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In an era of rapid climate and land transformation, it is increasingly important to
understand how future changes impact natural systems. Scenario studies can offer
the structure and perspective needed to understand the impacts of change and help
inform management and conservation decisions. We implemented a scenario-based
approach to assess how two high impact drivers of landscape change influence the
distributions of managed wildlife species (n = 10) in the New England region of the
northeastern United States. We used expert derived species distribution models (SDMs)
and scenarios developed by the New England Landscape Futures Project (NELFP)
to estimate how species distributions change under various trajectories (n = 5) of
landscape change. The NELFP scenarios were built around two primary drivers –
Socio-Economic Connectedness (SEC) and Natural Resource Planning and Innovation
(NRPI) – and provide plausible alternatives for how the New England region may change
over 50 years (2010–2060). Our models generally resulted in species occurrence and
richness declines by 2060. The majority of species (7 of 10) experienced declines in
regional occurrence for all NELFP scenarios, and one species experienced a projected
increase in mean regional occurrence for all scenarios. Our results indicate that the
NRPI and SEC drivers strongly influenced projected distribution changes compared to
baseline projections. NRPI had a greater impact on distribution change for five species
(coyote, moose, striped skunk, white-tailed deer, and wild turkey), while SEC had a
greater impact on four species (American black bear, bobcat, raccoon, and red fox);
one species (gray fox) was equally influenced by both NRPI and SEC. These results
emphasize the importance of integrating both natural resource planning and socio-
economic factors when addressing issues of distribution change and offer insights that
can inform proactive management and conservation planning.

Keywords: climate change, land use change, New England, occurrence probability, scenarios, species
distribution models (SDMs), species richness, wildlife

Frontiers in Ecology and Evolution | www.frontiersin.org 1 June 2020 | Volume 8 | Article 164

https://www.frontiersin.org/journals/ecology-and-evolution
https://www.frontiersin.org/journals/ecology-and-evolution#editorial-board
https://www.frontiersin.org/journals/ecology-and-evolution#editorial-board
https://doi.org/10.3389/fevo.2020.00164
http://creativecommons.org/licenses/by/4.0/
mailto:schuylerpg@gmail.com
https://doi.org/10.3389/fevo.2020.00164
http://crossmark.crossref.org/dialog/?doi=10.3389/fevo.2020.00164&domain=pdf&date_stamp=2020-06-05
https://www.frontiersin.org/articles/10.3389/fevo.2020.00164/full
http://loop.frontiersin.org/people/898195/overview
http://loop.frontiersin.org/people/989423/overview
http://loop.frontiersin.org/people/960334/overview
http://loop.frontiersin.org/people/960399/overview
https://www.frontiersin.org/journals/ecology-and-evolution
https://www.frontiersin.org/
https://www.frontiersin.org/journals/ecology-and-evolution#articles


fevo-08-00164 June 4, 2020 Time: 19:17 # 2

Pearman-Gillman et al. Wildlife Distributions Under Future Scenarios

INTRODUCTION

Humans are a dominant driver of landscape change (Vitousek
et al., 1997; Díaz et al., 2019). Historical alterations in land use,
primarily the conversion of undisturbed forest to other forms of
land use like agriculture and urban development, have resulted
in the modification of landscapes at a global scale (Foley et al.,
2005; Díaz et al., 2019). The rate of landscape modification is
accelerating as human-dominated land use continues to expand
worldwide (Klein Goldewijk et al., 2011; Seto et al., 2012). More
than 30% of the world’s land area is already under some degree
of development and over 70% of the all forests are in close
proximity (<1 km) to a non-forest edge (Foley et al., 2005;
Haddad et al., 2015). With less than 15% of the world’s terrestrial
land under protection, natural ecosystems are highly susceptible
to modification (UNEP-WCMC and IUCN, 2016).

Natural ecosystems are also exposed to the escalating pressures
of shifting climatic conditions due to human activities (Walther
et al., 2002; IPCC, 2014). With a global temperature increase
of ca. 1◦C over the past century and rates of warming nearly
doubling over the latter quarter of the century, natural landscapes
are subject to climate-induced changes at accelerating rates
(IPCC, 2014; Hayhoe et al., 2018). The last three decades alone
experienced global surface temperatures that were warmer than
any preceding decade since 1850 and collectively represent the
warmest 30-year period in the past 1,500 years (IPCC, 2014;
Hayhoe et al., 2018).

Land use and climatic shifts can have substantial impacts
on wildlife globally (Root et al., 2003; Thomas et al., 2004;
Chen et al., 2011; Díaz et al., 2019). Changes in land use and
climate can alter the quality and distribution of habitat (e.g.,
shifting the composition, structure, and configuration of plant
communities), availability of food, prevalence of parasites and
diseases, and frequency and intensity of physiological stress from
heat or drought (Rustad et al., 2012; Díaz et al., 2019). While
these changes can have considerable consequences for wildlife,
information gaps and uncertainty around climate and land use
trajectories currently limit our understanding of how future
changes may impact wildlife species.

In the New England region of the northeastern United States
(US), which covers six states and nearly 200,000 km2, the
recent and historic effects of climatic change and land use
are evident for some species. For example, Canada lynx (Lynx
canadensis) has experienced a distribution shift toward higher
latitude and elevation in response to landscape change and
warming conditions (Laliberte and Ripple, 2004; Koen et al.,
2014). Similarly, warming climate conditions have benefited
parasites like winter tick (Dermacentor albipictus) that have
impacted moose (Alces alces) populations by reducing fitness
and causing periodic epizootics (>50% die-offs) in some regions
(Murray et al., 2006; Jones et al., 2019). With the continued
pressures of human population expansion, urban development
and sprawl, and warming climate trends, New England’s natural
landscapes are expected to experience rapid modification over
the next half-century (White et al., 2009; Olofsson et al., 2016;
Thompson et al., 2017; Dupigny-Giroux et al., 2018; Duveneck
and Thompson, 2019).

Rapidly changing environments present considerable
management challenges for federal and state agencies charged
with maintaining viable wildlife populations. Across the New
England region, wildlife management largely occurs at the state-
level, and is characterized by different strategies for different
species, which creates challenges for broader-scale conservation
planning (Aycrigg et al., 2016; McBride et al., 2017). Scenario-
based planning offers an approach to better understand the
larger-scale impacts of change that can lead to more effective
and proactive decision-making for species (Carpenter and Folke,
2006; Thompson et al., 2016). In New England, studies have
been initiated to improve understanding and anticipate future
trajectories of land-use and natural infrastructure (McBride
et al., 2017; McGarigal et al., 2017; Thompson et al., 2017;
Duveneck and Thompson, 2019). For example, the Designing
Sustainable Landscapes project developed a Landscape Change,
Assessment and Design model to simulate current trends
scenarios for landscape change in the northeastern US and assess
the associated ecological impacts (McGarigal et al., 2017).

Another study, the New England Landscape Futures Project
(NELFP), developed five scenarios that simulate different
landscape futures for the New England region. Led by the
Harvard Forest Long-Term Ecological Research program and
the Scenarios, Services, and Society Research Coordination
Network, this study simulated future conditions based on recent
trends (Thompson et al., 2017; Duveneck and Thompson, 2019),
and four alternative scenarios of landscape change (Thompson
et al., 2019). The alternative scenarios were built around two
uncertain, yet highly influential drivers of landscape change:
Natural Resource Planning and Innovation (NRPI) and Socio-
Economic Connectedness (SEC; McBride et al., 2017; Thompson
et al., 2019). The NRPI driver provides the extent to which
the government and private sector invest in proactive land-use
planning, ecosystem services, and technological advances for
resource use, primarily land, energy, and water. The SEC driver
provides the extent of local or global connectivity in population
migration, culture, economic markets, trade policy, goods and
services, and climate policy. These drivers form the basis for
the four alternative scenarios to the continuation of recent
trends (i.e., the “Business-As-Usual” scenario): “Connected
Communities,” “Yankee Cosmopolitan,” “Go It Alone,” and
“Growing Global.” The NELFP scenarios were collaboratively
designed by stakeholders, simulation modelers, and researchers
throughout New England and provide plausible trajectories
of landscape change that incorporate informed simulations of
climate, development, and agriculture, as well as forest structure
and composition. However, wildlife species have not been
assessed in the context of these scenarios.

Given the recent rates of landscape change in the New England
region, combined with extensive evidence that changing climate,
human expansion, and land transformation can have negative
consequences for many wildlife species, decision-makers are
faced with two crucial and unresolved questions: (1) How will
changing climate and landscape conditions impact the future
viability and distribution of the region’s wildlife species? (2)
How do social drivers, such as NRPI or SEC, influence species
distribution change in a future New England landscape? With
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uncertainty around natural resource planning, innovation and
socio-economic factors, we need a systematic approach that
addresses these questions and advances our understanding of the
complex, dynamic systems that affect wildlife. Approaching these
questions proactively may (1) lead to more efficient, cost effective
and sustainable conservation and management practices, (2)
improve the state of biodiversity and natural systems, and (3) help
protect iconic species and the benefits they offer to humans and
society (Güneralp et al., 2013). By considering forecasted shifts
in species distributions, wildlife agencies can plan for long-term
conservation at multiple spatial and temporal scales.

We addressed these questions by evaluating how climate
change and different trajectories of land-use may influence a
group of commonly managed wildlife species in the New England
region. We used expert-derived species distribution models
(SDMs) developed by Pearman-Gillman et al. (2020) and the
NELFP scenarios to: (1) estimate and map the future distributions
of 10 focal wildlife species under five alternative scenarios, and
assess regional species richness patterns, (2) quantify changes
in species distributions under each scenario, and (3) compare
distribution change across scenarios to quantify the impacts of
SEC and NRPI, and identify the drivers with the greatest potential
influence on individual and multi-species change.

MATERIALS AND METHODS

Study Area
The study area encompassed the six New England states
(Connecticut, Rhode Island, Massachusetts, Vermont, New
Hampshire, and Maine) in the northeastern US (Figure 1). The
region spans 186,458 km2 with topography ranging from coastal
plains to mountain peaks reaching nearly 2,000 m above sea
level. Climatic conditions vary by season and geographic location
throughout the region. Long-term climate records indicate an
average annual precipitation of 104 cm (range: 79–255 cm) and a
mean regional temperature ranging from 6◦C (January) to 19◦C
(July) (Huntington et al., 2009).

The New England region supports a growing human
population (14,845,063 in 2019) with three-quarters of the
population concentrated in the regions major metropolitan
areas (U.S. Census Bureau, 2019). The uneven distribution of
people contributes to regional variability in land use patterns
and intensities with large population centers in the south and
more rural undeveloped landscapes in the north. Currently,
approximately 80% of the region is covered by forest (Foster
et al., 2010). Forested regions are ecologically diverse with
areas dominated by northern hardwood, spruce-fir, oak-hickory,
and pitch pine forest types (Brooks et al., 1992; Duveneck
et al., 2015). Development (9.3%), agriculture (5.9%), and water
(12.3%) also cover large portions of the New England landscape
(Homer et al., 2015).

Focal Species
We focused our analysis on harvested wildlife species (n = 10)
that occur widely throughout the region. This group includes
nine mammals: American black bear (Ursus americanus),

Bobcat (Lynx rufus), Coyote (Canis latrans), Gray fox (Urocyon
cinereoargenteus), Moose (Alces alces), Raccoon (Procyon lotor),
Red fox (Vulpes vulpes), Striped skunk (Mephitis mephitis), and
White-tailed deer (Odocoileus virginianus); and one bird species:
Wild turkey (Meleagris gallopavo). We selected these species
because they are largely the emphasis of wildlife management
at the state-level. Game species are important economically and
culturally as they are harvested and often sought by wildlife
watchers. Several of these species also exert large ecological effects
on ecosystems, such as moose and deer (Jones et al., 1994; Pastor
et al., 1998; Horsley et al., 2003).

Objective 1 – Map Species Future
Distributions
Distribution Models
We used SDMs developed by Pearman-Gillman et al. (2020)
to estimate and map distributions of the focal species. SDMs
are often developed using presence-only data (e.g., animal
locations) and relate environmental conditions to a measure
of occurrence. For example, programs such as Maxent and
BIOCLIM use presence-only data to model occurrence and map
distribution across a landscape (Phillips et al., 2006; Franklin,
2010; Booth et al., 2014). Here, we used an alternative method
that developed models from probability of occurrence data
obtained through expert elicitation techniques, as outlined by
James et al. (2010). Expert opinion based models have been
used to estimate occupancy and map distribution for a variety
of species and contexts (e.g., Pearce et al., 2001; Yamada et al.,
2003; Mouton et al., 2009; Murray et al., 2009; Aylward et al.,
2018). Developing SDMs from expert opinion data (occurrence
estimates) can help overcome some of the limitations of presence-
only modeling approaches, and yield models that capture the
influence of climate and land use on regional wildlife dynamics
(e.g., Pearce et al., 2001; Murray et al., 2008). For details about
the expert elicitation model development for this study, see
Pearman-Gillman et al. (2020). Briefly, we used the online
survey tool, AMSurvey1, to elicit expert opinion data on the
probability of occurrence of each focal species throughout the
New England region. We then used mixed-model methods and
stepwise model selection (Zar, 1999; Burnham and Anderson,
2002; Bates et al., 2014) to develop a model for each species that
predicted probability of occurrence as a function of landscape and
climate variables (Table 1). Models included random effects that
accounted for expert-to-expert variation in responses, and fixed
effects that were identified in the literature, selected by experts, or
were highly correlated with perceived occurrence (Tables 2, 3).
Validation tests using independent data indicated that the models
performed well at predicting species occurrence across the New
England region (Pearman-Gillman et al., 2020).

Scenario Simulations
To estimate species distributions under projected conditions, we
applied each SDM to the Recent Trends scenario and the four
NELFP scenarios (McBride et al., 2017; Thompson et al., 2019),
each defined by their degree of Natural Resource Planning and

1https://code.usgs.gov/vtcfwru/amsurvey
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FIGURE 1 | Map of the study region located in the northeastern United States. The study region included the six New England states: Connecticut, Maine,
Massachusetts, New Hampshire, Rhode Island, and Vermont.

Innovation (NRPI) and Socio-Economic Connectedness (SEC).
For details about the NELFP scenario development process,
detailed scenario descriptions, and scenario figures, see McBride
et al. (2017) and Thompson et al. (2019). A summary of each
scenario is described below:

(1) Recent Trends (Business-As-Usual). This scenario represents
a baseline projection extended from the region’s contemporary
circumstances. It depicts the linear continuation of New
England’s recent trends in the rate and spatial patterns of
landscape change. This scenario offers a baseline for evaluating
the other scenarios of change.

(2) Connected Communities (High NRPI and Local SEC). In this
scenario, the New England population has slowly increased
over the past 50 years and communities are coping with
climate change by anchoring in place, making local culture
and the protection of local resources important government
and community priorities. Concerns about global unrest
and the environmental impacts of global trade led New
England communities toward a more community-focused
lifestyle. Strengthened local relations and advances in local
green energy contribute to more self-reliant communities.
Heightened community interest and public policies protected
wildlands, strengthened local economies and fueled growing
local markets (primarily local food, wood, and recreation).
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TABLE 1 | Species distribution models (SDMs) used to map distributions for 10 wildlife species and estimate changes in distribution across the New England region of
the northeastern United States.

Species Model formula

American black bear Mean ∼ prop_mature_forest + prop_all_roads + prop_forest_5k + mean_annual_precip_mm_5k + prop_fagugran_5k + (1 | State) + (1 |
Expert) + (1 | Site)

Bobcat Mean ∼ prop_developed + prop_forest_edge + prop_agriculture + (1 | Expert) + (1 | Site)

Coyote Mean ∼ prop_waterbodies + prop_forest_edge + prop_major_roads_3k + prop_wetland_3k + prop_agriculture + (1 | Expert) + (1 | Site)

Gray fox Mean ∼ prop_forest_edge + prop_agriculture_3k + mean_DEM_km + (1 | State) + (1 | Expert) + (1 | Site)

Moose Mean ∼ prop_young_forest + prop_developed + prop_shrubland + mean_fall_tmax_degC + prop_forest_5k + (1 | Expert) + (1 | Site)

Raccoon Mean ∼ prop_agriculture_500m + prop_mature_forest_500m + mean_DEM_km_500m + prop_oak_500m + prop_developed_500m + (1 |
Expert) + (1 | Site)

Red fox Mean ∼ prop_agriculture + prop_high_dev + mean_winter_precip_mm_3k + prop_shrubland_3k + (1 | Expert) + (1 | Site)

Striped skunk Mean ∼ mean_DEM_km_500m + prop_mature_forest_500m + prop_agriculture_500m + prop_forest_edge_500m + (1 | Expert) + (1 | Site)

White-tailed deer Mean ∼ prop_agriculture + prop_high_dev + prop_mature_forest + prop_hemlock_tamarack_cedar_3k + (1 | EcoRegion) + (1 | Expert) + (1 |
Site)

Wild turkey Mean ∼ prop_decid_forest + prop_forest_edge + prop_riparian + prop_grassland_3k + (1 | EcoRegion) + (1 | Expert) + (1 | Site)

Models were developed using expert-opinion data and generalized linear mixed modeling. Models include random-effects, noted in parentheses, and scaled fixed-effect
variables. See Table 2 for descriptions of model variables. For details on model development and parameter estimates, see Pearman-Gillman et al. (2020).

(3) Yankee Cosmopolitan (High NRPI and Global SEC). This
scenario describes a future in which New England remains
relatively resilient to climate change, has become a leader
in research and technology, and subsequently experienced
substantial population growth. The region’s population has
largely grown due to an influx of international migrants
seeking areas less vulnerable to the effects of climate change
(e.g., heat, drought, sea-level rise). As a world leader in biotech
and engineering, New England has a large demand for a
skilled labor work force and established itself as a major
center of economic and population growth within the U.S.
Most development has occurred in urban areas with sprawl
occurring as populations grow faster than the infrastructure
can support. In a globally connected world, the region relies
on imports for most food products. With a global shift toward
sustainability, New England has invested in land protection,
ecosystem services, and its carbon storing forests.

(4) Growing Global (Low NRPI and Global SEC). In this
scenario, New England has remained relatively sheltered
from the effects of climate change and has become a desirable
location for migrants seeking more environmentally stable
areas. This has led to population and development increases
that have outpaced local planning efforts and contributed
to city sprawl, haphazard expansion of development, poor
transportation infrastructure and inefficient energy use.
Underprepared government entities have struggled to support
the region’s growing population leading to higher levels
of privatized municipal services, limited natural resource
planning and sharp declines in land protection. With trade
barriers lifted, global trade has amplified and the U.S.
has experienced a surge in the production and export of
commodity crops. Increased agriculture, development and
growing biofuel markets have increased the degradation and
conversion of New England’s forested land. Globalization and
increased transportation demands have strengthened a global
reliance on conventional and cheap energy sources (fossil
fuels). With little innovation and no global commitment to

climate action, the world remains divided on issues of climate
change and renewable energy.

(5) Go It Alone (Low NRPI and Local SEC). This scenario
describes a New England with fairly low economic
opportunity, population growth, and land development.
A lack of global economic connectivity, tightened national
borders, and reductions in national budgets have limited the
nation’s ability to deal with unemployment, demographic
change, and climate resilience. Global efforts at climate
adaptation have failed and conventional energy sources still
dominate. In New England, the lack of regulation decreased
natural resources protection, technological innovation and
availability of goods and municipal services. With reduced
access to global energy markets, failure to launch new energy
development projects and the degradation of conventional
energy infrastructure, the price of energy has continued to
rise. Increased energy and export expenses have reduced
timber harvesting and commercial agriculture contributing
to economic collapse. New residential developments lack
appropriate planning and most public authorities lack the
funds to maintain critical infrastructure such as roads and
sewers. High energy costs, poor infrastructure planning and
failure to fund climate change adaption has left communities
isolated and heavily reliant on local resources. Poor planning
and extractive use have significantly degraded the region’s
ecosystem services and considerably decreased quality of life.

Each scenario narrative was translated into spatial patterns
of change using methods described by Thompson et al. (2017,
2019) and Duveneck and Thompson (2019). Briefly, these
simulations were developed in two stages: first using a spatially
explicit cellular land change model, Dinamica Environment for
Geoprocessing Objects (Dinamica EGO 2.4.1; Soares-Filho et al.,
2009) and second using a forest landscape succession model,
LANDIS-II v6.2 (Scheller et al., 2007). Dinamica was used to
simulate 50 years (2010–2060) of forest loss, land-use change,
and land protection relative to the underlying narrative of each
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TABLE 2 | Variables and associated spatial (raster) layers used in the development of wildlife species distribution models and maps across the New England region of
the northeastern United States.

Source

Variable Category Covariate name Description Measurement Scale(s) Current Future scenarios

Annual
Precipitation

Climate mean_annual_
precip_mm

Average annual precipitation
during the years 2010–2012.

Meters 5k Stoner et al., 2013;
Duveneck and
Thompson, 2019

Stoner et al., 2013;
Duveneck and
Thompson, 2019

Average
Daily High
Temperature
(Fall)

Climate mean_fall_tmax_
degC

Average daily high temperature
observed during the months of
September, October, and
November during 2010–2012.

Degrees Celsius 1k Stoner et al., 2013;
Duveneck and
Thompson, 2017

Stoner et al., 2013;
Duveneck and
Thompson, 2019

Total Winter
Precipitation

Climate mean_winter_
precip_mm

Average cumulative winter
(December–February)
precipitation during the years
2010–2012. This measure
includes all types of
precipitation, not just snowfall.

Meters 3k Stoner et al., 2013;
Duveneck and
Thompson, 2017

Stoner et al., 2013;
Duveneck and
Thompson, 2019

American
Beech

Forest
Composition

prop_fagugran Forested land that is occupied
by American beech (Fagus
grandifolia).

Proportion 5k Duveneck et al.,
2015

Duveneck and
Thompson, 2019;
Duveneck et al.,
2019

Hemlock-
Tamarack-
Cedar
Forest

Forest
Composition

prop_hemlock_
tamarack_cedar

Forested land where AGB
(above ground biomass) is
dominated by eastern hemlock
(Tsuga canadensis), native
tamarack (Larix laricina), and
northern white cedar (Thuja
occidentalis).

Proportion 3k Duveneck and
Thompson, 2019

Duveneck and
Thompson, 2019;
Duveneck et al.,
2019

Mature
Forest

Forest
Composition

prop_mature_forest Forested land that is classified
by tree cohorts between 40
and 100 years old.

Proportion 500 m, 1k Duveneck and
Thompson, 2017

Duveneck and
Thompson, 2019;
Duveneck et al.,
2019

Oak Forest Forest
Composition

prop_oak Forested land where AGB is
dominated by white oak
(Quercus alba), scarlet oak
(Q. coccinea), chestnut oak
(Q. prinus), northern red oak
(Q. rubra), and black oak
(Q. velutina).

Proportion 500 m Duveneck and
Thompson, 2019

Duveneck and
Thompson, 2019;
Duveneck et al.,
2019

Young
Forest

Forest
Composition

prop_young_forest Forested land that is classified
by tree cohorts between 20
and 39 years old.

Proportion 1k Duveneck and
Thompson, 2019

Duveneck and
Thompson, 2019;
Duveneck et al.,
2019

Agriculture Land Cover prop_agriculture Area where land cover is
classified as pasture, hay, and
cultivated crops.

Proportion 500 m, 1k,
3k

National Land
Cover Database
(NLCD 2011; U.S.
Geological Survey,
2014)

Thompson et al.,
2019

Deciduous
Forest

Land Cover prop_decid_forest Area where land cover is
classified as deciduous forest.

Proportion 1k NLCD 2011 Duveneck and
Thompson, 2019;
Duveneck et al.,
2019

Developed Land Cover prop_developed Area where land cover is
classified as developed open
space, low intensity, medium
intensity, and high intensity
development.

Proportion 500 m, 1k NLCD 2011 Thompson et al.,
2019

Highly
Developed

Land Cover prop_high_dev Area where land cover is
classified as medium or high
intensity development.

Proportion 1k NLCD 2011 Thompson et al.,
2019

Forest Land Cover prop_forest Area where land cover is
classified as deciduous,
evergreen, and mixed forest.

Proportion 5k NLCD 2011 Thompson et al.,
2019

(Continued)
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TABLE 2 | Continued

Source

Variable Category Covariate name Description Measurement Scale(s) Current Future scenarios

Forest
Edge

Land Cover prop_forest_edge Area classified as forest that is
within 300 m of non-forest land
cover.

Proportion 500m, 1k NLCD 2011 Thompson et al.,
2019

Grassland Land Cover prop_grassland Area where land cover is
classified as grassland,
herbacous, pasture, or hay.

Proportion 3k NLCD 2011 Thompson et al.,
2019

Major
Roads

Land Cover prop_major_roads Area where land cover is
classified as a major road
(controlled access highways,
secondary highways, or major
connecting roads and ramps).

Proportion 3k National
Transportation
Database (NTD
2016; U.S.
Geological Survey,
2016)

NTD 2016

Roads Land Cover prop_all_roads Area where land cover is
classified as major roads
(controlled access highways,
secondary highways, or major
connecting roads, ramps) or
local roads (local roads, 4WD
roads, private driveways).

Proportion 1k NTD 2016 NTD 2016

Riparian Land Cover prop_riparian Area where vegetation is
classified as riparian.

Proportion 1k LANDFIRE 2012
(U.S. Department
of the Interior and
U.S. Geological
Survey, 2012)

LANDFIRE 2012;
Thompson et al.,
2019

Shrubland Land Cover prop_shrubland Area where land cover is
classified as shrub/scrub.

Proportion 1k, 3k NLCD 2011 NLCD 2011;
Thompson et al.,
2019

Water Land Cover prop_waterbodies Area occupied by waterbodies;
lakes, ponds, reservoirs,
estuaries, swamps, and
marshes.

Proportion 1k NLCD 2011 Thompson et al.,
2019

Wetland Land Cover prop_wetland Area classified as woody
wetlands or emergent
herbaceous wetlands.

Proportion 3k NLCD 2011 NLCD 2011;
Thompson et al.,
2019

State Random
Effect

State Area classified by USA state
boundaries.

– – MassGIS, 2018 MassGIS, 2018

Eco-Region Random
Effect

EcoRegion Area classified by terrestrial Eco
Regions.

– – The Nature
Conservancy, 2009

The Nature
Conservancy, 2009

Elevation Topography mean_DEM_km Height above sea level. Kilometers 500 m, 1k Digital Elevation
Model (DEM, 2017;
U.S. Geological
Survey, 2017)

DEM 2017

A total of 22 fixed-effect variables and 4 random-effect variables were included in map development. The fixed-effects included 3 climate variables, 5 forest composition
variables, 13 land cover variables, and 1 topographic variable. The random-effects included 2 variables (site and expert) that were included in all models and 2 candidate
variables (state and eco-region). Fixed-effect variables were included at the site scale (1 km) or a generalized home range scale (500 m, 3 km, or 5 km). Spatial layers
were developed for current (2010) conditions and five future (2060) scenarios: Recent Trends, Community Connectedness, Yankee Cosmopolitan, Go It Alone, and
Growing Global.

NELFP scenario. This process produced scenario specific land
cover spatial layers (30 × 30 m) for forest, agriculture, high
density development, and low density development (Thompson
et al., 2017, 2019). Using these land cover spatial layers, a
LANDIS-II forest simulation was run on all forest pixels for
each scenario from 2010 to 2060 to simulate the growth,
dispersal, and mortality of 32 individual tree species (Duveneck
and Thompson, 2019). Climate change was incorporated into
each scenario using climate projections (i.e., monthly maximum
temperature, minimum temperature, and precipitation) based on

the assumptions of the Representative Concentration Pathway
(RCP) 8.5 emission scenario (IPCC, 2013) as simulated by to the
Hadley Global Environment Model v.2-Earth System (HADGE)
Global Circulation Model (GCM). This climate future includes
an increase in temperature and slight increase in precipitation
in New England by 2060. Much larger changes in climate are
expected beyond 2060 (IPCC, 2014). Indeed, the effects of climate
in these simulations were largely outweighed by the effects
of land use (Duveneck and Thompson, 2019). The LANDIS-
II simulations included changes in forest composition relative
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to a warming climate, development, and harvest patterns for
the Recent Trends (RT) scenario (Duveneck and Thompson,
2019) and each alternative NELFP scenario. The resulting
above-ground biomass layers by tree species were used for
modeling wildlife distributions (see below). Additional spatial
layers utilized came from the HADGE GCM simulated climate
data, Dinamica land cover outputs, and recent conditions land
cover data (see Table 2).

Mapping Projected Species Distributions
We applied the SDMs to the simulated spatial layers generated for
each NELFP scenario (Table 2) to map the future distributions
of each species in New England. Species distribution maps were
generated for each scenario by (1) multiplying the scenario’s
covariate rasters by the corresponding SDM coefficients for a
given species, then (2) summing the resulting raster layers to
obtain logit scores for every pixel, and (3) transforming the
logits to create a raster of occurrence probabilities. This process
generated species-specific distribution maps for each scenario
(n = 5). We also created species richness maps by stacking the 10
individual species rasters and summing the values in each pixel
to generate an index of species richness for each future scenario
(Sauer et al., 2013). Richness values could potentially vary from
0 (no species present) to 10 (all species present). We developed
distribution maps and species richness maps using the raster
package (Hijmans, 2016) in the statistical computing software, R
(R Core Team, 2019).

Objective 2 – Quantify Scenario-Specific
Distribution Change
Scenario-specific distribution maps were compared against
current distribution maps to estimate shifts (i.e., recession or
expansion) in regional distributions. We compared each species’
current distribution (Pearman-Gillman et al., 2020) to each
scenario’s projected distribution. Current distribution map pixels
were subtracted from superimposed projected distribution map
pixels to calculate values of projected change. Pixels with negative
distribution change values represented locations of declining
species occurrence and pixels with positive values represented
locations of increasing occurrence.

Objective 3 – Compare the Impacts of
NRPI and SEC on Wildlife Species
Isolating Driver Impacts
Each NELFP scenario was built around two directional drivers
of land use change: NRPI (high or low) and SEC (global or
local). For each species, we combined (averaged) distribution
change information across scenarios with a common directional
driver, marginalizing the influence of the second driver. For
example, to obtain a distribution shift under the High NRPI
driver, we averaged the two High NRPI scenarios (Yankee
Cosmopolitan and Connected Communities), marginalizing over
the directional SEC drivers. As a second example, to obtain a
distribution shift for each species under the Local SEC driver,
we averaged the two Local SEC scenarios (Go It Alone and
Connected Communities), marginalizing over the directional

NRPI drivers. We used this process to provide comparative
baselines for NELFP’s two primary drivers of land use change.
Next, we subtracted the RT values from the isolated driver maps
to account for forecasted baseline changes over the 50-year
period, effectively removing the external factors of change that
were not a product of shifts produced by the NRPI or SEC drivers.
The resulting maps depict the potential influence of each driver
on species occurrence and identify areas where species benefited
from high or low investment in innovation and natural resources,
or were most vulnerable to globalized or localized growth.

Quantify and Compare Drivers
We calculated descriptive statistics (minimum, maximum, mean,
standard deviation, and quartiles) across each isolated driver
landscape to quantify the effect each driver had on species
occurrence. This provided comparable statistics and allowed us
to assess how and to what degree the NRPI and SEC drivers are
expected to impact wildlife in the future. As a final comparison,
we calculated the absolute difference that NRPI and SEC had
on species occurrence (i.e., the difference between high and low
NRPI and global and local SEC). This allowed for quantitative
comparisons between the two primary drivers of change and
indicated which driver may have a greater impact on the focal
wildlife species.

RESULTS

Objective 1 and 2 – Future Distributions
and Projected Distribution Change
The projected distribution maps varied among species and the
five scenarios. For all species but one (red fox), average regional
occurrence likelihoods were projected to decline under nearly all
scenarios by 2060 (see Supplementary Figure S1, for individual
species maps). The locations and overall extent of distribution
decline varied among species and scenarios. Generally, focal
species distributions shifted away from areas of potential
development expansion (largely in the southern New England
states), and remained relatively stable in the northern and central
regions of New England where less development was projected
and timber harvest, forest management, and agriculture were
largely driving landscape change (Supplementary Figure S1).

Projected declines in species occurrence probabilities were
accompanied by declines in focal species richness. A regional
average focal species richness (µs) of 7.16 was estimated for the
New England landscape in 2010 representing current conditions
(Figure 2A). All future scenarios at 2060 projected lower focal
species richness than was estimated for current conditions
(Figures 2B–F). Of the future scenarios, average regional focal
species richness was lowest under the Yankee Cosmopolitan (YC;
µs = 6.44, a 10.1% decline) and RT (µs = 6.54, an 8.7% decline)
scenarios (Figure 2). The Growing Global (GG) scenario had the
highest average regional focal species richness (µs = 6.84, a 4.4%
decline), followed by Go It Alone (GA; µs = 6.72, a 6.2% decline)
and Connected Communities (CC; µs = 6.64, a 7.2% decline;
Figure 2).
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TABLE 3 | Species-specific summary statistics for the two primary scenario drivers, Natural Resource Planning and Innovation (NRPI, High or Low) and Socio-Economic
Connectedness (SEC, Global or Local).

Species Driver Minimum Maximum Mean Standard deviation Quartiles

25% 50% 75%

American black bear High NRPI −0.2541 0.2022 0.0014 0.0188 −0.0038 0.0000 0.0050

Low NRPI −0.3682 0.2404 0.0022 0.0356 −0.0036 0.0014 0.0129

Local SEC −0.1938 0.2917 0.0239 0.0347 0.0014 0.0091 0.0365

Global SEC −0.4977 0.1491 −0.0203 0.0448 −0.0258 −0.0040 0.0005

Bobcat High NRPI −0.3666 0.4959 0.0042 0.0178 0.0000 0.0000 0.0078

Low NRPI −0.3837 0.5928 0.0021 0.0511 −0.0190 0.0031 0.0321

Local SEC −0.4404 0.4942 0.0103 0.0229 0.0000 0.0013 0.0159

Global SEC −0.3837 0.5937 −0.0041 0.0634 −0.0253 0.0047 0.0339

Coyote High NRPI −0.5286 0.3179 0.0003 0.0110 −0.0007 0.0000 0.0011

Low NRPI −0.2935 0.3748 0.0052 0.0285 −0.0076 0.0009 0.0163

Local SEC −0.5286 0.3256 0.0019 0.0128 0.0000 0.0000 0.0030

Global SEC −0.2935 0.3699 0.0035 0.0322 −0.0083 0.0014 0.0172

Gray fox High NRPI −0.8065 0.5664 0.0046 0.0337 −0.0023 0.0000 0.0097

Low NRPI −0.5491 0.6442 0.0606 0.1442 −0.0358 0.0127 0.1776

Local SEC −0.8074 0.5714 0.0081 0.0433 0.0000 0.0004 0.0185

Global SEC −0.5505 0.6441 0.0571 0.1521 −0.0427 0.0162 0.1817

Moose High NRPI −0.9338 0.3746 −0.0035 0.0606 −0.0055 0.0013 0.0186

Low NRPI −0.9375 0.7802 0.1465 0.1529 0.0110 0.0992 0.2442

Local SEC −0.9343 0.6268 0.1088 0.1080 0.0120 0.0795 0.1823

Global SEC −0.9371 0.5295 0.0342 0.0915 −0.0025 0.0047 0.0767

Raccoon High NRPI −0.4653 0.2528 −0.0003 0.0150 −0.0060 0.0000 0.0062

Low NRPI −0.3289 0.2935 0.0108 0.0223 −0.0001 0.0072 0.0221

Local SEC −0.2937 0.2193 −0.0016 0.0170 −0.0094 −0.0006 0.0063

Global SEC −0.4657 0.2588 0.0121 0.0212 0.0002 0.0090 0.0229

Red fox High NRPI −0.3401 0.5809 0.0001 0.0075 −0.0001 0.0000 0.0012

Low NRPI −0.3123 0.5809 0.0009 0.0166 −0.0005 0.0000 0.0063

Local SEC −0.3023 0.5809 −0.0004 0.0064 −0.0001 0.0000 0.0008

Global SEC −0.3401 0.5809 0.0014 0.0188 −0.0005 0.0000 0.0072

Striped skunk High NRPI −0.3073 0.4228 0.0014 0.0133 −0.0027 0.0008 0.0065

Low NRPI −0.3477 0.3436 0.0196 0.0288 0.0001 0.0113 0.0338

Local SEC −0.3073 0.3076 0.0018 0.0160 −0.0024 0.0021 0.0090

Global SEC −0.3438 0.3787 0.0191 0.0282 0.0000 0.0114 0.0337

White-tailed deer High NRPI −0.5648 0.7546 −0.0058 0.0278 −0.0079 −0.0013 0.0034

Low NRPI −0.5312 0.8336 −0.0320 0.0532 −0.0391 −0.0182 −0.0038

Local SEC −0.4179 0.8509 −0.0164 0.0253 −0.0258 −0.0126 −0.0022

Global SEC −0.5797 0.7501 −0.0214 0.0590 −0.0176 −0.0042 0.0033

Wild turkey High NRPI −0.5709 0.4309 0.0016 0.0218 −0.0094 0.0008 0.0120

Low NRPI −0.3772 0.5091 0.0302 0.0776 −0.0224 0.0098 0.0786

Local SEC −0.6073 0.4148 0.0080 0.0284 −0.0048 0.0079 0.0231

Global SEC −0.3779 0.4952 0.0237 0.0792 −0.0308 0.0043 0.0749

All statistics were calculated from distribution change maps that were averaged across scenarios with like drivers and then adjusted by each species Recent Trends (RT)
baseline. Values reflect the driver’s isolated impact on regional occurrence relative to the RT baseline.

For individual species, the greatest distribution declines across
scenarios were projected for American black bear, gray fox,
moose, and wild turkey (Figure 3). Considerably lower levels
of decline were observed for bobcat, raccoon, and striped
skunk, and minimal declines in mean regional occurrence were
projected for coyote and white-tailed deer (Figure 3). An increase
in regional occurrence was projected for red fox across all
scenarios (Figure 3G).

Objective 3 – Impacts of NRPI and SEC
on Wildlife Species
Eight of the focal species (American black bear, bobcat, coyote,
gray fox, moose, raccoon, striped skunk, and wild turkey)
simulated distribution declines under the RT scenario and
all four of the driver-specific assessments (Figure 4A). For
white-tailed deer, distribution increased slightly under RT and
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FIGURE 2 | Focal wildlife species richness across New England as projected by (A) current (2010) conditions, and each of the NELFP scenarios at year 2060:
(B) Recent Trends, (C) Connected Communities, (D) Yankee Cosmopolitan, (E) Go It Alone, and (F) Growing Global.

declined under the four driver-specific assessments (although
declines were generally lower than the declines for other
species), and red fox distribution increased under all simulations
(Figure 4A). Generally, the driver-specific simulations projected
higher regional occurrence for the focal species than the 2060 RT
simulations (Figure 4B).

SEC had a greater impact on distribution change than
NRPI for four species, including American black bear, bobcat,
raccoon and red fox (Table 4). For American black bear,
Local SEC was the only driver that simulated higher regional
occurrence than the 2060 RT projection, while both High NRPI
and Low NRPI drivers led to distribution loss similar to the
RT baseline. Of the directional drivers, Local SEC simulated
the highest regional occurrence for American black bear,
while Global SEC simulated the lowest regional occurrence
(Table 3, Figure 4B, and see Supplementary Figure S2, for
species-specific maps of driver isolated distribution change). For
bobcat, Local SEC simulated the highest regional occurrence

while Global SEC simulated the lowest regional occurrence.
Both High NRPI and Low NRPI drivers led to distribution
loss similar to the 2060 RT projection, and Global SEC was
the only driver that projected lower regional occurrence than
the RT baseline (Table 3, Figure 4B, and Supplementary
Figure S2). The Global SEC driver simulated the highest
regional occurrence for raccoon, while Local SEC simulated
the lowest regional occurrence. Both High NRPI and Local
SEC simulated slightly lower regional occurrence than
the 2060 RT projection, and Low NRPI and Global SEC
projected higher regional occurrence for raccoon than RT
(Table 3, Figure 4B, and Supplementary Figure S2). For
red fox, all four drivers led to distribution gain similar to
the 2060 RT projection. Global SEC simulated the highest
regional occurrence for red fox, while Local SEC was the
only driver that simulated lower regional occurrence than
the RT baseline (Table 3, Figure 4B, and Supplementary
Figure S2).
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FIGURE 3 | Boxplots displaying estimated changes in species occurrence likelihoods throughout the New England region of the northeastern United States.
Changes in occurrence were projected for 10 wildlife species (A–J) by comparing species recent (2010) distribution against the year 2060 distribution projections for
each NELFP scenario: Recent Trends (RT), Connected Communities (CC), Yankee Cosmopolitan (YC), Go It Alone (GA), and Growing Global (GG).

NRPI had a greater impact on distribution change than SEC
for five species, including coyote, moose, striped skunk, white-
tailed deer, and wild turkey (Table 4). For coyote, the Low NRPI
driver simulated the highest regional occurrence and the High
NRPI driver simulated the lowest regional occurrence (Table 3,
Figure 4B, and Supplementary Figure S2). Low NRPI simulated
the highest regional occurrence for moose, while High NRPI
simulated the lowest regional occurrence. High NRPI was also
the only driver that simulated lower regional occurrence for
moose than the 2060 RT projection, and Local SEC simulated
considerably higher mean regional occurrence than expected
under RT (Table 3, Figure 4B, and Supplementary Figure S2).
For striped skunk, Low NRPI simulated the highest regional
occurrence; Global SEC driver had a similar impact as Low
NRPI, leading to higher mean regional occurrence than expected
under RT (Table 3, Figure 4B, and Supplementary Figure S2).
For white-tailed deer, Low NRPI simulated the lowest regional
occurrence and had the largest impact on distribution change,

while High NRPI had the smallest impact on distribution change
(Table 3, Figure 4B, and Supplementary Figure S2). Low NRPI
simulated the highest regional occurrence for wild turkey, and
both Low NRPI and Global SEC projected higher regional
occurrence than High NRPI and Local SEC (Table 3, Figure 4B,
and Supplementary Figure S2).

For one species, gray fox, SEC and NRPI had an equal
influence on distribution change (Table 4). Of the directional
drivers, Low NRPI simulated the highest regional occurrence for
gray fox (Table 3, Figure 4B, and Supplementary Figure S2).
Low NRPI and Global SEC also projected considerably higher
regional occurrence than High NRPI and Local SEC (Figure 4B).

Generally, Low NRPI and Global SEC were the most
influential directional drivers of distribution change (Figure 5).
Low NRPI had the largest impact on regional distribution
change for six of the species (coyote, gray fox, moose, striped
skunk, white-tailed deer, and wild turkey), while Global SEC had
the largest impact for two species (raccoon and red fox) and
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FIGURE 4 | Bar graphs showing the overall impact of drivers on mean regional change in species probability of occurrence (A) and drivers isolated impact on
occurrence likelihood after RT adjustment (B). For (A), values represent mean distribution change calculated from species probability of occurrence maps averaged
across scenarios with like drivers. For (B), values indicate difference from the RT baseline associated with each isolated driver (i.e., High NRPI, Low NRPI, Global
SEC, and Local SEC).

had a relatively large influence on distribution change for the
remainder of the focal group. Of the four drivers, High NRPI
had the smallest impact on distribution change for nearly all

species, and Local SEC had a large impact for a few species but
was otherwise less influential than the Low NRPI and Global SEC
drivers (Figure 5). When comparing the difference between High
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TABLE 4 | Driver comparison statistics showing absolute difference between
regional average occurrence for High vs. Low NRPI (Natural Resource Planning
and Innovation) and Local vs. Global SEC (Socio-Economic Connectedness).

Species NRPI Effect SEC Effect

American black bear 0.0008 0.0493

Bobcat 0.0021 0.0144

Coyote 0.0049 0.0016

Gray fox 0.0655 0.0655

Moose 0.1500 0.0746

Raccoon 0.0111 0.0137

Red fox 0.0008 0.0018

Striped skunk 0.0182 0.0173

White-tailed deer 0.0261 0.0061

Wild turkey 0.0251 0.0115

Values provide a quantified comparison between the NRPI and SEC drivers and
indicate which driver has a greater impact on distribution change on a species-by-
species basis.

vs. Low NRPI and Local vs. Global SEC, we found a nearly 50/50
split in the focal group for which the primary driver had a greater
impact on distribution change (Table 4).

DISCUSSION

The New England region is a large landscape that covers six US
states and includes some of the largest expanses of hardwood
forest and metropolitan areas in the country. Climate change
and the pace of urban development has increased substantially
in recent years, and the impacts of these changes on wildlife are
largely unknown (Seto et al., 2012; Hayhoe et al., 2018). Our
analysis suggests that a continuation of current trends will result
in declines in the distribution of harvested species, which are
important ecologically, socially, and economically in the region
(U.S. Department of the Interior et al., 2016). For example,
in Vermont, hunting, trapping, and shooting are important
activities to residents, major contributors to the state’s economy,
and are largely focused on species that exert strong ecological
impacts on forest ecosystems like moose, deer, and bear (Pastor
et al., 1998; Horsley et al., 2003; U.S. Department of the Interior
et al., 2016; U.S. Bureau of Economic Analysis, 2019).

Species distributions are predicted to decline for most of the
focal species if current climate and land use trends continue.
The RT scenario – which simulated climate trends following the
RCP 8.5 emission scenario and a continuation of recent trends in
land use – resulted in 4.36% less forest cover by 2060 (Duveneck
and Thompson, 2019) due to increases in development and
agricultural land cover (37% and <5% more, respectively;
Thompson et al., 2019). Under this scenario, eight of the ten focal
species demonstrated a decrease in regional occurrence. Red fox
and white-tailed deer were the only species that experienced an
increase in regional occurrence (29.6 and 0.5%, respectively). The
red fox is the widest ranging member of the Carnivora order
and is capable of living in a variety of environments, including
deserts, forests, tundra, and urban environments largely due to
its physiology and behavioral plasticity (Voigt, 1987; Tesky, 1995;

Lariviere and Pasitschniak-Arts, 1996). Similarly, white-tailed
deer often occur at the interface between natural and developed
areas and occupy a variety of habitat types (Swihart et al., 1993).
Increases in these species distributions probably reflects their
ability to adapt to the current trends of environmental change.

Among the species expected to decline if recent trends
continue, four showed low to moderate declines in regional
occurrence, including bobcat, coyote, raccoon, and striped
skunk (ranging between a 3.0 and 6.6% decline by 2060). By
comparison, American black bear, gray fox, moose, and wild
turkey experienced relatively large reductions in distribution
and average regional occurrence (ranging between 15.7 and
51.7% decline). These species are generally more sensitive to
development and climate shifts, which may explain the projected
negative impacts on distribution (Renecker and Hudson, 1986;
Roberts and Porter, 1998; Rustad et al., 2012; COSEWIC, 2015;
Evans, 2016; Lavoie et al., 2017; Environment and Climate
Change Canada, 2018; Johnson et al., 2018). High levels of
decline are concerning, especially for moose and gray fox, which
have been identified as Species of Greatest Conservation Need
by one or more of the New England states (Maine Dept. of
Inland Fisheries and Wildlife, 2015; Massachusetts Division of
Fisheries and Wildlife, 2015; New Hampshire Fish and Game
Department, 2015; Rhode Island Department of Environmental
Management Division on Fish and Wildlife, 2015; Vermont
Fish and Wildlife Department, 2015). Additional assessments
have also indicated recent population and distribution declines
for moose in New England (Wattles and DeStefano, 2011;
Timmermann and Rodgers, 2017) and many other regions
in North America (Murray et al., 2006; Lenarz et al., 2010;
Broders et al., 2012).

The RT scenario presents one plausible future, but we also
explored the effects of other alternative futures on wildlife. The
NELFP scenarios provided a set of alternative futures, influenced
by climate change, yet based mainly on two social drivers of
land use change – NRPI and SEC. These scenarios accounted
for future climate impacts and allowed us to assess how patterns
of wildlife occurrence and species richness were influenced by
different drivers and trajectories of land use change. Of the
four alternative scenarios, Growing Global (GG), Go It Alone
(GA), and Connected Communities (CC) all led to higher
species richness then RT; Yankee Cosmopolitan (YC) led to
lower richness. Similarly, our assessment of the social drivers of
change indicated that a low investment in NRPI and a global
approach to SEC were most influential on distribution change
and species richness.

In terms of land cover change, a low investment in NRPI led
to increased rates of timber harvest in the NELFP scenarios. The
GA and GG scenarios were built around the Low NRPI driver
and simulated the highest timber harvest rates of all the scenarios
(i.e., 135 and 110% increase in harvest rate compared to RT,
respectively) and the highest species richness of all the scenarios.
Timber harvest can benefit some species, including some in the
focal group (Monthey, 1984; Hunter and Schmiegelow, 2011)
by generating important habitats (e.g., early succession forest)
and increasing heterogeneity in forest structure and composition
(Hansen et al., 1991; Hunter and Schmiegelow, 2011). Moose,
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FIGURE 5 | Radar plot showing species-specific (n = 10) distribution changes associated with each directional driver – i.e., high or low Natural Resource Planning
and Innovation (NRPI), and global or local Socio-Economic Connectedness (SEC). The NRPI and SEC axes display how each driver impacted distribution change
(i.e., change in mean regional occurrence likelihood) in the New England region of the northeastern United States between 2010 and 2060. All values were derived
from species distribution models and provide a measure of how each driver shifted species regional occurrence likelihood relative to the occurrence likelihood
simulated for Recent Trends. The overlay of all species shows driver associated trends within the focal group.

gray fox, and wild turkey are all species that appear to
benefit from increased forest heterogeneity driven by Low
NRPI. For example, moose distribution was greatest under
the GA and GG scenarios; probably because these scenarios
resulted in high levels of timber harvest and larger amounts
of young forest, which benefit moose (Monthey, 1984; Innes,
2010; Wattles and DeStefano, 2011). However, it is important
to recognize that a continuation of Low NRPI actions and
disregard for both innovation and more extensive natural
resource planning activities will probably have less favorable
long-term consequences for many other wildlife species. Climate

impacts on forest composition may also have greater long-term
consequences for wildlife. For this analysis we simulated climate
and land use change 50 years into the future, however, the effects
of climate change on forest composition are projected to increase
dramatically beyond 50 years (Duveneck and Thompson, 2017;
Janowiak et al., 2018). With larger shifts occurring in the second
half of the 21st century, wildlife species may experience less
favorable conditions over time.

Economic development activities like urban expansion and
the conversion of forest to agriculture can also have considerable
impacts on species richness by reducing the availability and
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quality of habitat in the region (Murphy and Romanuk, 2014;
Newbold et al., 2015). In the NELFP simulations, the CC and
GA scenarios were built around the Local SEC driver and led
to lower rates of development (i.e., 75 and 25% decrease in
development rate, respectively) and higher species richness than
the RT projection. By comparison, the GG and YC scenarios
were built around the Global SEC driver and simulated high
rates of development (i.e., 180 and 40% increase in development
rate compared to RT, respectively). These two scenarios resulted
in the highest (GG) and lowest (YC) species richness, showing
that increased development rates can negatively influence species
occurrence, but may not directly translate to lower richness.
Rather, other factors including the pattern and intensity of
development may be more influential than rate alone. Both
Global and Local SEC drivers altered development patterns and
subsequently influenced distribution change – drawing attention
to the considerable influence that social and economic factors
can have on natural systems and emphasizing the importance of
including these factors in regional planning efforts.

The scenario assessments provide measures of the response of
multiple wildlife species to future natural, social, and economic
changes in New England. The results provide species information
that can aid in landscape decision-making around management
and conservation problems (Peterson et al., 2003). For a given
problem, decision-makers can set objectives, then use the models
to assess the consequences associated with each scenario, evaluate
trade-offs among scenarios, and identify the trajectory that most
successfully meets their objectives. As a simple example, a group
interested in maximizing black bear populations in New England
could compare occurrence probabilities across the scenarios to
evaluate the trade-offs of each type of future scenario; in this
case, choosing the GA scenario may be best as it projects the
highest regional occurrence for black bear. Information about
the GA scenario could then be used to help guide policy and
management actions.

The scenarios could also be used in more complex decision-
making problems that account for trade-offs across multiple
objectives and multiple spatial and temporal scales. For example,
the state of Vermont has set a goal of meeting 90% of the
state’s energy needs through renewable sources (e.g., solar, wind,
forest-derived bioenergy) by the year 2050 (Vermont Department
of Public Service, 2016). Considering this objective, Vermont
may change following a trajectory similar to the CC scenario –
in which advances in local green energy support a more self-
reliant community – or the GA scenario – in which poor
planning and extractive use significantly degrades the region’s
ecosystem services. However, the state also has objectives related
to the sustainability of harvested species, other natural resources,
and climate change. Decision-making frameworks following
principles of Structured Decision Making (Gregory et al., 2012)
could be used to evaluate possible impacts of climate change
and the trade-offs of each future scenario on renewable energy
production, and the sustainability of harvested species and other
natural resources, which can inform policy actions.

Our assessments of landscape change on wildlife species
accounted for several social, ecological, and economic factors
based on information from models, expert opinion, and

consensus from a consortium of scientists, managers, and
community members (i.e., the Scenarios, Services, and Society
Research Coordination Network that developed the NELFP
scenarios). However, any future scenario projections involve
uncertainties. Uncertainty in the SDM parameters has been
estimated, which provides a measure of confidence in the
occurrence estimates. Other factors not considered in the
modeling process, such as species interactions or variable
trajectories of climate change, may impact distribution patterns
and induce additional uncertainty in the outcome for species
(Royle and Dorazio, 2008). For example, coyotes are dominant
competitors and have been shown to shape the distribution
of other sympatric carnivore species (Johnson et al., 1996;
Fedriani et al., 2000); changes in their occurrence over time may
have impacts on red foxes and gray foxes through competition
(Johnson et al., 1996; Fedriani et al., 2000; Levi and Wilmers,
2012), and even game birds like wild turkey through altered
predation risk (Guthrey, 1995). Accounting for the behavioral
and ecological complexities of species interactions is challenging,
and would require additional (and currently unavailable)
data to be integrated into future scenario modeling. Future
climate conditions are also largely uncertain and species future
distributions may vary considerably under different trajectories
of climate change. Here, we simulated future climate conditions
based on a single high emissions scenario to aide interpretability
and offer distribution projections that account for both climate
and land-use change. Considering additional climate scenarios
and climate-related factors could provide further insight on
species future distribution patterns.

We also used probability of occurrence at a 30 m pixel level
as a measure for evaluating the effects of landscape change
on a species. Occurrence probability reflects habitat quality,
which we assumed also relates to the number of individuals,
an important measure for harvest management (e.g., setting
harvest quotas or bag limits). A positive relationship between
occupancy probability and abundance has been shown for several
wildlife species (Blackburn et al., 2006; Zuckerberg et al., 2009).
However, this relationship is not always consistent and linear
(Blackburn et al., 2006). For example, recent trends suggest that
gray foxes are expanding in range in the northeastern US and
eastern Canada (COSEWIC, 2015; Environment and Climate
Change Canada, 2018). However, our projection for gray fox
shows a decline in occurrence under the RT scenario. Here, it
is important to distinguish range expansion from population
growth and increased species occurrence – while the range
of gray fox may be expanding, localized shifts in habitat can
lead to lower abundance. It is also important to recognize that
current trends may not continue into the future. While current
conditions appear to facilitate range expansion for gray fox,
changes to New England’s climate and land use may decrease
gray fox occurrence in the future. Brown et al. (2018) also
showed that small declines in regional occurrence probability
of bird species in New England can result in large declines in
the actual number of territories that a region can support. This
is an important consideration, as seemingly small changes in
occurrence probability may translate to much larger shifts in a
species actual abundance.
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Resilience of wildlife communities to change is a conservation
priority for the New England region (Anderson et al., 2016).
Our study focused on harvested wildlife species and provides a
foundation for evaluating areas of high and low resilience under
regimes of change for this group of ecologically, socially, and
economically important species. Many resilience studies have
focused on identifying resilient areas for broader biodiversity
using focal taxa (e.g., birds) or groups (e.g., rare species). For
example, Anderson et al. (2014) estimated resilience to climate
change in northeastern North America using locations of rare
species populations and representative natural communities as
measures of biodiversity. Our study complements this and other
assessments in the region (e.g., Staying Connected Initiative;
Smith et al., 2012) by providing fine-scale information on
harvested wildlife species that have been largely excluded in
regional analyses.
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