link between
marine zooplankton and herring weight. Nevertheless, they
present some arguments on declining weight-at age (Cardinale
and Arrhenius, 2000), fishing gear selectivity, food web
interaction, predation and competition (Casini et al., 2010).
These arguments would be important if herring recruitment
was being considered, but the subject of D19 is the
mean weight of 3-years-old central BS herring. In contrast
to recruitment, mean weight is an unbiased quantity.
Furthermore, Casini et al. (2010) clearly stated that salinity
is the main driver of herring growth variations and
not competition. The mentioned declining weight-at-age
(Cardinale and Arrhenius, 2000) is related to cod and not
to herring.
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