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Variation in weather patterns can influence reproductive effort and success not only
within but also between breeding seasons. Where environmental conditions can be
highly variable between years, the weather, and particularly extreme weather events
such as heat waves and droughts, may exert a strong influence on reproductive
effort (number of breeding attempts) and success (number of surviving young) from
one breeding season to the next. We used a 15-year dataset for a cooperatively
breeding bird, the southern pied babbler Turdoides bicolor, to determine the impact
of high temperatures and drought on reproductive effort and success. We tested the
influence on reproductive effort and success of mean daily maximum air temperature
and drought both within a breeding season, to determine the relative importance of
current conditions, and during the previous breeding season, to determine the relative
importance of compensatory effects in response to prior conditions. Reproductive effort
and success were lower during breeding seasons characterized by drought, and higher
in the breeding seasons that followed droughts, but were not predicted by mean
daily maximum temperatures measured over the full length of the breeding season.
We provide evidence of compensatory breeding following drought in a bird species
endemic to a semi-arid ecosystem and suggest that compensatory mechanisms may
be an important part of both long-term population persistence and post-drought
population recovery.

Keywords: climate change, compensatory breeding, cooperative breeding, drought, environmental change,
southern pied babbler, weather

INTRODUCTION

The sequential, and often cyclical (Korpimäki, 1986; Marra et al., 2015; Nater et al., 2018), nature
of biological systems means that each event or process experienced by an individual may have
measurable downstream effects (Harrison et al., 2011). Non-fatal effects, such as poor physical
condition or delayed breeding, can influence reproduction or survival over time (Marra et al.,
2015). Variations in seasonal weather patterns and the occurrence of extreme weather events such

Frontiers in Ecology and Evolution | www.frontiersin.org 1 June 2020 | Volume 8 | Article 190

https://www.frontiersin.org/journals/ecology-and-evolution
https://www.frontiersin.org/journals/ecology-and-evolution#editorial-board
https://www.frontiersin.org/journals/ecology-and-evolution#editorial-board
https://doi.org/10.3389/fevo.2020.00190
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3389/fevo.2020.00190
http://crossmark.crossref.org/dialog/?doi=10.3389/fevo.2020.00190&domain=pdf&date_stamp=2020-06-30
https://www.frontiersin.org/articles/10.3389/fevo.2020.00190/full
http://loop.frontiersin.org/people/865181/overview
http://loop.frontiersin.org/people/865082/overview
http://loop.frontiersin.org/people/147660/overview
https://www.frontiersin.org/journals/ecology-and-evolution
https://www.frontiersin.org/
https://www.frontiersin.org/journals/ecology-and-evolution#articles


fevo-08-00190 June 27, 2020 Time: 19:52 # 2

Bourne et al. Compensatory Breeding After Drought

as droughts, floods, and heatwaves are among the primary drivers
of variation in individual success in vertebrates, influencing
reproduction and survival both directly and indirectly, often
via effects on resource availability (Harrison et al., 2011). To
date, most research on the within and between season effects of
weather patterns and extreme events has focused on the influence
within an annual cycle (Saino et al., 2011; Laplante et al., 2019) of
(a) conditions during early development on individual success as
a nestling (Pérez et al., 2008; Auer and Martin, 2017; Ospina et al.,
2018), fledgling (Blomberg et al., 2014; de Zwaan et al., 2019), or
adult (Porcelli et al., 2016; Hsu et al., 2017; Marshall et al., 2017)
and (b) seasonal weather conditions on body mass (Loison and
Langvatn, 1998; van de Pol et al., 2016), behavior (Akresh et al.,
2019; Rauber et al., 2019), survival (Berryman and Lima, 2006;
Gardner et al., 2017, 2018; Woodworth et al., 2017; Chiffard et al.,
2019), and reproductive investment (Clutton-Brock et al., 1991;
Monteuil-Spencer, 2017).

Effects of extreme weather events can be cumulative, and
can have devastating consequences for population persistence
(Cruz-McDonnell and Wolf, 2016; Wingfield et al., 2017; Bourne
et al., 2020b), particularly if such events re-occur more quickly
than populations are able to recover from them (Enright et al.,
2015). Although weather conditions in highly seasonal temperate
environments can vary considerably between years (Griesser
et al., 2017), distinct seasonal weather patterns lead to the
relatively predictable onset and duration of annual breeding
seasons (Greño et al., 2008; Simmonds et al., 2017; Laplante
et al., 2019). This differs somewhat from more arid sub-tropical
environments, where breeding seasons typically span many
months and animals respond flexibly and opportunistically to
highly variable weather conditions and less defined seasonality
(Griffith et al., 2016; Hidalgo Aranzamendi et al., 2019). In hotter,
drier, and less predictable environments, the effects of variation
in weather patterns and of extreme weather events may manifest
as foregone or failed breeding in poor years (McCreedy and van
Riper, 2015; Conrey et al., 2016; van de Ven, 2017; Cooper et al.,
2019; Moore and Martin, 2019; Sharpe et al., 2019). This may
subsequently lead to greater investment in breeding in relatively
more favorable years (Jetz and Rubenstein, 2011; Lerch et al.,
2018), but this effect has received much less research attention.

Few studies have explicitly tested the different explanatory
power of processes occurring within vs. between annual cycles to
predict survival and reproductive success [although see Gardner
et al. (2017) and Griesser et al. (2017)]. Additionally, few
studies have considered the effects of weather conditions in
one breeding season on individual success in the subsequent
breeding season [although see Moyes et al. (2006)]. Species
living in more arid sub-tropical environments are potentially
useful models for studying the effects of weather patterns
and extreme events between years, because these ecosystems
are characterized by high interannual variability and frequent
extremes in temperature and rainfall (McKechnie et al., 2012).
High temperatures and droughts have been linked to delayed
or failed reproduction in a number of arid and semiarid-zone
species (Cunningham et al., 2013; Cruz-McDonnell and Wolf,
2016; Nater et al., 2018; van de Ven et al., 2020a). Compensatory
responses to severe weather events, like heat waves and droughts,

may act over relatively long timescales to reduce or offset the
negative effects of exposure to high temperatures or drought on
reproductive success. These could be extremely important for
population persistence over time (Wiley, 2017; Paniw et al., 2019),
yet have been relatively little studied in subtropical environments.

Here, we consider the relative influence of weather conditions
within vs. between annual cycles (consecutive austral summer
breeding seasons) on reproductive effort (number of clutches
laid and incubated) and success (number of young surviving
to nutritional independence) in a cooperatively breeding bird,
the southern pied babbler Turdoides bicolor (hereafter “pied
babblers”), endemic to a semi-arid subtropical region in southern
Africa. We explore the potential for compensatory mechanisms
in response to severe weather conditions characteristic of
semi-arid environments, specifically high temperatures and
drought. We additionally consider the influence of group size
on reproductive effort and success, and whether effects of
high temperatures or drought were moderated by group size.
Cooperative species may respond differently to external stressors
than non-cooperative species, because reproductive outcomes
can be affected by both the presence and behavior of other
group members (Crick, 1992; Cockburn et al., 2008; Meade
et al., 2010; Langmore et al., 2016; Wiley and Ridley, 2016).
We predict that high temperatures and drought experienced
within a breeding season will suppress both reproductive effort
and success, and that pied babblers will compensate for this
suppression by increasing investment in reproductive effort and
success in breeding seasons that follow hot and dry conditions.
We expect positive effects of group size on both reproductive
effort and success, hypothesizing that, if cooperation helps to
buffer against environmental effects (Rubenstein and Lovette,
2007; Cornwallis et al., 2017; Lukas and Clutton-Brock, 2017; van
de Ven et al., 2020a), reproduction should be less affected by high
temperatures and drought in larger groups.

METHOD

Study Site and System
Fieldwork was undertaken at the 33 km2 Kuruman River Reserve
(KRR; 26◦58’S, 21◦49’E) and neighboring farms in the southern
African Kalahari. Droughts are a regular feature of the local
climate (Jury, 2013; Tokura et al., 2018) and rainfall has been
declining, and high temperature extremes increasing in both
frequency and severity, over the last 20 years (Kruger and Sekele,
2013; van Wilgen et al., 2016; van de Ven, 2017).

Pied babblers are medium-sized (60–90 g), cooperatively
breeding passerines (Ridley, 2016). Groups range in size from
3 to 15 individuals, consisting of a single breeding pair with
subordinate adult helpers (Nelson-Flower et al., 2011). Pied
babblers are sexually mature one year after hatching and are
defined as adults at this age (Ridley, 2016). Pied babblers may
attempt to breed several times within a single breeding season,
re-laying if breeding attempts fail and/or if conditions allow
(Ridley and Raihani, 2008; Raihani et al., 2010). They can also
produce overlapping broods, whereby the breeding pair initiates
and incubates a new clutch while the helpers are still feeding
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dependent fledglings from a previous breeding attempt (Ridley
and Raihani, 2008). Some breeding occurs over winter when
there has been late-season rain, but the breeding season typically
extends from September to March (austral summer) (Ridley,
2016; Bourne et al., 2020a) and thus annual breeding cycles
cross calendar years.

Groups in the study population were visited weekly during
each of the 15 breeding seasons between September 2005 and
February 2020 to check group composition and record life
history events such as breeding, immigration, and dispersal. Pied
babblers are territorial and groups can be reliably located by visits
to each territory (Golabek et al., 2012). Detailed life-history data
have been collected from a study population of pied babblers at
the KRR since 2003 (Ridley and Raihani, 2007; Ridley, 2016).
Birds in the study population are habituated to observation at
distances of 1–5 m and uniquely identifiable by a combination
of metal and color leg-rings (Ridley and Raihani, 2007).

Data Collection
Breeding Effort and Success
Breeding effort was defined as the number of breeding attempts
initiated, as determined by the number of discrete clutches laid
and incubated per group per breeding season. Breeding success
was defined as the total number of nutritionally independent
young raised per group per season. Fledglings are considered
nutritionally independent by 90 days of age (calculated from day
of hatching), by which age they typically receive <1 feed per hour
from adult group members (Ridley and Raihani, 2007).

Collection of nest life history data followed Ridley and van
den Heuvel (2012): nests were located by observing nest-building
during weekly monitoring visits; incubation start, hatch, and
fledge dates were determined by checking nests every two to three
days; and breeding attempts were considered to have failed when
nests were no longer attended or dependent fledglings were not
seen on two consecutive visits. In most cases, it was not possible to
determine the proximate cause of nest failure or fledgling death.
Average group size (the average number of adults present in the
group over a breeding season; mean = 4.1 ± 1.4, range: 2–9) was
recorded for each group per breeding season.

Temperature and Rainfall
Daily maximum air temperature (Tmax, ◦C) and rainfall
(mm) data were collected from an on-site weather station
(Vantage Pro2, Davis Instruments, Hayward, United States).
Missing data from 2009, 2010, and 2011 were sourced from a
nearby South African Weather Services weather station (Van
Zylsrus, 28 km from the KRR) which produces significantly
repeatable temperature measurements (Lin’s concordance
correlation coefficient rc = 0.957, 95 % CI: 0.951–0.962), and
moderately repeatable rainfall measurements (rc = 0.517,
95 % CI: 0.465–0.566) in comparison with the on-site
weather station. Differences in rainfall were small (mean
difference = 0.045 ± 3.075 mm; 95 % CI = -5.981 to 6.072 mm),
suggesting that both weather stations adequately detected wet
vs. dry periods. Long term rainfall data for the region, used to
determine the presence or absence of a meteorological drought
within a breeding season, was obtained from a South African

Weather Services weather station at Twee Rivieren (∼120 km
from the KRR; available until 2013).

Daily Tmax values were averaged for each breeding season
in which nest monitoring occurred (September–March,
MeanTMaxSeason(1,2,..,t)), and for the preceding breeding season
(previous September–March, Mean TMaxSeason(t−1)). Rainfall was
summed for each breeding season in which nest monitoring
occurred (RainSeason(t)), and for the preceding breeding season
(RainSeason(t−1)). Following Mayaud et al. (2017), meteorological
drought within a breeding season (DroughtSeason(t)) or preceding
breeding season (DroughtSeason(t−1)) was defined as ≤75%
of average precipitation between September and March
(≤135.75 mm), using the 30-year period 1984–2013 to determine
average precipitation.

Statistical Analyses
Statistical analyses were conducted in R v 3.4.1 R Core Team
(2017). To determine which variables predicted (a) number
of breeding attempts and (b) breeding success per group per
year, we used generalized linear mixed effects models with
a Poisson distribution (log link) in the package lme4 (Bates
et al., 2015). Model selection with Akaike’s information criterion
corrected for small sample size (AICc) and maximum likelihood
estimation was used to test a series of models to determine
which best explained patterns of variation in the data (Harrison
et al., 2018). Where multiple models were within 5 AICc
of the top model, top model sets were averaged using the
package MuMIn (Barton, 2015). All continuous explanatory
variables were scaled by centering and standardising by the
mean (Harrison et al., 2018). Rainfall and drought within the
same annual cycle were highly correlated (F1,154 ≥ 359.940,
p < 0.001), since these variables represent the same pattern
in different ways. We used the categorical variable, drought vs
no drought, as the rainfall parameter in all analyses because
models including this variable had a consistently lower AICc.
Drought is also of direct interest for our study because it
represents the presence or absence of extreme weather in our
study system. Measures of temperature and drought were also
correlated (F1,154 ≥ 9.706, p < 0.002), with droughts typically
occurring in hotter years. Group sizes were slightly smaller in
years following droughts, but the difference is not statistically
significant (mean group size in breeding seasons following
drought = 4.1 ± 1.3; mean group size in breeding seasons
following no drought = 4.6 ± 1.5; F1,188 = 2.515, p = 0.116).
Correlated variables were not included in the same additive
models, but interactions between correlated variables were tested
(Harrison et al., 2018). Model terms with confidence intervals
not intersecting zero were considered to explain significant
patterns within our data (Grueber et al., 2011). Model fits were
assessed by checking dispersion parameters using the package
RVAideMemoire (Herve, 2019).

Groups in which the breeding pair split during the breeding
season (n = 18 of 177 group-seasons) were excluded from
analysis, since the continuity of the breeding pair is an important
determinant of reproductive success in pied babblers (Wiley and
Ridley, 2018). Exploratory analyses showed that reproductive
allocation in the previous season (e.g., number of days invested
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in breeding in Season(t−1)) were not associated with variation
in breeding effort or success in our study system, and we
therefore did not include prior reproductive allocation in the
model sets tested here (see Supplementary Tables S1–S4 and
Supplementary Figure S1). Average group size, DroughtSeason(t),
DroughtSeason(t−1), MeanTMaxSeason(t) and MeanTMaxSeason(t−1),
and the two-way interactions between all climate and group
size variables were included as fixed effects, with group
identity included as a random effect in both analyses. Since
interactions between group size and environmental parameters
on reproduction could provide evidence for a moderating effect
of group size, we conducted sensitivity power analyses (Cohen,
1988; Leon and Heo, 2009; Greenland et al., 2016), using the
package pwr (Champely et al., 2018), to confirm that we had
sufficient sample size to detect small main effects in both analyses
(Cohen’s f2 < 0.06) and moderate-large effects of two-way
interactions in analyses of reproductive effort (f2 = 0.17) and
reproductive success (f2 = 0.27).

RESULTS

The average summer maximum daily temperature at the study
site from 2005 to 2020 was 34.5 ± 1.4◦C (range in annual
average summer maximum temperatures, September–March,
32.4–37.8◦C). Summer rainfall averaged 174.0 ± 70.1 mm
(range 64.4–291.2 mm). Droughts occurred in 6 of 15
summer breeding seasons studied (2006/07, 2012/13, 2014/15,
2015/16, 2018/19, and 2019/2020; Figure 1). DroughtSeason(t) and
DroughtSeason(t−1) were independent (X2

1 = 0.228, p = 0.633).
Group size averaged 4.1± 1.4 adults per group per season (range
2–9 adults), and we analyzed data from an average of 13 ± 4
groups per breeding season (range 6–19 groups).

We observed particularly large increases in the total
number of breeding attempts in several breeding seasons
that followed a drought (DroughtSeason(t−1); for example, see
2013/2014 and 2016/2017 in Figure 1).These increases were
disproportionate to the amount of precipitation recorded
within the breeding season (RainSeason(t)). The number of
breeding attempts per group varied between breeding seasons
(range 1–9, mean = 3.2 ± 1.8; n = 190 group-seasons).
Breeding effort was lower in breeding seasons characterized
by drought (DroughtSeason(t)), averaging 2.1 ± 0.9 attempts
per group compared to 4.0 ± 1.9 attempts in non-drought
breeding seasons (Figure 2 and Table 1). Breeding effort
increased when there had been a drought in the previous
breeding season (DroughtSeason(t−1)), averaging 4.1 ± 2.2
attempts per group in breeding seasons preceded by drought
compared to 2.8 ± 1.5 attempts when not preceded by
drought (Figure 2 and Table 1). We found no evidence
for an effect of temperature, group size, or any interaction
between group size and weather on the number of breeding
attempts per group per season (see Supplementary Table S5 for
full model output).

Breeding success per group varied between breeding seasons
(range 0–7 independent young produced, mean = 1.6 ± 1.5;
n = 156 group-seasons) and, like the number of breeding
attempts, was suppressed in breeding seasons characterized by
drought within the current breeding season (DroughtSeason(t)),
averaging 1.0 ± 1.1 surviving young per group compared to
1.9 ± 1.7 surviving young in non-drought breeding seasons
(Figure 3 and Table 1). Breeding success increased when
there had been a drought in the previous breeding season
(DroughtSeason(t−1)), averaging 2.1 ± 1.7 surviving young per
group in breeding seasons preceded by drought compared to
1.4 ± 1.4 attempts when not preceded by drought. Larger

FIGURE 1 | Total rainfall (mm, white bars) and number of nests (gray bars) per austral summer breeding season (September–March). Drought occurred in six of fifteen
breeding seasons. Rainfall bars below the dashed line at 135.75 mm rainfall indicate drought. Mean rainfall for the study site (174 mm) is shown on the figure by the
gray solid horizontal line. Increases in the number of nests disproportionate to increases in rainfall occurred in several years following drought (e.g. 13/14, 16/17).
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FIGURE 2 | Number of breeding attempts initiated per group per breeding season in relation to (A) the occurrence of drought in a previous breeding season,
showing the model-predicted mean (black filled diamond) ± 1.96 × standard error (black whiskers), and (B) the occurrence of drought during the current breeding
season. Data points are jittered for improved visibility.

TABLE 1 | Top GLMM model sets for analyses on the number of breeding attempts per group per season (n = 190 group-seasons from 39 groups over 15 breeding
seasons) and the number of surviving young per group (n = 156 group-seasons from 32 groups over 15 breeding seasons).

AICc 1AICc ωí

Response: number of breeding attempts

Null model 746.40 68.95 0.00

Top model set

DroughtSeason(t) + DroughtSeason(t−1) 675.60 0.00 1.00

Effect size of explanatory terms after model averaging Effect SE 95% CI

Intercept 1.241 0.058 1.125/1.354

DroughtSeason(t−1) (drought = 1) 0.363 0.083 0.200/0.524

DroughtSeason(t) (drought = 1) −0.635 0.093 −0.819/−0.456

*Residual deviance: 115.708 on 186 degrees of freedom (ratio: 0.622)

Response: number of surviving young

Null model 535.90 28.89 0.00

Top model set

Average group size + DroughtSeason(t) + DroughtSeason(t−1) + Mean TmaxSeason(t−1) 507.01 0.00 0.51

Average group size + DroughtSeason(t) + DroughtSeason(t−1) 507.31 0.30 0.44

Average group size + DroughtSeason(t) + Mean TmaxSeason(t−1) 511.77 4.76 0.05

Effect size of explanatory terms after model averaging Effect SE 95% CI

Intercept 0.401 0.115 0.175/0.627

Average group size 0.207 0.068 0.072/0.343

DroughtSeason(t−1) (drought = 1) 0.403 0.170 0.067/0.739

DroughtSeason(t) (drought = 1) −0.514 0.166 −0.841/−0.187

Mean TmaxSeason(t−1) 0.072 0.086 −0.099/0.242

*Residual deviance: 198.982 on 151 degrees of freedom (ratio: 1.318)

Model averaging was implemented on all models with 1AICc <5. Significant terms after model averaging are shown in bold. Null models shown for comparison with top
model sets. The reference level for Drought variables is 0 (no drought). See Supplementary Material for full model outputs.

groups produced more surviving young than smaller groups
(Figure 3C and Table 1), but there was no evidence for an
effect of temperature or any interaction between group size and
weather on breeding success (see Supplementary Table S6 for
full model output).

DISCUSSION

We investigated the relative importance of impacts of within
and between year variation in temperature, rainfall, and group
size on reproduction in a cooperatively breeding bird, and
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FIGURE 3 | Number of surviving young (90 days post fledging) produced per group per breeding season in relation to (A) the occurrence of drought in a previous
breeding, showing the model-predicted mean (black filled diamond) ± 1.96 × standard error (black whiskers), (B) the occurrence of drought during the current
breeding season, and (C) average group size during the current breeding season. Data are jittered for improved visibility.

the potential role of compensatory mechanisms in response to
drought. Both breeding effort and success were lower in pied
babblers when they experienced droughts during the breeding
season. Pied babbler groups initiated more breeding attempts
and were more successful in breeding seasons following drought,
indicating the presence of compensatory behavior in response
to harsh conditions. Drought was the most important climate-
related predictor of reproductive effort and success in pied
babblers, a finding which is consistent with other studies of birds
breeding in subtropical environments (Morrison and Bolger,
2002; Skagen and Yackel Adams, 2012; Zuckerberg et al., 2018;
Hidalgo Aranzamendi et al., 2019). While high temperatures
during breeding attempts are commonly associated with reduced
reproductive success in birds (Cunningham et al., 2013; van de
Ven et al., 2020b), including in this population of pied babblers
(Wiley and Ridley, 2016; Bourne et al., 2020a), we did not find
strong effects of mean daily maximum temperatures calculated
over the full length of the breeding season. Our broad-scale
analysis considers all breeding attempts within a season, rather
than individual nests or fledglings, and, in semi-arid systems,
temperature effects are often immediate and direct [via effects
on physiology of individuals (McKechnie, 2019)], while rainfall

effects are often lagged and generally indirect [via effects on
available food resources (Cumming and Bernard, 1997; Hidalgo
Aranzamendi et al., 2019)]. Our decision to analyze the data at
the scale of the full breeding season may, therefore, explain why
we identify stronger drought than temperature effects. We found
no evidence that group size interacted with climatic factors to
moderate the effects of climate extremes: while larger groups were
able to produce more surviving young than smaller groups on
average (also see Ridley, 2016; Ridley and van den Heuvel, 2012),
this pattern did not vary according to climatic conditions.

Pied babblers undertake most breeding during September to
December each year, largely independent of rainfall (Bourne
et al., 2020a), but will breed until later in the season in
response to rainfall within the breeding season (Ridley, 2016).
Pied babblers are able to re-clutch while raising dependent
fledglings when conditions allow, due to the presence of task
partitioning among group members (Ridley and Raihani, 2008;
Ridley and van den Heuvel, 2012). These reproductive behaviors
provide a mechanism through which pied babblers can respond
flexibly to interannual variation in rainfall, laying and incubating
more clutches and producing more surviving young in breeding
seasons that follow a drought. An alternative explanation for
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the pattern that we observed could be that higher numbers of
clutches initiated in non-drought years indicate higher rates of
nest predation, an important cause of reproductive failure in
birds (Mayer et al., 2009; DeGregorio et al., 2015; Mortensen and
Reed, 2018). Previous research in sociable weavers (Philetairus
socius) has shown that reproductive effort (defined as number
of clutches laid and incubated) increases when predation is
high (Mares et al., 2017). In cases of high reproductive effort
in response to high predation risk, the number of fledglings
produced per breeding attempt is typically low (Mares et al.,
2017). Additionally, in arid environments, higher predation rates
are often associated with warm, dry weather (McCreedy and
van Riper, 2015; Kozma et al., 2017). Our results show that
pied babblers produced fewer surviving young during droughts
and more surviving young per breeding attempt in breeding
seasons following a drought. This represents an effect of greater
investment in breeding during breeding seasons following a
drought, rather than simply more clutches being laid due to
higher rates of predation or nest failure. The pattern of producing
more surviving young per breeding attempt in breeding seasons
following a drought also cannot be explained by years following
droughts being significantly wetter (Iknayan and Beissinger,
2018; Sharpe et al., 2019), since droughts were not consistently
followed by wetter conditions (Figure 1).

We found that larger groups of pied babblers produced more
surviving young, a benefit of cooperation that may be important
for post-drought recovery and overall population persistence
in this species (Wiley, 2017). The observed group size effect
is likely driven by the presence of helpers reducing predation
risk at nests (Raihani and Ridley, 2007; Valencia et al., 2016),
and enabling the production of multiple, overlapping broods
per breeding season (Ridley and Raihani, 2008; Valencia et al.,
2016). Cooperative species also tend to raise more broods to
independence per breeding season than non-cooperative species
(Ridley and van den Heuvel, 2012). Group size did not interact
with temperature or rainfall to predict either reproductive effort
or reproductive success, suggesting that breeding pied babblers
respond similarly to variation in the weather regardless of helper
number (van de Ven et al., 2020a). Flexible responses to drought,
including compensatory breeding in breeding seasons following
a drought, were observed across all group sizes, confirming that
pied babblers do not vary their response to climatic conditions in
relation to group size.

In summary, we demonstrate that weather conditions in
both previous and current annual cycles exert a powerful
influence on reproductive effort and success in a cooperatively
breeding, desert-adapted passerine. Cooper et al. (2019) and
Griesser et al. (2017) provide evidence that birds across a range
of environments can distinguish relative weather conditions
over shorter timescales and may be able to adjust their
reproductive allocation depending on variable within-season
weather conditions. Our data suggest that pied babblers can
respond to relative conditions over fairly long timescales
and, importantly, they may engage in compensatory breeding
when environmental conditions allow (see Hatchwell, 1999 for
compensatory adjustments to parental care in cooperatively
breeding birds). Compensatory breeding in years following

drought is therefore likely to be an extremely important part
of post-drought recovery and overall population persistence
in this (Wiley, 2017) and other species (van de Ven, 2017;
Paniw et al., 2019). However, given that rapid increases in
the frequency and severity of droughts are predicted under
climate change (MacKellar et al., 2014; Wise and Lensing,
2019), compensatory mechanisms which have been successful
at maintaining populations in the past may prove insufficient
to allow population recovery between extreme events (Enright
et al., 2015; Cruz-McDonnell and Wolf, 2016). An improved
understanding of the ways in which animals employ flexible
breeding strategies and compensatory mechanisms is thus critical
for informing population viability models and conservation
management actions when accounting for the impact of climate
variability and change on animal populations.
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