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The use of miniature accelerometer (ACT) data-loggers for remote and continuous

recording of animal movement behavior is becoming increasingly common. Until recently,

size constraints limited most animal-borne ACT applications to large-bodied species.

We capitalized on the ongoing miniaturization and advancement of these technologies

and associated computational techniques to develop a framework for long-term,

low-frequency ACT monitoring of activity in small and secretive terrestrial species. We

achieved this by internally implanting coupled radio transmitters and tri-axial ACTs in

rattlesnakes (Crotalus atrox). Periodic field-validation observations of behavior were used

to train and test supervised learning models (Random Forest, RF; Generalized Linear

Elastic Net, GLMNET) for activity classification. The best performing RF model classified

periods of movement and immobility in rattlesnakes with high accuracy (movement

= 96%, immobile = 99%), and was applied to extensive ACT field datasets (median

= 35 days, range = 6–289 days; N = 12) to produce activity budgets at multiple

temporal scales. In general, these cryptic ambush predators were found to be highly

sedentary, with activity budgets characterized by long periods of immobility interrupted by

punctuated bouts of movement. The same temporal daily activity pattern was conserved

across all active seasons (spring, summer non-mating, summer mating, fall), as most

movement always occurred during the evening or nocturnal diel periods. Contrary

to movement timing, daily movement duration was seasonally variable, as movement

increased during the summer-mating season—possibly reflecting a combination of more

favorable weather conditions (onset of rainy season) and mate-searching efforts by

male rattlesnakes. This radio telemetry-accelerometry (RT-ACT) framework provides an

objective and flexible set of data collection and processing procedures for long-term

ACT field datasets. Expanding our coarse-scale behavioral classification scheme could

provide a foundation for future investigations using the RT-ACT framework to explore

relationships between individual behavioral decisions and performance in snakes and

other small and secretive terrestrial vertebrates.
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INTRODUCTION

When, how, and why an animal moves are fundamental aspects
of its biology and ecology, as activity patterns reflect the
complex interplay between intrinsic (e.g., sex, physiological
state, motivational state) and extrinsic (e.g., environmental
conditions, predation, competition) factors that shape behavioral
decisions (Nathan et al., 2008; Shepard et al., 2008). Movement
also has significant implications for biodiversity conservation,
representing a critical mechanism in dispersal, inbreeding
avoidance and gene flow, pathogen transmission, and responses
to habitat disturbances and other global change phenomena
(Holyoak et al., 2008; Nathan et al., 2008; Jeltsch et al., 2013;
Chmura et al., 2018). Many modes of animal movement exist;
such as migration, mate-searching, defending territories, and
foraging (Clobert, 2012), and a key characteristic of these
different motivational states is the variety of spatial and temporal
scales at which they can occur. Migrations might be distinctly
seasonal, occur over days or months, and span from hundreds of
meters to over 1,000 kilometers depending on the taxon, whereas
foragingmovements can occur inmultiple bouts over a single day
and usually within an animal’s home range or territory (Jeltsch
et al., 2013). Consequently, to properly characterize the diversity
of movement behaviors for a species or population as well as
understand the roles of various internal and external factors
in shaping various strategies, it is essential to evaluate activity
patterns across multiple temporal scales (Yoda and Ropert-
Coudert, 2007; Trierweiler et al., 2013; Bauder et al., 2016).

The recent emergence and advancement of sophisticated
animal-borne monitoring technologies have circumvented many
traditional limitations in field studies of animal movement
behavior research (Nathan et al., 2008; Kays et al., 2015; Wassmer
et al., 2020). Satellite collars can provide massive quantities
of position data over multi-annual time periods, remote
sensing technologies offer ever-improving data on environmental
conditions, and animal-borne remote-sensing devices, or bio-
loggers, have given researchers the ability to monitor behavior at
resolutions and precisions historically restricted to laboratories
(Ropert-Coudert and Wilson, 2005; Rutz and Hays, 2009; Kays
et al., 2015; Allan et al., 2018). Miniaturized accelerometers,
for example, are among the most widely used animal-borne
data-logger technologies (Shepard et al., 2008; Brown et al.,
2013), as they allow remote and continuous recording of animal
activity free from limitations of observer presence, terrain,
weather, time of day, and scale of space use (Yoda et al., 1999;
Wilson et al., 2006; Shepard et al., 2008; Brown et al., 2013).
However, to date, most ACT applications with wild-ranging
animals have involved relatively large-bodied taxa (Brown et al.,
2013), such as freshwater and marine fish (Murchie et al., 2011),
marine mammals (Sato et al., 2003), large terrestrial mammals
(Grünewälder et al., 2012; Williams et al., 2014; Graf et al.,
2015; Wang et al., 2015; Pagano et al., 2017), and pelagic birds
(Brown et al., 2013). Some case studies have demonstrated the
utility of ACTs with smaller model organisms, such as small
terrestrial mammals (Hammond et al., 2016), small tortoises
(Lagarde et al., 2008), and large toads (Halsey and White,
2010), and ongoing miniaturization of ACT devices continues
to diminish weight restrictions for smaller species. Advancement

in sensor technology has now set the stage for researchers
to further expand the diversity of organisms amenable to
ACT applications.

In addition to morphological challenges with certain study
species, significant computational hurdles and a general lack
of standardization in data processing and modeling techniques
also remain as prominent barriers to pilot ACT applications
with novel study organisms (Collins et al., 2015). Although
the idiosyncratic nature of individual study systems and
species can reduce the transferability of specific protocols, a
general methodological framework can still contribute to the
standardization of broader procedural checkpoints, including
field or lab-based observation approaches and best practices
in classification modeling (Patterson et al., 2019). It is
therefore essential that ACT studies provide detailed, step-
wise descriptions of the full data collection, processing, and
modeling procedures.

Snakes are one vertebrate group that has been largely
overlooked in animal-borne bio-logger applications (Beaupre,
2016), despite representing intriguing model organisms in
this context. As highly secretive and often-nocturnal animals,
significant gaps exist in our knowledge of snake biology, ecology,
and behavior (Dorcas and Willson, 2009; Durso et al., 2011;
Willson and Winne, 2015). Several challenges unique to snakes
account for their absence from bio-logging studies, the most
prominent being periodic ecdysis prohibiting long-term external
attachment of loggers and morphological limitations on the
implantation of bulky devices (i.e., small body sizes of most
species, and linear body plan). The original use of radio
transmitters for longitudinal monitoring of snakes in the 1980s
was transformative to field studies of snake ecology (Reinert and
Cundall, 1982; Reinert, 1992; Beaupre, 2016). However, coarse
measures of movement based on Euclidean distances between
relocation points often hinder examination of the mechanisms
that shape activity patterns at different temporal scales (Whitaker
and Shine, 2003; Lindström et al., 2015). Automated receiving
units (ARUs) have been used to obtain continuous movement
data for snakes (Davis et al., 2008; Sperry et al., 2013; Ward
et al., 2013), but spatial limitations exist with this method (i.e.,
snake proximity to ARU), and study sites with high topographic
relief (e.g., physical barriers to VHF radio signals) exacerbate
this constraint. Herein, we aimed to validate long-term, low-
frequency (1-Hz) ACT monitoring of activity in the field with
Western Diamond-backed Rattlesnakes (Crotalus atrox). Our
data collection, processing, and analysis pipeline is intended to
provide a general framework for long-term activity monitoring
for small and secretive terrestrial animals. We make use of
extensive field validation observations of behavior to train
supervised learning models for automated classification of coarse
behavioral mode (movement vs. immobile). Using optimized
models, we establish and evaluate fine-scale activity budgets for
wild-ranging C. atrox.

METHODS

Field Data Collection
We developed a streamlined data collection, processing, and
analysis framework for long-term ACT monitoring in small
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FIGURE 1 | Stepwise (Field Data Collection, Supervised Model Validation, Model Application) RT-ACT methodological framework for long-term, low-frequency

accelerometer (ACT) data collection, processing, and analysis procedures validated herein. Details regarding each step in the framework can be found within

methods sections.

and secretive terrestrial animals (Figure 1). Radio transmitters
(Holohil Systems Ltd., Model SB-2T) and tri-axial ACTs
(Technosmart Europe srl., AXY-3, AXY-4) were coupled using

a biologically inert resin and internally implanted in study
individuals (Reinert and Cundall, 1982). The coupled devices
were securely sutured to a rib (Hardy and Greene, 1999,
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2000) in the same position and orientation across individuals.
Implants (SB-2T = 5 g; AXY = 2.5–7 g) comprised <3% of
each individual’s body mass at the time of implantation. Radio
transmitters had a battery life of 10 months, and ACTs had data
storage capacity (1 Gb) that enabled logging for approximately
9 months when recording at 1-Hz. Since our goal was to
conduct long-term ACT recording in the field, we selected a low
monitoring frequency for our ACTs (1-Hz; equivalent to one
acceleration value/sec along each axis) to minimize the trade-
off between recording frequency and logging duration. Recent
work has demonstrated that high classification accuracy can be
achieved with low-frequency monitoring, especially when paired
with extensive validation data (i.e., time-matched observations of
behavior; Tatler et al., 2018). Data were stored in each device’s
microprocessor until downloaded via USB connection following
extraction from individual rattlesnakes.

All data collection procedures took place on Indio Mountains
Research Station (IMRS) in Hudspeth County, Texas from June
2016 to August 2018. Detailed ecological and physiographic
accounts of IMRS can be found in Mata-Silva et al. (2018),
DeSantis et al. (2019), and Worthington et al. (2020). Because
all study snakes were included in concurrent monitoring of
spatial ecology via hand-held radio telemetry, a variety of
spatial metrics were calculated to evaluate relationships between
traditionally collected spatial data and ACT-derived activity
data. These metrics included movement rate (meters per day,
MPD), calculated as the straight-line distance between successive
relocation points for an individual, distance per movement
(DPM), calculated as the mean straight-line distance between
relocation points that were≥5m apart, andminimummovement
frequency (MMF), calculated as the number of movements
(≥5m) made by an individual out of N relocations in a
specifically defined time period. Rattlesnakes were relocated at
least twice weekly via radio telemetry, at which time individuals
were observed for visual validation of ACT signals. These
field-validation observations were typically 30min. in length
and occurred at various times of the day (i.e., morning, mid-
day, evening, and night) to capture periods of movement and
immobility for rattlesnakes. Hand-held video of surface behavior
was recorded for later detailed inspection and manual behavioral
annotation of ACT training data. All field observations were
conducted independently by D. L. DeSantis.

Data Processing and Summary Statistics
Selection
We selected two broad behavioral categories for classification:
“movement” and “immobile.” During field observations of ACT-
equipped individuals, “movement” was classified as outstretched,
full body movement. “Immobile” was an observation of a
snake that was not in full-body motion (independent of body
posture). To summarize acceleration data andmake relationships
between ACT signals and behavioral mode more discernable,
we calculated a suite of 23 descriptive statistics across the x
(forward and backward motion), y (side-to-side motion), and z
(upward and downwardmotion) ACT axes. These summary stats
were initially calculated to be “rolling” over varying temporal

window sizes (1-s, 10-s, 20-s, and 1-min. period basis) to identify
the optimal scale at which to classify activity with the machine
learning models. We found a temporal window of 20 s. to be the
optimal scale in our classification scheme. Rattlesnake movement
behavior is often characterized by frequent and relatively brief
pauses attributed to chemo-sensory probing, and, therefore, very
fine (1-s.) and very coarse (1-min.) windows could potentially
under and over-estimated periods of movement, respectively.
Additional ACT studies have presented similar results (Ladds
et al., 2017), whereas others have opted for longer windows up
to 10min. in length to improve overall accuracy of behavior
classification (Diosdado et al., 2015). Appropriate window
size is highly context-dependent, as study species, targeted
behaviors for classification, ACT recording frequency, and the
selected machine learning algorithms all combine to influence
the optimal scale for classification (Jeantet et al., 2018). The
“moving” or “rolling” statistics calculated here include the mean
(average), standard deviation, minimum, maximum, and slope of
a regression model. We also calculated Overall Dynamic Body
Acceleration (ODBA) and Vectorial Dynamic Body Acceleration
(VeDBA) to summarize signals using measures from the x, y, and
z axes. The ODBA and VeDBA measures have been widely used
for summarizing acceleration in previous studies (Wilson et al.,
2006; Shepard et al., 2008; Gleiss et al., 2011; Bidder et al., 2012),
but their usefulness with the unique morphology and movement
mechanics of snakes is untested. ODBA is the absolute sum of the
dynamic body acceleration (DBA) along the x, y, and z axes.

ODBA = |DBA · x| + |DBA · y| + |DBA · z|

While VeDBA is the vector of DBA along the x, y, and z axes.

√

DBA · x2 + DBA · y2 + DBA · z2

Dynamic body acceleration is the raw acceleration value
remaining after the removal of static acceleration due to
gravity. Static acceleration was a constant subtracted (−1)
from the axis oriented in the “upward and downward” plain,
which was the z axis, in the case of our ACT implantation
orientation [C. Catoni (Technosmart Europe srl.), personal
communication]. The relative importance of different summary
statistics in the classification process was visualized by a
variable importance plot for the best performing model. Variable
importance was measured via mean decreases in the Gini
Coefficient (Breiman, 2002; Cutler et al., 2007). Mean decrease
in Gini measures how much each variable (summary stat)
contributes to the homogeneity of the classification decisions by
the model. The coefficient ranges from zero (homogeneous) to
one (heterogeneous) and changes in Gini are summed for each
variable and averaged at the end of the classification process.
Variables that result in classifications with higher precision have
a higher decrease in Gini coefficient.

Supervised Learning Models
Because of the high-resolution logging of ACTs, the resulting
datasets from field deployments are typically very large (herein,
routinely exceeding one million data points per individual).
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As a result, manually labeling periods of behavior within full
datasets is practically impossible, making automated labeling via
machine learning techniques a critical step in ACT applications.
The process of selecting the appropriate model for specific
classification tasks can often be complicated and time consuming
(Ladds et al., 2017), as a wide variety of algorithms are available
for use in classification of behavior from ACT signals. These
models range from relatively simple approaches like simple linear
discriminant analyses (Nathan et al., 2012) and decision trees
(Nishizawa et al., 2013), to more advanced techniques such as
random forests (Lush et al., 2016; Ladds et al., 2017; Tatler et al.,
2018), support vector machines (Hokkanen et al., 2011), gradient
booster machines (Ladds et al., 2016, 2017), artificial neural
networks (Banerjee et al., 2012), and Gaussian mixture models
(Chimienti et al., 2016). Here, we initially opted to use the k-
nearest neighbor clustering algorithm, the random forest (RF),
and the generalized linear elastic net (GLMNET). Supervised
models make use of algorithms to “learn” (via model training)
the relationship between a set of input variables (i.e., summary
statistics) and output variables (i.e., assigned classifications).
After initial exploratory analyses, we ruled out the k-nearest
neighbor clustering approach, as significant variation within
our two broad behavioral categories reduced its usefulness. We
selected the RF and GLMNET algorithms as they are both
reasonable approaches, but assume different solutions to this
classification problem. Random forest models have been used
extensively in the ACT literature (Lush et al., 2016; Ladds et al.,
2017), and often perform well in behavioral classification with
a diversity of focal taxa (Tatler et al., 2018). Random forests
make use ofmultiple learning algorithms simultaneously through
bootstrapping to find a unified classification tree that corrects
for overfitting and noise (Efron and Hastie, 2016). We make
use of the default split of

√
p for each bootstrapped tree as it

decreases bias, but also results in relatively independent trees.
This is a powerful methodology since it is relatively efficient
and, because of the random selection of data features, should be
more accurate (and less biased) than other learning algorithms.
We also make use of a generalized linear model (GLM) with an
elastic net penalty applied, given that we have a binary predictor
(movement, immobile) and data that are highly correlated. In
the GLM elastic net model (GLMNET), the regularization path
has an elastic net penalty applied on a grid of values for the
regularization parameter, lambda. This is intuitively appealing
and efficient because it maximizes the estimating equation with
respect to the regression parameters over a grid of reasonable
values for λ.

min
βoβ

1

N

N
∑

i=1

wil
(

yi, β0 + βTXi

)

+ λ[(1− α)
‖β‖22

2
+ α ‖β‖1]

The tuning parameter λ controls the strength of the penalty and α

controls the type of penalty applied (ranging from a lasso penalty
to a ridge penalty). In the model training stage, we specified the
cross-validation folds and validated λ across a grid of values for
α. We called the elastic net function multiple times and averaged
over the results while using the same fold vector for each call.
This approach reduces noise and produces an optimum value

for α. After the optimal penalty was chosen using inner cross-
validation loops, it was applied for modeling and prediction. This
is preferred over simultaneously validating α and λ because the
tuning parameter is informatively selected in this approach and,
hence, an optimal value for both parameters is more likely to
be selected.

The RF and GLMNET algorithms provided supervised
learning models that were validated using holdout data (test
data) prior to making predictions on the full training datasets.
Once we illustrated model efficacy, we then used the full set
of ACT data (field-collected datasets) for activity classification.
The training data was substantial, with 42,224 observations
at a 1-Hz resolution (1-Hz = one value recorded per-
second along each axis). Using a 20% holdout sample, this
allotted 33,713 observations for training and 8,511 for model
testing/validation. These data were derived entirely from the
time-matched observations of behavior in the field. We assess the
correspondence between observed and predicted behavioral state
for both models in a confusion matrix reporting classification
accuracy, precision, and recall. We also report the training errors
and test errors for the elastic net and random forest models.
Accuracy is the overall proportion of positive classifications
(i.e., predicted matches observed), precision is defined as the
proportion of predictions that matched the observed behavior
within each category (i.e., movement and immobile), and recall
is the proportion of observations within a behavior category
that were correctly predicted as that behavior (Campbell et al.,
2013). All random forest and GLMNET estimations were
performed in R (R Core Team, 2020) using the randomForest
(Liaw and Wiener, 2002) and glmnet packages (Friedman et al.,
2010), respectively.

Following model validation procedures, we selected the
best performing model to classify periods of movement and
immobility in the full dataset with 95,599,407 data points (1-
Hz resolution). Using these behavioral predictions, we visualized
activity budgets (time classified as movement vs. immobile) using
radial histograms to explore daily patterns and evaluate intra-
and inter-individual variation in movement timing, duration,
and frequency. We also explored relationships between daily
activity, season, and diel period by fitting a Generalized Linear
Mixed (GLMM) effects model with snake ID and day of the year
modeled as random effects to account for the non-independence
of ACT data across time. Least Squared (LS) mean comparisons
with multiplicity adjustments were employed to test for statistical
differences in the timing and duration of movement within
diel periods across seasons. Linear regressions were performed
to explore relationships between ACT-derived movement and
concurrently recorded radio telemetry-derived spatial metrics.

RESULTS

Field Deployment and Recovery
In total, 19 rattlesnakes (17 males, two females) were implanted
with RT-ACTs and released for field monitoring and recording
between June 2016 and August 2018. Because of battery
malfunctions in seven units (five ACT failures, two RT failures),
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TABLE 1 | Body size [Snout-Vent Length (SVL), Body Mass], ACT logging periods, and number of field validation observations for 12 male C. atrox included in processing

and analyses.

Tag ID SVL (mm) Body mass (g) Logging period (days) Validation observations

RT-ACT1 855 466 07/10/2016–08/01/2016 (22) 11

RT-ACT2 870 523 08/27/2016–02/23/2017 (180) 26

RT-ACT3 890 502 08/27/2016–09/02/2016 (6) 3

RT-ACT4 860 504 10/10/2016–02/15/2017 (128) 15

RT-ACT5 855 481 10/24/2016–05/30/2017 (218) 31

RT-ACT6 990 602 05/02/2017–06/15/2017 (44) 11

RT-ACT7 990 656 08/17/2017–9/12/2017 (26) 7

RT-ACT8 975 632 08/25/2017–09/09/2017 (15) 6

RT-ACT9 890 547 09/29/2017–06/25/2018 (289) 25

RT-ACT10 860 472 10/06/2017–10/22/2017 (16) 3

RT-ACT11 985 588 10/10/2017–04/03/2018 (175) 8

RT-ACT12 990 601 05/21/2018–06/02/2018 (12) 6

Mean ± s.e./Total 944 ± 18 548 ± 19 94 ± 29 days/1,131 days 152 observations

Note that fewer validation observations were conducted for rattlesnakes monitored during winter inactive periods, because of the frequent inability to visually confirm behavior. Body

sizes included to illustrate the minimally invasive nature of coupled radio transmitter-accelerometer devices (12 g), as they comprised < 3% of each individual’s body mass at the time

of internal implantation.

only 12 datasets from all male C. atrox with sufficient data-
recording durations were included in processing and analysis
procedures. Recording durations for these 12 datasets ranged
from 6 to 289 days (median = 35 days, mean ± s.e. = 94
± 29 days) for a cumulative total of 1,131 ACT recording
days (Table 1). There were 152 independent field-validation
observations conducted on these individuals, culminating in
just under 32 h of time-matched observations of behavior
that were used in model training procedures. The number of
observations vary considerably among individuals (Table 1), in
part because of variable logging durations, but also the inability
to confirm behavior during relocations when individuals were
not visible. Manual annotation of ACT datasets was based on
field video (when available) and detailed notes of validation
observations. Time-matched behavioral labeling was initially
conducted independently by D. L. DeSantis (field observer) and
a second time by an individual who was not present for the
field observation (to minimize bias in interpretation of video or
field notes). In rare cases where annotations were considerably
different between labelers for a specific observation, those periods
were re-evaluated and discarded if a clear behavioral classification
could not be distinguished (often because of poor video quality or
inconsistent subject visibility).

Model Validation
The RF and GLMNET models were developed using the full set
of training data. The GLMNET utilized a two-class logistic link
function for cross-validation and incorporates 5-folds and uses
the optimum λ and α. This is a strong approach considering
the scale of the data and provided we are attempting binary
classification. For our datasets, the RF models are arguably
a less relevant approach than an elastic net GLM, but one
used successfully for behavioral classification in other ACT
applications (Lush et al., 2016; Ladds et al., 2017; Tatler et al.,

TABLE 2 | Confusion matrix for the Random Forest and Generalized Linear

Mixed-NET (GLMNET) models.

Predicted behavior

Random

forest

Movement Immobile Total Recall

O
b
s
e
rv
e
d
b
e
h
a
v
io
r

Movement 4,211 168 4,379 96.2%

Immobile 240 37,605 37,845 99.3%

Total 4,451 37,773 42,224

Precision 94.6% 99.6% Accuracy

= 99.0%

GLMNET Movement Immobile Total Recall

Movement 4,020 359 4,379 91.8%

Immobile 870 36,975 37,845 97.7%

Total 4,890 37,334 42,224

Precision 82.2% 99.0% Accuracy

= 97.0%

Recall, precision, and accuracy reflects classification performance with full

training dataset.

2018). In the RF models, 1,000 random starts for bootstrap-
based tree generations were utilized and proximitymeasures were
saved for predictions. Both models (GLMNET and RF) were
highly accurate at classifying known periods of movement and
immobility in the training data (Tables 2, 3), with the RF model
slightly outperforming the GLMNET model. In general, models
more accurately classified immobility (RF = 99.3%, GLMNET
= 97.7%) than movement (RF = 96.2%, GLMNET = 91.8%),
which is not surprising considering the tremendous variation in
raw ACT signals during movement (see sample ACT waveform
data in Figure 1). A variable importance plot was produced to
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TABLE 3 | General Linear Mixed-elastic net (GLMNET) and Random Forest (RF)

model specifications with the optimum λ and α values as well as the number of

folds for validation.

Training and

validation

sample

sizes

λ̂, α̂,

nfolds

GLMNET

test error

GLMNET

accuracy

RF test

error

RF

accuracy

nt= 33, 713

nv= 8, 511

0.03, 0.00,

10

ǫI = 0.038

ǫM = 0.025

97.0% ǫI = 0.011

ǫM = 0.005

99.0%

When reporting errors, the subscripts I and M stand for “Immobile” and “Movement.” The

training error is the error using only the training data and the test error is the observed error

using the validation set and observed movements. The sample sizes used for training and

validation (denoted nt and nv ) are provided.

FIGURE 2 | Variable importance plot for optimized Random Forest model

used for classification in full ACT datasets. Y-axis depicts top 15 ranked

variables (based on mean decrease in Gini, x-axis) out of 23 summary statistics

calculated and used in model training. Note that measures of data dispersion

(s.d., maximum) were the most informative variables for classification.

illustrate the relative rank of each summary statistic used in the
classification process for the optimized RF model (Figure 2).
Measures of data dispersion (standard deviation, maximum
value) were the top five ranking variables, with the standard
deviation of values on the x, y, and z ACT axes being the most
informative for distinguishing between periods of movement and
immobility identified in the training dataset.

Activity Budgets: Timing and Duration of
Daily Activity
Overall, rattlesnakes were highly sedentary during logging
periods (Figure 3), although with considerable inter-individual
variation, as overall proportions of time classified as movement
per-individual (over entire logging period) ranged from 1.6 to
37% (mean ± s.d.; 13.5 ± 13.9%, Table 4). There was some
variation in the proportion of time spent moving within diel
periods across seasons, particularly in regard to the increase in

movement duration during the summer mating season (Table 4;
Figure 4). However, LS mean comparisons with multiplicity
adjustments revealed no significant differences in movement
timing and duration (relative to diel period) within and between
active seasons [spring, summer non-mating (NM), summer
mating (M), fall]. The only significant differences detected in diel
periodmovement proportions were between the inactive (winter)
and active seasons (Table 4; Figure 4).

DISCUSSION

By internally implanting coupled radio transmitters and tri-axial
accelerometers in rattlesnakes, we achieved two important goals:
(1) we validated broad and easily transferrable procedures for
the long-term accelerometer recording of snakes in the field, and
(2) we developed an automated system for accurate classification
of coarse behavioral states (movement, immobile) in extensive
field datasets. With these field data we constructed long-term
activity budgets (Figure 3) and evaluated patterns in the timing
and duration of movement at multiple temporal scales. The
high classification accuracy achieved for both the GLMNET
(97.0%) and RF models (99.0%), despite the very low monitoring
frequency (1-Hz), illustrates the efficacy of our framework
(Figure 1). The periodic field-validation observations of behavior
proved to be critical to the success of these procedures by
providing time-matched behavioral data for model training and
testing, thereby making our models robust to inter-individual
variability in ACT signals (Nathan et al., 2012; Bom et al., 2014;
Hammond et al., 2016; Sur et al., 2017). This latter detail was
particularly important for this study because RT-ACTs were
internally implanted, which prevented visual confirmation of
consistent logger positioning during field deployments. During
extraction procedures, we did not document any instances
of significant logger repositioning within the body cavities of
rattlesnakes, indicating that suturing RT-ACTs to a rib had
successfully affixed implants over the entire recording durations.
Nevertheless, field validation observations are an important
additional safeguard against subtle variation in ACT orientation,
which can have significant effects on ACT signals within and
between individuals and is a potential source of error in relating
signals to behavior [(Brown et al., 2013); C. Catoni (Technosmart
Europe srl.), personal communication].

Although both algorithms performed well within our
classification scheme, the RF model slightly outperformed the
GLMNET (Tables 2, 3). This was somewhat surprising given
the GLMNET was selected as an ideal approach for this study
because of its proficiency in binary classification. Both models
were more accurate at classifying the “immobile” behavioral
state in rattlesnakes (Table 2), likely as a result of the relative
scarcity of “movement” observations in the training dataset
(1.2 of 32 h) and the substantially greater variation in ACT
signals seen during periods of movement. While RFs remain
computationally intensive to train (Cutler et al., 2007), they have
been used to successfully classify behavior from ACT signals
in a wide variety of terrestrial and aquatic taxa (reviewed in
Shuert et al., 2018). However, the vast majority of such studies,
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similar to ours, found it difficult to achieve high accuracy
with a large number of behavioral states and often opted for
classifying fewer categories (i.e., two to four; Shuert et al., 2018).
For this project, we were restricted to classifying two coarse
behaviors (movement and immobility) largely because of limited
observations of other cryptic behaviors during field observations.
Within this scheme, the most important variables (summary
statistics) for classification were consistently identified as the
standard deviation of DBA along the x, y, and z axes (Figure 2).
Further, the x and y axes were generally more informative than
the z for activity classification, likely because of the general lack
of upward and downward (z) movement involved in rattlesnake
locomotion (particularly in the posterior third of the body where
ACTs were implanted). Some infrequently observed behaviors,
such as ritualized male combat or predatory behaviors, might
involvemovements that would be best distinguished using signals
on the z axis. More anterior placement of ACTs could also enable
classification of several additional behaviors, but this would either
involve external attachment, which is impractical because of
periodic ecdysis and a high potential for behavioral obstruction,
or subcutaneous implantation (requiring a very small, low-
profile battery). The ODBA and VeDBA measures were not
as informative as standard measures of data dispersion (s.d.,
range, etc.) for distinguishing between movement and immobile
(Figure 2). These two metrics are widely used in ACT studies as a
proxy for energy expenditure in free-ranging animals (most often
in terrestrial quadrupeds; Wilmers et al., 2015) and have been
shown to correlate well with the overall “intensity” of different
movement behaviors (Tatler et al., 2018). In our case, both

measures could prove to be more informative for a classification
scheme involving additional behavior states that vary in intensity.

Long-term activity budgets allowed for detailed visualization
(Figure 3) and examination of the timing and duration of
movement. In general,C. atroxmovement was found to be highly
punctuated and infrequent, characterized by extensive bouts
of immobility between brief periods of movement (Figure 3).
Considerable inter-individual variation was also observed
(Figure 3), which is characteristic of most high-resolution bio-
logging data. Overall (entire logging period) proportions of time
spent moving per-individual range from 1.6 to 37% (Table 4). As
ectothermic, ambush foraging, low-energy specialists, pitvipers
are known to spend extensive periods of time waiting motionless
for potential prey to pass within striking distance (Clark, 2016).
Numerous radio telemetry studies on rattlesnakes corroborate
these general findings (Reinert and Cundall, 1982; Reinert,
1992; Glaudas and Rodríguez-Robles, 2011), as pitvipers can
often exhibit impressive displays of immobility but can also
make substantial long-range movements within large home
ranges (in isolated cases we observed movements by C. atrox
that exceeded 1 km in under 24 h). Evaluation of concurrent
spatial data from RT-ACT C. atrox showed positive relationships
between movement rate (meters-per-day, MPD) and movement
frequency (MMF) and the proportion of time spent moving
over entire ACT logging durations for individual rattlesnakes
(MPD: adjusted R2 = 0.56, P < 0.01; MMF: adjusted R2 =
0.63, P < 0.01; Table 5). Conversely, there was no significant
relationship between distance-per-movement and movement
(adjusted R2 = −0.05, P = 0.49). Although we are cautious of

FIGURE 3 | Continued
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FIGURE 3 | Radial histograms depicting activity budgets (time classified as movement vs. immobile) at monthly (A,B) and daily scales (C) for male Crotalus atrox

monitored during October 2016 and 2017. Proportions are derived from classifications made by the optimized RF model. Individual bars correspond to a single hour

within a 24 h period. The aggregated plot (A) depicts the mean activity budget for all rattlesnakes monitored during October (N = 6). The individual monthly plots (B)

depict the mean daily activity budgets for each of the five C. atrox that contributed data across every day of October (N = 5). The daily plot mosaic (C) depicts the

proportion of time spent moving (blue) or immobile (pink) within each hour of individual days during the week of October 11–October 17 (2016 or 2017). October was

selected for visualization because it had the largest concurrent ACT monitoring sample size among the active season months (Apr–Oct) during the study. Note that

although periods of movement are highly infrequent and often temporally dispersed between extensive periods of immobility, there is considerable snake-to-snake

variation in patterns.

drawing conclusions from these results considering the limited
sample size, the general correspondence between spatial metrics
and ACT-derived movement further validates the classifications
provided by the RF model. Additionally, by simultaneously
informing on the temporal and spatial aspects of movement
behavior, there is potential for these distinct data types to be
complementary, much like animal-attached GPS data-loggers
and ACTs in other bio-logging studies (Wilson et al., 2008;
Berlincourt et al., 2015; Walker et al., 2015). Combining spatial
data with high-resolution activity data has provided important
insights with larger study organisms, such as identifying different
behavioral states along movement paths by foraging animals
(Nams, 2014). RT-ACTs could allow detection of temporal or
spatial shifts in behavior by small, secretive species that would
be overlooked without an integrated approach.

As with other desert-dwelling ectotherms, surface activity
in C. atrox is largely dictated by ambient temperature. At
our study site in the arid northern Chihuahuan desert, we
expected daily and seasonal activity patterns to largely reflect

this constraint, with the majority of movement occurring during
nocturnal periods in the warmer summer months (Jun–Sep)
and a more cathemeral (i.e., morning, evening) activity pattern
during the comparatively cooler spring (Apr–May) and fall (Oct–
Nov) months. We also expected greatly reduced movement
by rattlesnakes during the winter inactive season (Dec–Mar).
Counter to our prediction, rattlesnakes displayed the same
general daily activity pattern across all active seasons [spring,
summer (NM, M), fall] with the majority of movement always
occurring during the evening or nocturnal diel periods (Table 4).
Conversely, the mean proportion of time spent moving within
diel periods did vary seasonally, as movement duration increases
during the summer-mating season (Figure 4). Themating season
for C. atrox on IMRS is unimodal, with a single annual period
from August through October where all reproductive behavior
is observed (DeSantis et al., 2019). Unsurprisingly, activity is
greatly reduced during all diel periods in winter. The apparent
increase in movement by male C. atrox during the summer-
mating season corresponds with numerous observations of male
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TABLE 4 | Mean proportions of time spent moving (Movement) within diel periods and seasons over entire ACT logging period for C. atrox (N = 12).

Diel period/season Mean movement proportion ± s.d. LS mean ± s.e. 95% confidence interval (lower–upper)

Morning/Spring 0.007 ± 5.541e-5 −5.18 ± 0.89 −6.92 to −3.44

Morning/Summer-NM 0.006 ± 2.111e-4 −5.63 ± 0.89 −7.36 to −3.89

Morning/Summer-M 0.032 ± 1.006e-4 −4.46 ± 0.72 −5.88 to −3.05

Morning/Fall 0.003 ± 2.565e-5 −6.45 ± 0.89 −8.19 to −4.72

Morning/Winter <0.001 ± 5.127e-6 −8.60 ± 0.63 −9.83 to −7.38

Diurnal/Spring 0.004 ± 2.828e-5 −5.64 ± 0.89 −7.38 to −3.90

Diurnal/Summer-NM 0.003 ± 4.596e-5 −6.44 ± 0.89 −8.18 to −4.71

Diurnal/Summer-M 0.039 ± 1.631e-4 −4.70 ± 0.72 −6.12 to −3.28

Diurnal/Fall 0.005 ± 2.429e-5 −5.59 ± 0.89 −7.33 to −3.86

Diurnal/Winter < 0.001 ± 6.653e-6 −7.57 ± 0.63 −8.80 to −6.34

Evening/Spring 0.022 ± 1.113e-4 −3.75 ± 0.89 −5.49 to −2.02

Evening/Summer-NM 0.017 ± 3.338e-4 −3.95 ± 0.89 −5.69 to −2.22

Evening/Summer-M 0.064 ± 1.986e-4 −3.84 ± 0.72 −5.26 to −2.42

Evening/Fall 0.023 ± 8.690e-5 −4.02 ± 0.89 −5.76 to −2.28

Evening/Winter 0.001 ± 1.542e-5 −6.87 ± 0.63 −8.10 to −5.64

Nocturnal/Spring 0.009 ± 4.271e-5 −4.60 ± 0.89 −6.34 to −2.87

Nocturnal/Summer-NM 0.012 ± 1.911e-4 −4.37 ± 0.89 −6.11 to −2.63

Nocturnal/Summer-M 0.062 ± 9.560e-5 −3.87 ± 0.72 −5.28 to −2.45

Nocturnal/Fall 0.009 ± 3.260e-5 −5.20 ± 0.89 −6.93 to −3.46

Nocturnal/Winter <0.001 ± 4.929e-6 −8.23 ± 0.63 −9.46 to −7.00

Seasons consisted of spring [Apr–May], summer non-mating [Jun–Jul], summer-mating [Aug–Sep], fall [Oct–Nov]), and winter [Dec–Mar]. Diel periods were: Morning [0601–1000 h],

Diurnal [1001–1800 h], Evening [1801–2100 h], Nocturnal [2101–0600 h]. Least Squared (LS) means used in multiple comparisons and 95% Confidence Intervals are also provided. The

only significant between-season differences in diel period movement proportions (logit transformed) involved the Summer-Mating and Winter seasons (Morning: P = 0.002, Diurnal:

P = 0.03, Evening: P = 0.008, Nocturnal: P = 0.01), and Summer-Non-Mating and Winter (Nocturnal: P = 0.04). The highest mean movement durations were found within the evening

diel period across all active seasons, followed by the nocturnal diel period.

pitvipers elevating movement during mating seasons in mate-
searching efforts (Duvall et al., 1993; Madsen et al., 1993; Duvall
and Schuett, 1997; Glaudas and Rodríguez-Robles, 2011; Clark
et al., 2014), including male C. atrox monitored on IMRS
(DeSantis et al., 2019). In the context of these analyses, it is
important to again acknowledge the relatively small sample
of rattlesnakes obtained for this study (N =12). Additionally,
note that the margins between movement durations discussed
here are relatively thin (i.e., mean proportion of time spent
moving within diel periods ranges from < 0.01 to 6.4%).
The highest recorded mean activity duration was within the
evening diel period during the summer-mating season, where,
on average, individuals were moving for 11.52 out of 180min.
For these reasons, we are cautious of drawing conclusions
from these results beyond using them as further validation of
our procedures.

CONCLUSIONS AND FUTURE
DIRECTIONS

Validation studies, such as this, are prerequisite to using novel
techniques to improve upon hypothesis testing in field studies
with secretive or difficult-to-monitor focal taxa. This pilot
study involved validation of internal implantation and field
deployment procedures for ACTs with an entirely new focal
group (snakes) for field bio-logging studies. To the best of our

knowledge, protocols for internal implantation of ACTs for long-
term field monitoring have only been developed for free-living
teleost fish (Wright et al., 2014). Implantation was essential
for our study to enable long-term field deployment and to
minimize the effects of the device on individual behavior. The
ability to securely suture ACTs to a rib (in the same position
and orientation across individuals) also further minimized
inter-individual variation in ACT signals. The well-established
protocols for the internal implantation of similarly sized radio
transmitters in snakes combined with the relatively small size of
our coupled RT-ACT implants (see image in Figure 1) makes
this technique widely applicable for a diversity of similarly
sized snakes and other small species amenable to implantation
procedures. In fact, the primary contributor to the overall size
of RT-ACTs was the ACT battery, and ongoing improvements
to miniaturized battery technology should continue to diminish
this constraint.

While our results demonstrate that snakes, and pitvipers
(Viperidae: Crotalinae), specifically, are intriguing model
organisms for ACT applications, they also carry unique
challenges. This study made use of a relatively simple
classification scheme targeting only two coarse behavioral
modes (movement, immobile). Unsurprisingly, one of the
primary motivations for developing ACT monitoring protocols
for snakes (i.e., secretive life histories) proved to be a significant
hurdle for validation, given that instances where snakes were
observed actively moving on the surface were infrequent (1.2
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FIGURE 4 | Movement durations (bars denote mean proportion of time

classified as “movement” by RF model) within diel periods and seasons over

entire ACT logging period for C. atrox (N = 12). Seasons consisted of: Spring

[Apr–May], Summer Non-Mating (NM) [Jun–Jul], Summer-Mating (M)

[Aug–Sep], Fall [Oct–Nov]), and Winter [Dec–Mar]. Diel periods were: Morning

[0601–1000], Diurnal [1001–1800], Evening [1801–2100], Nocturnal

[2101–0600]. During the active seasons (spring, summer, fall), activity patterns

follow the same general pattern with higher proportions of time spent moving

during the evening and nocturnal periods relative to the morning and diurnal

periods. Although there is a noticeable increase in movement duration during

the summer-mating season (summer-M), those proportions were not

significantly different than those during other active season diel periods [spring,

summer non-mating (summer NM), fall].

of 32 h), and even then, it was difficult to conduct extensive
observations without disturbing the individual (often because
of the use of flashlights during nocturnal observations).
Fortunately, the long-term deployment of data-loggers yielded
sufficient opportunities, but model training likely would have
been less effective with short-duration deployments seen in many
other ACT field studies of animal behavior that select higher
monitoring frequencies.

The highly secretive life histories of C. atrox ultimately
precluded the inclusion of additional cryptic behaviors that were
infrequently or never observed in the field (i.e., feeding, mating,
and male-male combat). Future studies with independent
captive-validation observations would likely be required to
achieve finer-scale behavioral segmentation. Some of these fine-
scale behaviors could require a higher ACTmonitoring frequency
for accurate classification, which amplifies the trade-offs between
recording frequency, battery capacity, and field deployment

TABLE 5 | Concurrent spatial metrics and accelerometer-derived proportions of

time spent moving (Movement) for the entire ACT-logging period.

Tag ID MPD DPM MMF Movement

RT-ACT1 5.37 25.5 0.22 0.041

RT-ACT2 21.74 277.91 0.88 0.207

RT-ACT3 74.83 224.50 1.0 0.268

RT-ACT4 4.07 272.00 0.20 0.019

RT-ACT5 6.48 100.93 0.50 0.005

RT-ACT6 4.69 49.25 0.36 0.023

RT-ACT7 45.69 198.00 0.86 0.236

RT-ACT8 91.07 273.20 1.0 0.338

RT-ACT9 9.81 203.00 0.32 0.043

RT-ACT10 55.19 294.33 0.75 0.052

RT-ACT11 4.73 118.43 0.35 0.016

RT-ACT12 17.08 68.33 1.0 0.371

Meters Per Day (MPD) (log base 10) and MinimumMovement Frequency (MMF) (log base

10) were positively related to movement (proportion of time classified as “movement” over

logging period) (MPD: adjusted R2 = 0.56, P< 0.01; MMF: adjusted R2 = 0.63, P< 0.01),

while Distance Per Movement (DPM) (square root) was not related to movement (adjusted

R2 = −0.05, P = 0.49).

duration. The unique biomechanics of pitvipers also largely
lack the frequent and repetitive movements that aid in the
segmentation of many behaviors for animals with limbs,
wings, or aquatic habits, and the optimal site of internal
implantation is in the posterior third of the body where
anterior movements are less detectable (such as striking, male-
male combat, and chemosensory probing; Barbour and Clark,
2012). Any additional behaviors added to a classification scheme
must be consistently distinct from other modes, and this is
challenging for animals in which similar body movements are
seen across behaviors (such as snakes). All of these factors
combine to complicate classifying multiple discrete behaviors
in C. atrox and other pitvipers. However, as demonstrated
herein, high model accuracy and precision are attainable given
extensive “ground-truthing” data for model training, and recent
work has also shown that fine-scale behavioral segmentation
is achievable at low monitoring frequencies (i.e., 1-Hz; Tatler
et al., 2018). Further, increasingly complex classification
algorithms are available for segmenting increasingly subtle
animal behavior states (Ladds et al., 2017; Wilson et al., 2018a).
It remains to be seen if a combination of independent captive
observation experiments, extensive field-validation observations,
and advanced machine learning techniques can allow fine-
scale behavioral segmentation under long-term, low-frequency
monitoring in snakes. Even using the coarse-scale classification
scheme validated herein, there are exciting future applications
well suited for the RT-ACT framework. For example, exploring
relationships between activity budgets and foraging mode (active
vs. ambush foraging) across snake taxa could contribute to
efforts to provide a quantitative method for assigning foraging
mode to snakes, as has been accomplished with lizards (Glaudas
et al., 2019). Additionally, ACT-derived movement might also
improve evaluation of temporal scale-dependent variation in
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the factors influencing movement decisions (DeSantis et al.,
unpublished data).

Moving forward, larger samples with improved data overlap
will be necessary to realize the full potential of this technology
in hypothesis-driven field studies with pitvipers and other focal
species. Nevertheless, our validated framework illustrates the
ability to remotely collect data on the timing and duration of
movement at resolutions, scales, and precisions not previously
possible with snakes. These data, especially if paired with
additional animal-borne data-logging technologies (Allan et al.,
2018; Wilson et al., 2018b), can dramatically improve the ability
to evaluate drivers of behavioral decisions in small-bodied and
secretive terrestrial species. This project can also be added to a
growing list of studies that demonstrate the importance of time-
matched behavioral observations and cross-validation model
training procedures in ACT applications (Bom et al., 2014; Sur
et al., 2017; Tatler et al., 2018).
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