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An inferential statement is any statement about the parameters, form of the underlying

process or future outcomes. An inferential statement, that provides an approximation to

the truth, becomes “statistical” only when there is a measure of uncertainty associated

with it. The uncertainty of an inferential statement is generally quantified in terms

of probability of the strength of approximation to the truth. This is what we term

“inferential uncertainty.” Answer to this question has significant implications in statistical

decision making where inferential uncertainty is combined with loss functions for

predicted outcomes to compute the risk associated with the decision. The Classical

and the Evidential paradigms use aleatory (frequency based) probability for quantifying

uncertainty whereas the Bayesian approach utilizes epistemic (belief based) probability.

To compute aleatory uncertainty, one needs to answer the question: which experiment is

being repeated, hypothetically or otherwise? whereas computing epistemic uncertainty

requires: What is the prior belief? Deciding which type of uncertainty is appropriate for

scientific inference has been a contentious issue and without proper resolution because

it has been commonly formulated in terms of statements about parameters, that are

statistical constructs, not observables. Common to these approaches is the desire

to understand the data generating mechanism. Whether one follows the Frequentist

or the Bayesian approach inferential statements concerning prediction are aleatory in

nature and are practically ascertainable. We consider the desirable characteristics for

quantification of uncertainty as: (1) Parameterization and data transformation invariance,

(2) correct predictive coverage, (3) uncertainty that depends only on the data at hand

and the hypothesized data generating mechanism, and (4) diagnostics for model

misspecification and guidance for correction. We examine the Classical, Bayesian

and Evidential approaches in the light of these characteristics. Unfortunately, none of

these inferential approaches possesses all of our desiderata although the Evidential

approach seems to come closest. Choosing an inferential approach, thus, involves

choosing between either specifying the hypothetical experiment that will be repeated or

equivalently a sampling distribution of the estimator or a prior distribution on the model

space or an evidence function.

Keywords: aleatory probability, conditional inference, empirical validation, epistemic probability, parameterization

invariance, prediction, predictive densities, statistical paradigms
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1. INTRODUCTION

It is indisputable that statistical reasoning has become an essential
component of modern scientific thinking (Taper and Ponciano,
2016). However, discussions on the philosophical foundations
of statistical methods are often regarded as esoteric and of
little practical importance to the scientific practitioners (e.g.,
Clark, 2005). It is commonly claimed that pragmatic scientists
somehow know which method is appropriate for their own
problem and they do not need to worry about the differences in
the philosophies of statistics that underlie such methods. That
such differences are too subtle to be of any practical relevance
(e.g., Kery and Royle, 2016). One possible reason scientists
feel this way is because they often make decisions solely on
the basis of the estimated effect size while paying only a lip
service to themagnitude and nature of the associated uncertainty,
in spite of the repeated protestations by the statisticians that
“effect size estimate without the associated uncertainty” is
useless for decision making. Understanding the meaning and the
quantification of uncertainty is a major hurdle, both in practical
applications of statistics and in understanding the arguments for
and against different paradigms in statistics.

Why is uncertainty quantification a critical endeavor for
science and scientific decisions? Decisions are ultimately based

on the predictions of the future outcomes of a statistical
experiment. These predictions are uncertain and hence we
need to quantify their uncertainty. Prediction uncertainty has

several components. First component is the process variation. It
exists even if all the parameters of the model are known. This
variation can be reduced to some extent by appropriate use of

covariates and auxiliary information in the process modeling.
Second component is the estimation error. This occurs because
parameters in the process model are generally unknown and
not directly observable. These parameters need to be estimated
using the observed data. Different methods of estimation lead to
different estimation errors. Both these components assume that
the form of the model used for prediction correctly represents
the true underlying process. The third component to prediction
uncertainty is the uncertainty about the form of the process
model. This uncertainty can be controlled to some extent by
appropriate model selection and model diagnostics. Prediction
uncertainty is a combination of these three components. Given
the prediction uncertainty, we can combine it with the loss
function that quantifies the consequences of different decisions
that are based on the uncertain predictions. The combination
of the loss function and the three types of uncertainties leads to
the quantification of risk. A rational decision maker is presumed
to choose a course that minimizes the risk. Thus, if one wants
to make rational decisions, one needs a verifiable quantification
of the uncertainty in prediction. In this paper, we discuss the
quantification of the prediction uncertainty when there is no
model form uncertainty. Dennis et al. (2019) discuss the effect
of model mis-specification on the quantification of uncertainty.

The goal of this paper is to discuss various ways statisticians
quantify uncertainty in statistical inferential statements about
the parameters of the model and the observables. Here
observables refer to both observed data and future data that

are potentially observable. Parameters of the model, although
statistical constructs and not always useful for prediction in
specific circumstances, are important for developing scientific
understanding (e.g., Jerde et al., 2019). However, uncertainty
statements about the parameter estimates are difficult to directly
verify in practice. On the other hand, statements about the
observables are aleatory or frequentist in nature and hence are
directly ascertainable in practice. Predictive accuracy has been at
the center of much of the development in the statistical learning
literature (e.g., Hastie et al., 2009) and has also been suggested
as the appropriate approach to statistical thinking (Billheimer,
2019).We emphasize, however, that it is not sufficient to compare
predictive abilities of different procedures. Ability to diagnose
and pinpoint errors in modeling and being able to learn from
errors is an essential component when comparing the desirability
of various inferential procedures (e.g., Dennis, 1996; Lele and
Dennis, 2009).

Although many of the discussions in the literature often
concentrate on estimation and testing of the parameters of the
model, the scope of statistical inference is wider than that. For
example, scientists want to be able to forecast future outcomes
under different “what if ” scenarios or they may be interested
in studying derived quantities, such as probability of extinction
or time to extinction of a species. Model choice, estimation
and prediction are three important components of any scientific
enquiry. In the next section, we discuss desiderata for uncertainty
quantification in the context of this general scope. In section 3,
we will discuss the basics of the Classical paradigm to quantify
uncertainty. We emphasize the difference between pre-data
and post-data measures of uncertainty and difficulties faced by
the Classical approach. This will lead us to the discussion of
conditional inference, relevant subsets and ancillary statistics.
We discuss the quantification of uncertainty in the context
of prediction. This discussion will clarify the importance of
conditioning, not just on intuitive grounds, but in practical terms.
In section 4, we will review the basics of (subjective) Bayesian
inference, from estimation to prediction. We will briefly discuss
the effect of the choice of the prior distribution. But the main
emphasis will be on discussing the meaning of the uncertainty
in the Bayesian context, namely the epistemic probability and
its interpretation. Determination of the prior distribution along
with the lack of ability to pinpoint errors in modeling are the
main stumbling blocks in the Bayesian approach. In section 5,
we will discuss the solution offered by the Evidential paradigm
to the problem of prediction. In particular, we use normalized
predictive likelihood to obtain evidential predictive density and
study its performance. Section 6 summarizes the results and
offers general conclusions. Throughout this paper, we assume
that the reader is familiar with the basic concepts in statistical
inference, such as different probability distributions, maximum
likelihood estimation, confidence intervals etc. See, for example,
any introductory level textbook on statistical inference, such
as Ramsey and Schafer (2002) or a mathematical text, such as
Casella and Berger (2002). Some of the topics, however, may
need a somewhat more advanced mathematical understanding,
although we have tried to make it accessible by providing simple
examples and intuition where possible.
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2. DESIDERATA FOR UNCERTAINTY
QUANTIFICATION

Before we can compare different approaches to quantify
uncertainty in statistical inference, we need to have a list of

desirable characteristics that such quantification will possess in
an ideal world. The following characteristics are generally agreed
upon as desirable in the statistical literature, although not all in

one place.

1. Uncertainty quantification should be invariant to both data
transformation and parameterization of the model.

2. Uncertainty quantification should reflect the informativeness
of the observed data for the underlying process.

3. Uncertainty quantification should be amenable to be probed
empirically for possible violations. This is also sometimes
described as “being ascertainable in practice.”

4. If an uncertainty quantification is not sufficiently accurate,
it should be possible to diagnose potential problems in the
model and ways to correct them.

We will examine uncertainty quantifications in three inferential
paradigms in the light of these desiderata.

Before we proceed further, we discuss the first desideratum
that can be potentially confusing for a non-statistician. Let us

consider the problem of prediction of amount of biomass of
a grass species in a typical plot or a quadrat. Suppose we
measure the biomass in the units of kilograms. We may report

a 90% prediction interval as, say (2.3, 3.5). This says, that if we
randomly select say 1,000 quadrats and measure their biomass
in kilograms, then ∼90% of the quadrats will have biomass
between 2.3 and 3.5 kg. Someone else, who happens to measure

the biomass in the units of pounds, the corresponding 90%
prediction interval would have been (5.06, 7.7). The equivalent
prediction interval has different end points depending on the

unit but the uncertainty, namely the probability content of the
interval, 90%, does not depend on the unit of measurement
or data transformation. Similarly, suppose we report a 90%

confidence intervals for probability of occupancy of a plot by
a species as, say (0.2, 0.8). The corresponding 90% confidence
interval for the log-odds of occupancy will be, approximately

(−1.38, 1.38). These intervals clearly look different with different
widths but their coverage probabilities are identical, namely,
90%. The desideratum says that these coverage probabilities,
that are a measure of uncertainty, should not change as a
consequence of data transformation or a particular choice
of parameterization.

In the following, we will be using two different notions
of probability. Fox and Ulkumen (2011) give the following
characteristics of the two kinds of probabilities or uncertainties:

Pure epistemic uncertainty:

• is represented in terms of a single case,
• is focused on the extent to which an event is or will be true

or false,
• is naturally measured by confidence in one’s knowledge or

model of the causal system determining the outcome, and
• is attributed to missing information or expertise.

Pure aleatory uncertainty, in contrast:

• is represented in relation to a class of possible outcomes,
• is focused on assessing an event’s propensity,
• is naturally measured by relative frequency, and
• is attributed to stochastic behavior.

They define the two concepts as follows.

• Aleatory probability: An aleatory conception of uncertainty
involves unknown outcomes that can differ each time one runs
an experiment under similar conditions.

• Epistemic probability: An epistemic conception of
uncertainty involves missing knowledge concerning a
fact that either is or is not true.

Fox and Ulkumen (2011) claim that disagreement concerning
the nature of uncertainty persists to this day in the two
dominant schools of probability theorizing, with frequentists
treating probability as long-run stable frequencies of events, and
Bayesians treating probability as a measure of subjective degree
of belief.

3. HOW FREQUENTLY WOULD WE BE
CONTRADICTED? ALEATORY
PROBABILITY FOR UNCERTAINTY
QUANTIFICATION

Let us consider one of the most common problems in ecology:
prediction of the total biomass of a species in a study area. Let
us assume that the study area can be divided in N management
quadrats of equal area. For the time being, we will consider
estimating the mean biomass in a typical management quadrat.
Suppose we take a sample of n quadrats and measure the biomass
in each of them. How can we use this information to infer about
the mean biomass in a typical quadrat? Furthermore, how can
we use this information to predict biomass in the unsampled
quadrats? To be able to go from what we observe (biomass in
the sampled quadrats) to what we have not observed (biomass in
the unsampled quadrats), we need to make some assumptions.
For the sake of simplicity, let us assume that the quadrats are
similar to each other in terms of habitat covariates that may
affect the amount of biomass and that amount of biomass in
one quadrat does not affect the amount of biomass in other
quadrats. Furthermore, we assume that the quadrats chosen
for measurement were chosen randomly. If N is substantially
larger than n, we can ignore the subtle differences between “with
replacement” and “without replacement” sampling. Also, for the
simplicity of notation, we will say that the sampled quadrats were
the first n of the N quadrats.

In mathematical notation, the amount of biomass in the
N quadrats, Y1,Y2, ...,YN , are assumed to be independent,
identically distributed random variables. The sampled
observations are the biomasses at the sampled quadrats,
namely, y1, y2, ..., yn. Let us further assume that Yi ∼ N(µ, σ )
where µ indicates the mean biomass in a quadrat and σ indicates
the natural variation. We use the standard deviation (sd) σ ,
instead of the commonly used parameterization σ 2, because it
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has the same unit as the mean. Let us look at a simple implication
of this assumption. Suppose the mean biomass in a quadrat is 10
kg and sd is 1. Then, the distributional assumption implies that
probability that Y , the biomass at any quadrat, is in the interval
(10 − 1, 10 + 1) is ∼0.68. What do we mean by this statement?
To most scientists, this means that about 68% of the quadrats
will have biomass between 9 and 11 kg. This is an aleatory
probability. In statistical literature we call this the “frequentist”
definition of probability. It is the proportion of times an event
is observed in infinite replications of the experiment. The N
quadrats are independent replications of the experiment and
we expect about 68% of them to have biomass between 9 and
11 kg. If, in practice, the observed proportion turns out to be
substantially different than 0.68, we know that our statistical
model is inappropriate. An important characteristic of aleatory
probability statements is that they are ascertainable in practice.
Thus, they are probeable statements and we can also diagnose
problems with the data generating mechanism if the statements
are refuted in practice.

There are a few unknowns in our situation: (1) value of the
parameters (µ, σ ), and (2) appropriateness of the probability
density function, namely the Normal density function to model
the underlying process. Statistics, often, is considered the
epistemology of science. We want to learn from the data about
these unknowns. For the time being, let us assume that the
Normality assumption is appropriate and also that σ = 1
is known. The maximum likelihood estimator (MLE) of the
parameter µ is µ̂ = 1

n

∑n
i=1 Yi = Y . Notice that µ̂ is a random

variable and the corresponding estimate (the value obtained for
a particular sample), with some abuse of notation, is given by
µ̂ = 1

n

∑n
i=1 yi = y. This is simply a number. This number is an

inferential statement about the mean biomass in a management
quadrat, namelyµ. Thus, after sampling, one may say that “mean
biomass of a species in a management quadrat is 8.3 kg.” We can
also make statements such that if we sample a new management
quadrat, assuming we know the true parameters, the probability
that it will have biomass between 3 and 5 kg is about 0.68.
Both these statements are “inferential statements” but are quite
different in their nature. First statement is about a parameter, a
statistical construct, whereas the second statement is about an
observable. Given such statements, a natural question to ask is:
How certain (or, uncertain) are we about these statements? This
corresponds to determining the probability of the strength of
approximation to the truth. Answering such questions is the crux
of statistical inference.

3.1. Sampling Distribution and Confidence
Intervals
We will start with discussing uncertainty in the parameter
estimation. Later we will discuss inferential statements about
observables. Neyman (1937) proposed to quantify uncertainty in
the parameter estimation by answering the question: If there were
another scientist who had sampled n quadrats, albeit different
than the one we sampled, how different would be their estimate
of µ? The distribution of the estimates obtained by infinitely
many scientists repeating the experiment is called the sampling

distribution. Sampling distribution quantifies uncertainty in the
Classical statistical inference.

Let us continue with the biomass survey example. Suppose
the true mean biomass in any quadrat is 10 kg and known
true sd is 1. Suppose the sample size is 20. Then to obtain
the true sampling distribution of the estimator of µ, namely
µ̂ = Y , we generate 20 random numbers from N(10, 1)
and compute the sample mean. If we repeat this process, say
1,000 times, we will obtain 1,000 sample means (equivalent
to estimates from 1,000 independent surveys). Histogram of
these 1,000 means represents the true sampling distribution
(strictly speaking, simulation based estimate of the true sampling
distribution). It shows, if we repeat the study, how different
the estimates will be, namely, probability of the strength of
approximation. Figure 1 (black curve) illustrates an example of
the true sampling distribution. In reality, we cannot compute the
true sampling distribution because we do not have data from
replications of the experiment. Fortunately, given the data at
hand, one can estimate the sampling distribution. In Figure 1

(dotted curve), we illustrate a parametric bootstrap estimate of
the sampling distribution given data in hand. For this, given
the results of our one survey, we compute the sample mean.
Then generate 20 randomnumbers fromN(y, 1) and compute the
sample mean. If we repeat this process, say 1,000 times. We will
obtain 1,000 sample means (equivalent to estimates from 1,000
independent surveys). Histogram of these 1,000means represents
the parametric bootstrap estimate of the sampling distribution.
Notice that we have replaced the true mean 10 by its estimate
y. Naturally the true and estimated sampling distributions are
slightly different from each other but this is what one can do
in practice because true mean is not known. For each data set
in hand, because the sample means are different for different
data sets, the bootstrap estimate of the sampling distribution
is different.

Sampling distributions can be estimated using various other
techniques, such as using pivotal statistics, asymptotic normal
approximation, inversion of the likelihood ratio or by non-
parametric bootstrapping (Casella and Berger, 2002). As an
aside, the last two techniques are considered preferable because
they lead to confidence intervals that are parameterization
equivariant. That is, one can transform the confidence interval
for µ to log(µ) by simply log-transforming the endpoints of the
first interval. Although their lengths and end points will change,
their coverage properties remain invariant. Thus, likelihood ratio
based or bootstrap based confidence intervals satisfy desiderata
1 but confidence intervals based on other methods may not. We
will discuss implications to other desiderata in the next section.

Let us look at how one can use the (true and estimated)
sampling distribution for quantifying uncertainty about the
inferential statements.

3.1.1. Confidence Intervals and Coverage
It is easy to see that we can use the true sampling distribution
to compute an interval that indicates the range of estimates
that one would obtain in replicated experiments with specific
probability. For example, using the true sampling distribution
which, in this case, can be analytically shown to be N(µ, σ/

√
n),
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FIGURE 1 | The estimated sampling distribution depends on the observed

data and is different from the true sampling distribution. Hence the parameter

estimate of a new study may lie outside the confidence interval reported in an

earlier study more often than the nominal error rate. The new estimate is

occurring from the true sampling distribution and the previous confidence

interval is based on the estimated sampling distribution. It is approximately the

area outside the reported confidence interval under the true sampling

distribution.

we can give 90% confidence interval as (10 − 1.68σ/
√
n, 10 +

1.68σ/
√
n) where n denotes the sample size and σ = 1. The

confidence interval shrinks as we increase the sample size. As
we noted before, it is impossible to compute this interval in
practice because the true parameter values are unknown. The
true 90% confidence interval for a sample size 20 is given by
(9.624341,10.37566). A corresponding estimated 90% confidence
interval based on the estimated sampling distribution, for a
specific sample, turns out to be (9.716948,10.460803). This is
different from the true confidence interval because we replace
true mean by the estimated mean. For different samples, one
would get different confidence intervals because each sample
leads to a different estimate of the mean. The reader can
use the R program in the Supplementary Material to see
how parametric bootstrap sampling distribution and associated
confidence interval varies depending on the sample in hand. Note
that each run of the program will lead to different confidence
intervals than reported above.

It is clear what information the true 90% confidence interval
provides. It says that if you repeat the experiment, your estimate
will lie inside the true confidence interval 90% of times. Hence
your result will contradict the original result only 10% times. But
what information does the estimated confidence interval provide
about the true value of µ? We can make the following statement
about the value of µ: If we replicate the experiment 100 times
and calculate the estimated 90% confidence interval for each
replication, then ∼90% of the intervals will cover the true value
(that is, the true value will belong to the interval). Of course,
any particular interval obtained from a single experiment may

or may not contain the true value. This is the property of the
procedure and not of the outcome of a single experiment. The
interpretations of the true confidence interval (that can never be
computed) and the estimated confidence interval are different.

Thus, we have answered the question, how often (in replicated
experiments) would our interval cover the true parameter value
of µ? This is called the coverage probability. Is this useful? We
contend that this is the kind of probability we use in practice.
For example, probability of an airplane crash on a take-off
is say 1 in 10,000. This tells us nothing with certainty about
what will happen on a particular flight; it may crash or it may
not crash. However, we intuitively understand this uncertainty
statement and are able to make decisions. It helps us behave
in a rational manner. This is what Neyman called “inductive
behavior” (Lehmann, 1995), behavior informed by the data.

Replicability of the conclusions: Another question explicitly
addressed by the sampling distribution is: How replicable is our
study? How likely is it that we would be contradicted by someone
conducting similar experiment? This is sometimes crudely put
as “Cover Your Ass” (CYA) statements. For example, suppose
the first sampler publishes a confidence interval for the mean
biomass in a given size quadrat. Then we can use the true
sampling distribution to compute the probability that subsequent
sampling of the biomass will yield a mean biomass estimate
that will not belong to the first sampler’s confidence interval
and hence the first sampler’s conclusions will be contradicted
by the subsequent study. This probability is not the same as
the coverage probability which is the property of the estimated
confidence interval. For example, for the estimated sampling
distribution in Figure 1 (dotted curve), the probability that a new
sampler will get an estimate outside the estimated confidence
interval (µL,µU), namely, P(µ̂new /∈ (µL,µU)), turns out to
be, on an average, 0.24. This is larger than the nominal 10%
excesses under the true sampling distribution. Of course, as the
sample size increases, this problem goes away. We conjecture
that this is one of the reasons of the replicability crisis in science
(e.g., Ioannidis, 2012), namely incorrect interpretation of the
confidence interval; the other, perhaps far more important, being
model misspecification or the model from one study not being
applicable to other studies.

Replicability of the conclusions is an essential component of
the scientific validity of the conclusions. Aleatory probability
based quantification of uncertainty clearly tries to address
this concern. Not everyone, however, agrees that classical
quantification of uncertainty is useful. It is claimed that not all
experiments can (will) be replicated. For example, the critics
ask: How do we quantify uncertainty of the event of a nuclear
war? How do we replicate a time series of populations? We
find this objection fundamentally vacuous because, by its very
nature, modeling of a natural phenomenon using a statistical
model assumes the possibility of replication of the experiment.
If replication of an experiment is impossible, statistical modeling
of such an experiment is also impossible, nay meaningless.
Unfortunately, even if we accept the Classical approach to
quantification of uncertainty in principle, there are problems
when applied to inferential statements.
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3.2. Conditional Inference and Post-data
Uncertainty
Let us continue with the question of estimating themean biomass
in each management quadrat. Previously, we assumed that all
quadrats were identical to each other. It is reasonable to think
that each quadrat has different mean biomass that depends
on the habitat covariates of that quadrat. Let us assume that
Yi ∼ N(Xiβ , σ ). This is a simple linear regression through
the origin model with a single habitat covariate and constant
standard deviation.

Given the data, that now consist of (yi, xi) where i = 1, 2, ..., n,
theMLE of β is given by β̂ =

∑

xiyi/
∑

x2i where the summation
runs over i = 1, 2, ..., n. Suppose, again unrealistically, that the
standard deviation is known. The question now is: What is the
uncertainty associated with the estimator of the slope β? Because
of the Normality assumption, we can represent the uncertainty
using the variance of the estimator. Surprisingly, there are two
possible answers to this question.

1. Conditional variance: The standard answer in regression
analysis, e.g., Ramsey and Schafer (2002), is
Var(β̂|(xi, i = 1, 2, ..., n)) = σ 2/

∑

x2i . Notice that the variance

of β̂ depends on σ but more importantly also on the observed
values of the covariates x1, x2, ..., xn. If the observed set of
covariates are widely dispersed, the variance of β̂ is small
whereas if the observed set of covariates are not dispersed, the
variance is large. This is why, in planning ecological studies or
constructing sampling designs, we aim to have high dispersion
in the covariate values. To most researchers, this makes
intuitive sense. With this, the true sampling distribution of β̂
is given by:

β̂ ∼ N(β ,
σ 2

∑

x2i
)

This measure of uncertainty assumes that the replicated
experiments are such that the covariate values are identical to
the ones in the original experiment, namely, xi, i = 1, 2, ..., n.
The only difference between the replicate experiments is in
the values of the responses Yi, conditional on the original
covariate values. This is why it is called “conditional variance.”

2. Unconditional variance: On the other hand, one can argue that
because our study is an observational study, if we replicate
the experiment the specific covariate values that different
experimenters would observe are likely to be different.
Thus, an argument can be made that when characterizing
uncertainty we should account for the possible variation in the
covariates as well. Let us assume that the covariate values arise
from N(0, 1). That is, if we plot a histogram of the covariate
values from all the management quadrats, it will have a bell
shape. Under this assumption, it can be shown that, Var(β̂) =
σ 2/(n − 2). This is the variation in β̂ that we will observe if
we replicate the experiment where the covariate values are not
fixed. This variation does not depend on the covariate values
because their values across the replications are different and
hence are averaged over. Because we do not condition on the
covariate values, this is called “unconditional variance.” In this

case, the true sampling distribution is (now, approximately)
given by:

β̂ ∼ N(β ,
σ 2

(n− 2)
)

It is obvious that the length of the true confidence interval is
constant in the unconditional case whereas it depends on the
particular covariate composition in the conditional case. Using
the distribution of

∑

x2i , we can find that, for smallish sample
sizes, about 60% of the conditional confidence intervals will be
shorter than the unconditional intervals and as the sample size
increases 50% of the conditional confidence intervals are shorter
and 50% are longer than the unconditional confidence intervals.

These conditional and unconditional confidence intervals can
be obtained in practice by using bootstrapping (Wu, 1986; Efron
and Tibshirani, 1993). There are two different ways to conduct
bootstrapping for regression. One is called pairwise bootstrap
where we resample with replacement from the pairs (xi, yi). This
leads to unconditional confidence interval. On the other hand,
one can resample with replacement from the residuals ri =
yi − β̂xi denoted by r∗i and then generate the bootstrap samples

using y∗i = β̂ ∗ xi + r∗i . Notice that in this bootstrap, covariate
values are identical throughout the boostrapping procedure. This
conditional (also called, residual) bootstrap leads to conditional
confidence intervals. Notice that residual bootstrap procedure
assumes that the linear regression model is the true model
whereas the pairwise bootstrap procedure does not assume the
correctness of the linear regression. Thus, pairwise bootstrap is
model robust.

Both conditional and unconditional answers are
mathematically correct (that is, they have correct coverage
under the appropriate replication, conditional or unconditional)
but which one is scientifically appropriate? It makes sense to
use the conditional variance if we want to report uncertainty
about the estimate that we obtained based on our own particular
data. For example, if we happen to get a really good sample,
that is, observed sample covariate values are highly dispersed,
we should be fairly confident that our particular estimated
slope is pretty close to the true slope. On the other hand, if
we were unlucky and got a sample such that the covariate
values were not very dispersed, we should not be too confident
about the slope estimate being close to the true slope. The
unconditional variance, on the other hand, seems to penalize
a lucky experimenter and award an unlucky experimenter by
averaging over their performances. But if we want to protect
against possible contradiction by other experimenters, who will
get different covariate values than what we observed, reporting
the unconditional variance makes sense. The answer seems to be
“it depends on the scope of the inference.”

This has puzzled, stumped and bothered the frequentist
statisticians for a very long time (e.g., Fisher, 1955; Cox,
1958; Buehler, 1959; Royall and Cumberland, 1985; Casella
and Goustis, 1995; among many other papers). We will let
the reader read through these papers to see the full technical
and scientific discussion. The ambiguity of when and how to
condition has led to the study of relevant subsets, subsets of
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the sample space over which replication should be considered,
along with conditioning on appropriate ancillary statistics and
more. Much of this discussion revolves around uncertainty
in the parameter estimates. These are statistical constructs.
Although, intuition suggests that conditional inference is both
mathematically correct and scientifically appropriate, there is no
direct, operational way to justify the quantification of uncertainty
about a statistical construct. Suppose we can relate the discussion
to uncertainty about the observables then may be we can
make such statements ascertainable in practice. Would the
prediction accuracy help us decide if the conditional inference is
“scientifically appropriate” without resorting to intuition alone?

3.3. Prediction and Prediction Intervals
Let us first look at how we can solve the problem of prediction
and its uncertainty using the Classical approach (e.g., Lejeune
and Faulkenberry, 1982). Let θT denote the true value of
the parameter and let us assume that the model is correctly
specified. The goal is, given the sampled data, to predict the new
observation and associated prediction uncertainty. This could be
equivalently translated into estimating either the density function
f (y; θT), the corresponding cumulative distribution function
(CDF) F(y; θT) or, more directly the inverse of the cumulative
distribution function, the quantile function, F−1(α; θT). Let us
look at the estimation of the density function.

3.3.1. Estimated Predictive Density
Given the data, we can simply replace the true, but unknown,
parameter θT by its estimated value θ̂ and use f

p
est(y) = f (y; θ̂)

to obtain prediction intervals for a new observation.
Here superscript p indicates predictive and subscript est

indicates estimated predictive density approach. This is certainly
parameterization invariant (at least when MLE is used to
estimate the parameter), as it should be, but depends on the
transformation of the observable. These properties can be proved
quite easily.

1. Let us reparameterize the density using ψ = g(θ) where g(.)
is a one-to-one function. Then, we can write θ = g−1(ψ)
where g−1(.) is the inverse function of g(.). The density is only
a function of y and hence it follows that f

p
est(y) = f (y; ψ̂) =

f (y; g(θ̂)).
2. Let us do a data transformation where z = h(y). In this case,

we have to use the Jacobian of the transformation (Casella
and Berger, 2002) to get the density in terms of z. The
density in terms of z is given by f

p
est(z) = f (z; θ̂)|dh−1(z)/dz|.

The density in terms of z looks quite different. However,
if z1 = h(y1) and z2 = h(y2), then P(Z ∈ (z1, z2)) =
P(Y ∈ (y1, y2)). The prediction intervals are different but the
probability content is the same.

Thismakes perfect sense: If wemeasure the variable on a different
scale, the prediction interval should depend on that scale. For
example, suppose population abundances are modeled as Log-
normal distributions. Then, log-abundances are distributed as
a Normal distribution. One can obtain prediction intervals for
the log-abundances using Normal distribution properties and
simply transform the end points using the exponential transform
to get the prediction intervals for the abundances. Both these

intervals, although numerically quite different, have exactly the
same probability content under the respective distributions. The
coverage probability of the prediction interval, the uncertainty
quantification, remains invariant to the choice of the data
transformation as well as the choice of the parameterization.

The major problem with the estimated predictive density
is that it tends to be too optimistic in the sense that it gives
prediction intervals that are too short and that do not have
appropriate coverage properties. Notice here that the predictive
error statement is aleatory and probeable (Taper et al., 2019),
either by using cross validation or by independent experiments.
One reason for bad coverage property of the estimated predictive
density is that it does not take into account the estimation error
in θ̂ (e.g., Aitchison, 1975; Cox, 1975). There are many different
approaches to account for the estimation error (e.g., Smith, 1998)
each with its own pros and cons. One of the straightforward
approaches (e.g., Hamilton, 1986) is based on accounting for
estimation error by using the following.

3.3.2. Classical Predictive Density

f
p
C(y) =

∫

f (y; θ)φ(θ; θ̂ , I−1(θ̂))dθ

Where φ(θ; θ̂ , I−1(θ̂)) is the asymptotically Normal sampling
distribution of the estimator and I(θ̂) is the usual estimated Fisher
Information matrix (e.g., Casella and Berger, 2002; Ramsey and
Schafer, 2002).

Notice that the integration is with respect to θ and not θ̂ ,
which makes a clean, philosophically sound justification for this
approach awkward. The estimated Fisher Information matrix
can be replaced by the observed Fisher Information matrix (e.g.,
Efron and Hinkley, 1978). The above definition of predictive
density, of course, assumes that the sampling distribution of θ̂
can be well-approximated by the specified Normal distribution.
One can, naturally, replace the asymptotic approximation of the
sampling distribution by the bootstrap estimate of the sampling
distribution (Harris, 1989). In the context of the linear regression
problem discussed above, this immediately raises the question:
“which sampling distribution” should we use for integration,
conditional or unconditional? For example, a pairwise bootstrap
for regression (Efron and Tibshirani, 1993) will lead to different
predictive density than using the residual bootstrap (e.g., Wu,
1986). The first one leads to unconditional whereas the second
one leads to conditional sampling distribution but assumes that
the regression model is appropriate. A conditionally appropriate
solution to this problem was provided by Vidoni (1995) where
he uses the p*-approximation to the distribution of the MLE
as suggested by Barndorff-Nielsen (1983). He also uses the
Laplace approximation (Tierney and Kadane, 1986) to avoid
the integration altogether. What properties are satisfied by the
Classical predictive density?

Shen et al. (2018) (see also Lawless and Fredette, 2005;
Schweder and Hjort, 2016) consider the prediction problem from
the frequentist perspective in detail. They consider a general form
of the predictive density, namely f

p
Q(y) =

∫

f (y; θ)dQ(θ) =
∫

f (y; θ)q(θ)dθ . where Q(θ) is any distribution on the parameter
values of θ . The different predictive densities described above
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are particular cases of this general form with different Q(θ).
For example, when we use the Classical predictive density
following Hamilton (1986), we use Q(θ) = Normal(θ , I−1(θ̂)).
An important result they prove is that the Classical predictive
density has correct coverage probabilities only if the estimated
sampling distribution of θ̂ has correct frequentist coverage
(Shen et al., 2018, p. 130). They show that the predictive
densities in the form similar to the ones defined above are
superior to the estimated predictive density (which is nothing
but using a degenerate Q(θ), degenerate at θ̂) in terms of
average Kullback-Leibler divergence and in terms of prediction
error. They study parameterization invariance of the coverage in
some cases. The conclusion is that it does not hold in general.
The error probabilities (coverage properties) of these inferential
statements are generally not parameterization invariant for
small samples but they are parameterization invariant for
large samples. This is because most estimators have sampling
distributions that are asymptotically normal. If an estimator does
not have asymptotically normal distribution, it is not clear if the
parameterization invariance will hold true in such cases.

The predictive density for the linear regression through origin
(also considered by Shen et al., 2018), using the conditional
variance, is easy to derive and to justify by noting that:

Ynew − Xnewβ̂ ∼ N(0, σ 2 + σ 2 X2
new

∑

X2
i

)

where the second component in the variance is due to the
estimation error of β̂ . This is how, generally, one obtains
the prediction interval for linear regression (e.g., Ramsey and
Schafer, 2002).

One can obtain an approximate predictive density based on
the unconditional variance as:

Ynew − Xnewβ̂ ∼ N(0, σ 2 + σ 2 X
2
new

n− 2
)

An obvious comparison would be to see which density comes
closest to the true density

Ynew − Xnewβ ∼ N(0, σ 2)

See Figure 2 for a visual comparison between estimated,
conditional and unconditional predictive densities (for a
particular observed sample) along with the true predictive
density. In the figure, we illustrate four different samples to
show that sometimes estimated predictive density comes closer
to the true density and sometimes it can be quite different,
depending on how close the estimated parameters are to the true
parameters. The general predictive density f

p
Q(y) averages these

different estimated predictive densities to get, on an average,
better performance.

Shen et al. (2018) compare the prediction coverage
performance of the estimated, exact conditional and
using the conditional bootstrap sampling distribution. In
the Supplementary Material, we provide an R code that
confirms that both conditional and unconditional predictive

FIGURE 2 | The true density for the new observation under the linear

regression through origin is different than the estimated predictive density

based on the observed data. Classical conditional, Classical unconditional

have slightly fatter tails than the estimated predictive densities. This leads to

somewhat better coverage properties by accounting for the sampling

variability. Evidential predictive density also has fatter tails than estimated

predictive density. Its calculation, however, does not need sampling

distribution and hence specification of the experiment to be repeated. It

reflects the information in the observed data appropriately.

densities lead to correct predictive coverage of a future
observation but conditional prediction intervals are shorter
than the unconditional intervals when

∑

X2
i > (n − 2) and

longer otherwise. An immediate implication is that because
conditional prediction intervals have correct coverage, when the
unconditional prediction interval is shorter than the conditional
prediction interval, it will have less than nominal coverage for
those covariate configurations and when unconditional interval
is longer than the conditional interval, it will have larger than
nominal coverage for other covariate configurations. This implies
that unconditional intervals are either unnecessarily conservative
or incorrectly optimistic, but never correct conditionally
(although correct on an average). This justifies the use of
conditional variance in practical terms instead of “intuition.”
See Royall and Cumberland (1985) for a similar argument
in the context of finite population sampling. The differences
between conditional and unconditional prediction intervals can
be substantial when there are large number of covariates that
leads to more variation in the covariate configurations.

3.4. What Should We Do?
It is clear that reporting the uncertainty in inferential statements
about the parameters is tightly related to the question of
“which experiment do we replicate?” Reporting the uncertainty
about the parameters leads to the difficulties of “unconditional”
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vs. “conditional” (sometimes also termed pre-data and post-
data) uncertainty. Because models and parameters are purely a
statistical construct, the uncertainty statements related to their
values are not justifiable directly and in practical terms. On the
other hand, the observations have real world meaning. Reporting
the uncertainty in statistical inference procedure in terms of
its predictive accuracy is unambiguous. Thus, we can compare
and contrast different uncertainty quantifications in terms of
their predictive accuracy. For example, looking at the predictive
accuracy, we can conclude that conditional predictive uncertainty
is not only scientifically appropriate but also practically correct
and better than the unconditional predictive uncertainty. Let us
summarize what we can say about the Classical predictive density
in the light of the desiderata from section 2.

1. The Classical predictive density is not parameterization
invariant unless the sampling distribution is completely
known, that is, it is a pivotal statistics (Shen et al., 2018).
Sampling distribution based on the asymptotic normal
approximation or the inversion of the Likelihood ratio
test based on the asymptotic Chi-square approximation
or bootstrapping leads to parameterization invariance of
the predictive density. Thus, parameterization invariance
is achieved only when valid bootstrapping of the data
is possible or when the sample size is sufficiently
large. However, bootstrapping time series or spatial
data is not possible without some, possibly strong,
additional assumptions.

2. Most of the results regarding the predictive density are proved
under the assumption that the estimators are consistent and
have asymptotically normal (CAN) distribution. However, in
many complex ecological models, the conditions for CAN
estimation may not be satisfied. For example, estimation of
the boundary parameter commonly leads to estimators that
are not CAN estimators. Such models may require non-
standard asymptotics where the estimators approach the true
value of the parameter at a rate different than

√
n or the

asymptotic distribution may be different than Normal. It
is unclear which of the above results hold true in such
a situation.

3. The Classical predictive density does not automatically reflect
how informative the observed data are. Unfortunately there
is no general recipe to construct correct conditional or post-
data sampling distribution for small samples. If one uses
observed Fisher information (Efron and Hinkley, 1978) for
the computation of predictive density, it appears to use the
correct conditioning. See also Vidoni (1995) for appropriate
conditioning in predictive density for small samples.

4. The Classical predictive density leads to correct predictive
coverage only if the sampling distribution of θ̂ has correct
frequentist coverage properties. In general, the validity of the
confidence intervals or prediction intervals can be rigorously
proved only for large samples. Unfortunately, what is a large
sample and if one has it in practice is never known. Whether
or not a sample size is large, depends on the complexity of the
model (e.g., Dennis, 2004).

5. Of course, even with proper conditioning under the
presumed model, if the true regression model in the above

example were non-linear or if the variance depended on
the habitat covariates, the prediction intervals would have
incorrect coverage.

6. Ideas, such as cross validation can be used to test the validity
of the predictive density. Thus, these inferential statements are
fully probeable.

7. Model estimation and model selection using cross validation,
one of themost commonly used approach inmuch of machine
learning literature, is based on computing themean prediction
squared error or some modification of it (e.g., Hastie et al.,
2009). It is important to note that the method of cross
validation, as is commonly used, is based on minimizing
the unconditional prediction error as described earlier. This
is troublesome. Furthermore, cross validation based model
selection and Akaike Information Criterion (AIC) are closely
connected to each other (Stone, 1977). However, Dennis et al.
(2019) show that, according to the Evidential paradigm, use of
AIC for model selection is problematic because the probability
ofmisleading evidence does not converge to zero as the sample
size increases.

8. Instead minimizing the MPSE, we suggest that one should
check if the predictive density leads to appropriate prediction
coverage. One could compare the predictive density with a
non-parametric estimate (if such an estimation is possible) of
the data generating mechanism, e.g., a non-parametric density
estimate in the case of independent, identically distributed
random variables. Any differences not only indicate that the
model is incorrect but also can lead to model diagnostics and
model correction.

In summary, the Classical approach satisfies some of the
desiderata for the quantification of uncertainty. However, in
order to get the sampling distribution, we have to address the
crucial question of “which experiment do we repeat” and the
answer is not straight forward.

4. UNCERTAINTY IS ALL IN YOUR MIND:
EPISTEMIC PROBABILITY FOR
QUANTIFICATION OF UNCERTAINTY

Classical uncertainty quantification is based on the properties
of the procedures over replications of a specified experiment.
Implicitly what is being claimed is that if the procedure is
good on an average, the specific inferences are good as well.
Of course, a good cook does not guarantee that a specific meal
would be good; by chance, although rarely, you might get a bad
meal. Is a specific inferential statement based on more accurate
procedure better than one based on a less accurate procedure?
For example, suppose we get exactly the same blood pressure
(BP) measurement based on a drug store machine vs. in a
doctor’s office, should we take both of them equally at face value?
Intuitively most would say no. However, not all statisticians
agree with the quantification of uncertainty in terms of the
accuracy of the procedure. They claim, because accuracy of the
procedure is no guarantee that a particular inferential statement
is good or bad, we cannot use it as a measure of uncertainty.
They do not think it is epistemically correct to average over
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samples that we could have, but did not, observe. So how should
we approach the question of quantification of uncertainty of a
statistical inferential statement that reflect the lucky (or unlucky)
observed data appropriately?

Bayesian approach assumes that, even before collecting the
data, the experimenter is able to quantify their uncertainty
about the value of the parameter. This may be based on prior
experience about a similar situation, e.g., measurement error of
the BP machine, distribution of the BP measurements in the
population, prevalence of a disease, previous surveys in that
study area, related surveys elsewhere or basic natural history
of the species. Suppose one can quantify such prior belief in
terms of a proper statistical distribution (that means it should
be positive, countably additive, integrate or sum to 1 etc.). Such
a distribution is called a “prior distribution.” This distribution
describes the prior (to data) uncertainty about the parameter
as quantified by the particular researcher. This is an epistemic
uncertainty. This cannot be challenged nor can it necessarily be
probed empirically. In this context, now we ask the question:
In the light of the data, how do we change our prior beliefs
(distribution)? Standard conditional probability calculation can
be used to answer this question.

There are three components to every Bayesian analysis.

1. Prior distribution: Let θ denote the parameter of the model.
This could be a vector indicating multiple parameters (as
in multiple regression). Let 2 denote the parameter space,
the set of values that the parameter can potentially take. We
will generically denote the prior distribution by π(θ). This is
assumed to be a proper statistical distribution. Thus, π(θ) > 0
for all θ ∈ 2 and

∫

π(θ)dθ = 1.
2. Data generation model: This is the process model that

postulates how the data are generated in nature. This is a
statistical distribution on the observables. It varies for different
values of the parameter. We will generically denote this by
f (y(n)|θ) where y(n) =

{

y1,y2,..., yn
}

is the data vector.
3. Posterior distribution: The conditional probability

distribution of the parameters given the data is called
the posterior distribution. It is given by

π(θ |y(n)) =
f (y(n)|θ)π(θ)

∫

f (y(n)|θ)π(θ)dθ

We want to emphasize that, under the Bayesian framework, the
model, as indexed by the parameter value, itself is a random
variable. The prior distribution represents the researcher’s belief
about how probable a particular model is to represent the
underlying process. This is an epistemic probability.

The posterior distribution completely quantifies the
researcher’s belief about the appropriateness of the model
in representing the underlying process, after or in the
light of the observed data y(n). Although the process model
component is an aleatory probability, the posterior distribution,
that combines epistemic and aleatory probabilities, is an
epistemic probability.

In the Bayesian paradigm, the posterior distribution plays
the same role that sampling distribution played in the
Classical paradigm. Using the sampling distribution, we obtained

FIGURE 3 | Illustration of a prior distribution, likelihood function, and posterior

distribution for the linear regression through origin: notice how much the data

can change the prior beliefs. Highly informative data change the prior

substantially and vice versa.

confidence intervals that represented the range of estimated
values that one may obtain if we replicate the experiment.
Using the posterior distribution, one computes an interval that
represents the experimenter’s belief about the range of values that
the true parameter could take. This is called a “credible interval.”
There are no replicate experiments. Only one experiment was
conducted and it resulted in the observed data. What changed,
in the light of the data, are the prior probabilities about different
parameter values. Just as the prior uncertainty was all in the mind
of the experimenter, posterior uncertainty also is in the mind of
the experimenter. See Brittan and Bandyopadhyay (2019) for a
philosophical discussion on this point.

In Figure 3, we illustrate these three components for the linear
regression through the origin example of section 3.2. We note
that one can use credible interval to address the replicability of
the inferential statement: How often do we believe we would be
contradicted if someone replicates the experiment? The answer
varies depending on the prior distribution. A credible interval
does not have the interpretation of “how often would we cover
the true parameter value if we repeat the experiment?” The
uncertainty here is epistemic and is not testable.

Effect of the choice of the prior on the posterior distribution:
It is obvious that if one has different prior beliefs, the posterior
beliefs will be different even if the observed data are identical.
In Figure 4, we illustrate how the posterior distribution changes
with two different priors for the same observed data for the linear
regression model considered earlier.
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FIGURE 4 | Different prior distributions lead to different posterior distributions.

They both cannot possibly have correct frequentist coverage. Their validity is

epistemic and is not testable in any practical fashion.

We invite the reader to play with the R code provided in the
Supplementary Material to see how choice of the prior affects
the posterior distribution.

We emphasize again that the posterior uncertainty does not
reflect simply what the data says but reflects a combined effect of
the prior beliefs and the information in the data. The probability
statement reflected in the credible interval has no aleatory
meaning. The uncertainty here is epistemic; it is neither testable
nor verifiable in any fashion.

Note: A referee raised the possibility of checking the
frequentist validity of the Bayesian credible intervals using
the replicate experiments. Various researchers (e.g., Datta and
Ghosh, 1995) have tried to study the frequentist validity of
the Bayesian credible intervals. There are two problems with
this comment.

• First problem is that the Bayesian credible intervals depend
on the choice of the prior. This implies that not all priors
can lead to credible intervals with good frequentist properties.
We do not know if our particular choice of the prior will
lead to good frequentist coverage. The research related to
constructing priors that lead to correct frequentist coverage,
called Probability Matching Priors (e.g., Datta and Ghosh,
1995), shows that it is extremely difficult to construct such
priors, even for simple models and single parameter situation.

• Second problem is that if we are using the frequentist validity
as a criterion for justifying Bayesian inference, we again face
the difficulty of answering the question: which experiment
do we repeat, conditional or unconditional? Would we be
reporting proper post-data uncertainty? This justification
violates the strong likelihood principle (e.g., Berger and
Wolpert, 1988), that says that uncertainty should depend only
on the data at hand and not on what other data one could have
observed had the experiment been repeated, that Bayesian
approach considers sacrosanct.

4.1. Bayesian Prediction and Prediction
Uncertainty
As we did previously, it seems reasonable to relate the uncertainty
statements to observables rather than the parameters facilitating
testing and falsification in practice. We will describe the ideas
under the assumption that the data are independent and
identically distributed but they are easily extended to non-
identically distributed or dependent data, such as space-time
series of population abundances.

1. Prior predictive density: We can obtain Bayesian predictions
even before obtaining any data. This is called a “prior
predictive distribution.”

f (y) =
∫

f (y|θ)π(θ)dθ

2. Bayesian predictive density: In the light of the data, the
prior predictive distribution changes to posterior predictive
distribution and is given by

f
p
B (y|y(n)) =

∫

f (y|θ)π(θ |y(n))dθ

where y(n) denotes the data vector of length n.

4.1.1. Parameterization and Bayesian Predictive

Density
According to desiderata 1, uncertainty about prediction of the
future observation should not depend on the parameterization
used in the modeling. To our surprise, unless we are
misunderstanding, Bjornstad (1990) seems to claim that the
Bayesian predictive density is not generally parameterization
invariant. Suppose the prior distribution is uniform distribution
on the parameter space. Then, using Laplace approximation
(Tierney and Kadane, 1986), one can write the Bayesian
predictive density approximately as (Leonard, 1982):

f
p
B (yn+1|y(n))

.=
∣

∣

∣
I(θ̃)

∣

∣

∣

0.5 ∣

∣

∣
I(θ̂)

∣

∣

∣

−0.5 L(θ̃; y(n+1))

L(θ̂; y(n))

where y(n) = y1, y2, ..., yn, y(n+1) = y1, y2, ..., yn, yn+1, θ̂ is the

MLE based on the data y(n) and θ̃ is theMLE based on y(n+1). The
matrix I(.) is the Fisher Information matrix. The non-invariance
of the Information matrix to parameterization seems to make the
Bayesian predictive density non-invariant to parameterization.

4.1.2. Sensitivity to the Choice of the Prior

Distribution
It is obvious that as different priors lead to different posterior
distributions, they also lead to different post-predictive densities.
In Figure 5, we first depict the prior predictive densities induced
by different priors along with the true density of the new
observation for the linear regression model. It is clear that
prior predictive densities or equivalently, induced priors on the
observations (Lele, 2020) can be quite different from each other
and the true density,
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FIGURE 5 | Prior predictive densities for the linear regression through origin

example under two different priors. These represent the prior beliefs about the

observation to be predicted. The true density (black) is presented for

comparison. Prior predictive densities could be close to the true density if the

prior distribution on the parameters is “good” and they can be very far if the

prior distribution on the parameters is “inappropriate.” These are induced

priors on the quantities of interest, namely values of the future data.

In Figure 6, we depict the Bayesian predictive densities
corresponding to different prior distributions. The R code to
produce these figures (with some Monte Carlo variation because
the random numbers for each run are bound to be different) is
provided in the Supplementary Material.

The predictive coverage for these two Bayesian predictive
densities corresponds to their overlap with the true density of the
new observation. Given that Bayesian predictive distributions are
sensitive to the choice of the prior distribution, they all cannot
possibly have correct predictive coverage.

Shen et al. (2018) show that this predictive density will lead
to good coverage only if the posterior distribution is also a
valid frequentist sampling distribution. Given this result, it is
obvious that Bayesian predictive density is unlikely to have
correct coverage properties except in special circumstances or if
the sample size is large enough to use the asymptotic Normal
distribution approximation. Lawless and Fredette (2005) pointed
out that objective Bayesian methods do not have clear probability
interpretations in finite samples, and subjective Bayesian
predictions have a clear personal probability interpretation but
it is not generally clear how this should be applied to non-
personal predictions or decisions. Similar objections were raised
by many authors, e.g., Lele and Dennis (2009), Bandyopadhyay
et al. (2016), Taper and Ponciano (2016), and Brittan and
Bandyopadhyay (2019).

In statistical ecological literature (e.g., Royle and Dorazio,
2008; Kery and Royle, 2016) claims are made that Bayesian

FIGURE 6 | Bayesian predictive densities representing the post-data belief

about the observation to be predicted. Notice how the effect of different priors

has been reduced by the data. They are much closer to the true density

(black curve).

procedures are valid for all sample sizes without clear
specification of the criterion for validity. It is clear that Bayesian
prediction intervals do not have proper coverage as they should,
at least in the aleatory sense. Perhaps the validity of the Bayesian
procedures is also in the minds of the researchers.

4.1.3. Using Prior Data to Construct Prior

Distributions
It may be tempting to think that using past data to construct
prior distributions would be a way out of the subjectivity inherent
in specifying a prior distribution. There are several problems
with this approach. First, using past data implies that the past
experiments are identical to the present experiment. If they
are not, the estimates from the prior data cannot simply be
put together in a histogram and use it to construct a prior
distribution. This assumption may be satisfied in a few instances
but not always. Suppose it is satisfied. In that case, a question
one should ask: Is this the optimal way to utilize the past data?
There is an alternative approach to utilizing the past data using
the so called (ironically, indeed) “Empirical Bayes approach” or
“Hierarchical models” or “Meta analysis” that does not involve
constructing prior distributions from the results of the past
experiments. We simply combine the likelihood functions of the
past data with the likelihood function of the present data, under
the assumption that the parameters of these different experiments
are identical to each other or somewhat related to each other. This
is likely to be statistically more efficient than reducing the past
data to a prior distribution.

4.1.4. Model Checking
Model diagnostics is an essential component of any statistical
analysis. Bayesian model diagnostics is usually based on the
Bayesian predictive density. If the data are consistent with the
Bayesian predictive (commonly called, post-predictive) density,
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it is taken as an indication that themodel structure is appropriate.
However, if the data are inconsistent with the Bayesian predictive
density, a natural question to ask is: What part of the model
is possibly incorrect? How should we modify it? Notice that
the Bayesian predictive distributions (post- or pre-data) are
mixture distributions (Lindsay, 1995). It is well-known (e.g.,
Teicher, 1961; Lindsay, 1995) that given observations from the
predictive (mixture) density, one cannot uniquely determine the
data generating (mixture components) distribution and the prior
(mixture weights) distribution. Hence bad post-predictive fit
does not tell us whether our prior distribution that is incorrect
or the data generating mechanism that is incorrect and in
what fashion. Even when the Bayesian predictive density fits
the observed data well, it could very well be the case that both
the prior distribution and the data generating mechanism are
wrong but they compensate each other’s mistakes to produce
the correct Bayesian predictive distribution. Hence these post-
predictive checks andmodel diagnostics aremore ambiguous and
less useful for scientific analyses than one would like them to be.

4.2. What Should We Do?
As long as one is willing to provide the prior distribution, the
Bayesian approach to uncertainty quantification simply follows
the laws of probability to obtain posterior beliefs about the
parameters and predictive distributions. This appears to be a
simple, elegant and logically coherent solution to the problem of
uncertainty quantification.

An oft quoted, important result related to the Bayesian
paradigm, is called the Complete Class theorem (e.g., Robert,
1994). In statistical decision theory, an admissible decision rule is
a rule for making a decision such that there is no other rule that
is always “better” than it, where the definition of “better” depends
on the loss function. According to the complete class theorems,
under mild conditions every admissible rule is a (generalized)
Bayes rule (with respect to some prior distribution). Conversely,
while Bayes rules with respect to proper priors are virtually
always admissible, generalized Bayes rules corresponding to
improper priors need not yield admissible procedures. Stein’s
example is one such famous situation (e.g., Robert, 1994). The
main caveat that is, conveniently, not stated in the quantitative
ecological literature, is that Complete Class Theorem is only
an existence theorem and it does not instruct us which prior
leads to the admissible estimator or how to construct such a
prior. If your prior happens to be different than this optimal
prior distribution, your results are likely to be suboptimal, if not
downright misleading.

Let us look at the Bayesian prediction in the light of the
desiderata presented in section 2.

1. Bayesian predictive density is not parameterization invariant
unless the sample size is sufficiently large to wipe out the
effect of the prior distribution. This lack of invariance can
be problematic in practice (Lele, 2020). For example, one
can (deviously) choose a parameterization such that Bayesian
predictive distribution comes close to what one wants. This is
the same as someone choosing a prior distribution to support
pre-determined conclusions.

2. Bayesian predictive density automatically reflects how
informative the observed data are. This is one of the attractive
features of the Bayesian approach. It does not average over
good and bad samples as the unconditional variance does
in the Classical approach. Bayesian approach awards the
researcher if the sample is informative and punishes when it
is bad.

3. Bayesian predictive density does not lead to correct predictive
coverage in general. This is obvious because different prior
distributions lead to different post-predictive distributions. All
of them cannot have correct predictive coverage. In general,
the validity of the confidence intervals or prediction intervals
can be rigorously proved only for large samples. What is a
large sample and if one has it in practice is never known.

4. Ideas, such as cross validation can be used to test the validity
of the predictive density. Thus, these inferential statements are
fully testable.

5. If the post-predictive density does not appear to have good
coverage properties, we cannot say whether it is due to
the incorrect data generating mechanism or due to the
prior distribution. Thus, it does not guide us to modify the
data generating model. This is another important practical
limitation of the Bayesian approach.

To summarize, in order to quantify uncertainty in the Bayesian
paradigm one has to answer the question: What is the
prior distribution? The Bayesian uncertainty statements reflect
personal beliefs and hence are not transferable to anyone else,
unless you happen to have the same prior beliefs. Uncertainty
reflected in the posterior distribution has no aleatory meaning
and hence is not probeable. Furthermore, predictive statements
based on the Bayesian predictive densities are not guaranteed
to have correct coverage. Another important limitation of
the Bayesian approach is the lack of model diagnostics and
suggestions for possible model modification. It can diagnose
whether the model fits the observed data or not but, when the
model does not fit the observed data, it cannot localize the errors
in the model specification.

5. EVIDENTIAL PARADIGM AND
QUANTIFICATION OF UNCERTAINTY

We will now study the Evidential paradigm and uncertainty
quantification. For detailed introduction to the Evidential
paradigm (see Royall, 1997). For an easily accessible and
ecologically oriented version (see Taper and Ponciano, 2016 or
Dennis et al., 2019). The Evidential paradigm is still in its infancy
in terms of real life applications. However, we can observe certain
general properties and study it in the light of the desiderata
in section 2.

Royall (1997) claims that statistical inference addresses three
different questions:

1. Given these data, what is the strength of evidence for one
hypothesis vis-a-vis an alternative?

2. Given these data, how do we change our beliefs?
3. Given these data, what decision should we make?
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Royall (1997) uses the likelihood function to quantify the strength
of evidence in the data.

5.1. Likelihood Function
Suppose Y1,Y2, ...,Yn are independent, identically distributed
random variables with Y ∼ f (.; θ) where θ ⊂ 2. The
likelihood function is given by: L(θ; y(n)) =

∏

f (yi; θ). Recall that
likelihood is a function of θ and the data y(n) = (y1, y2, ..., yn) are
considered fixed.

5.2. The Law of the Likelihood
Let θ1, θ2 denote two specific values of the parameters. Then the
strength of evidence for θ2 vs. θ1 is given by the likelihood ratio

LR(θ2, θ1) =
L(θ2; y(n))
L(θ1; y(n))

with values larger than 1 implying θ2 is better supported than θ1
and vice versa.

Strength of evidence can be seen to be a comparison of
the divergence between the true model and the two competing
hypotheses (Lele, 2004; Taper and Lele, 2004; Dennis et al., 2019;
Ponciano and Taper, 2019). The law of the likelihood corresponds
to using the Kullback-Leibler divergence but other measures,
such as the Hellinger divergence, Jeffrey’s divergence, etc. also
lead to appropriate quantification of the strength of evidence with
some important robustness properties (Lele, 2004; Markatou and
Sofikitou, 2019).

The Evidential paradigm is fundamentally different from the
Classical paradigm in that it concentrates not on the control
of error probabilities but on the measure of distance of the
proposed models (hypotheses) from the true model. See Taper
et al. (2019) for further discussion. For example, one fixes a cut-
off point K that indicates the strength of evidence (difference
in the divergences) that will be considered “strong evidence” a
priori. The choice of the value of K is of the experimenter. Given
such a cut-off point, if the LR is larger than this cut-off point,
we say that we have strong evidence for θ2. If it is < 1/K,
then we say that θ1 has strong evidence. Anything in between,
we say that we have weak evidence and neither hypothesis is
strongly supported. For any fixed cut-off value, one computes
probabilities of misleading evidence, weak evidence and study
their behavior as sample size changes. In contrast to the Classical
approach where probability of type I error remains fixed at the a
priori level α, probabilities of both weak and misleading evidence
converge to zero as the sample size increases. See the papers
by Royall (2000) and Dennis et al. (2019) for more detailed
discussion on this point. Evidential approach can be extended
to the case of evidence for parameter of interest in the presence
of nuisance parameters using the concept of profile likelihood
(Royall, 1997; Royall and Tsou, 2003).

Much of the discussion above is in the context of comparing
two specified parameter values. But it is easy to construct
evidential intervals (e.g., Royall, 1997; Bandyopadhyay et al.,
2016; Jerde et al., 2019) that provide a range of values that
are “well-supported” by the data. This is, in spirit, similar to
confidence intervals and credible intervals. Notice that these

intervals reflect the information in the data appropriately: Highly
informative data lead to shorter evidential intervals and vice versa
in the regression example of section 3.

5.3. Evidential Intervals
Let us consider a single parameter case. An evidence interval for
θ at level 1/K is given by:

{

θ :

L(θ; y(n))
L(θ̂; y(n))

> (1/K)

}

for a fixed value of K > 0. This can be generalized to evidential
sets for multi-parameter situation in a straight forward fashion.

How do we quantify uncertainty in the Evidential paradigm
when the inferential statements are made about the parameters
of the underlying process? The probabilities of misleading
evidence, weak evidence and strong evidence as defined by
Royall (1997) are pre-data quantities. He does not provide any
explicit suggestions as to how to report the uncertainty of the
strength of evidence once the data are obtained. Should one
discuss coverage probabilities of evidential intervals? As we have
argued throughout this paper, without such quantification of
uncertainty, the inferential statements are incomplete. Taper and
Lele (2011) attempt to answer this question using bootstrapping
to compute the post-data error probabilities. Taper et al.
(2019) use bootstrapping to compute the distribution over the
range of values strength of evidence could have taken had
the experiment been replicated. Such calculations seem to be
enormously informative and useful in practice. However, any
such calculation requires answering the same question that
Classical paradigm faced: which experiment do we replicate?
Hence, although Royall’s formulation quantifies the strength of
evidence that satisfies the likelihood principle (but see Lele,
2004), any computation of the uncertainty in the strength of
evidence seems to face the same philosophical problems Classical
paradigm faces. Do we gain anything by using the Evidential
approach? An affirmative answer is provided in Dennis et al.
(2019) in the context of model selection. Can we use prediction
to resolve this problem in general?

The evidential paradigm can also be used for prediction using
various versions of predictive likelihood (e.g., Bjornstad, 1990).
Let us look closely at one such predictive likelihood (Mathiasen,
1979) and our suggestion for its modification. Following Shen
et al. (2018), an intuitively appealing version of evidential
predictive density may be defined as follows:

5.3.1. Evidential Predictive Density

f
p
E (yn+1|y(n)) =

∫

f (yn+1; θ)L(θ; y(n))dθ
∫

L(θ; y(n))dθ

Where yn+1 is the potential value of the new observation. It is
necessary to assume that the integral in the denominator is finite.
This may not be the case if the parameter space is infinite.

Evidential predictive density, in this formulation, is a
weighted average of the data generating mechanism with weights
proportional to the evidence for various parameter values in the
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observed data. This predictive density, in form, is identical to the
predictive density one obtains with a uniform distribution as a
prior distribution. However, if the parameter space is not finite,
such a prior distribution is not mathematically valid as it does
not integrate to 1. Let us look at the evidential predictive density
a little more closely. First notice that the numerator is nothing but
the likelihood function where data are now augmented by yn+1.
Thus, the evidential predictive density can be written as:

f
p
E (yn+1|y(n)) =

∫

L(θ; y(n+1))dθ
∫

L(θ; y(n))dθ

Let θ̃ denote the value of θ that maximizes L(θ; y(n+1)) and I(θ̃)

denote its Hessian, matrix of second derivatives, evaluated at θ̃ .
Similarly, let θ̂ denote the value of θ that maximizes L(θ; y(n))
and I(θ̂) denote its Hessian evaluated at θ̂ . The difference in θ̃
and θ̂ is the effect of having a future observation equal to yn+1.
Now we will use the Laplace approximation described in Tierney
and Kadane (1986) to evaluate the evidential predictive density
approximately as:

f
p
E (yn+1|y(n))

.=
∣

∣

∣
I(θ̃)

∣

∣

∣

0.5 ∣

∣

∣
I(θ̂)

∣

∣

∣

−0.5 L(θ̃; y(n+1))

L(θ̂; y(n))

The evidential predictive density as defined above is not
parameterization invariant (Bjornstad, 1990). Because Evidential
predictive density and Bayesian predictive density are the same
when one can impose a uniform prior distribution, this result also
implies that Bayesian predictive density is not parameterization
invariant in general. From a scientific perspective, it is clear that
parameterization invariance is of fundamental importance (e.g.,
Bjornstad, 1990). See also Lele (2020) for practical consequences
of lack of invariance in wildlife management.

Suppose we consider the part of the above approximation
that is parameterization invariant as an estimate of the predictive
density, namely,

f
p
E (yn+1|y(n)) =

L(θ̃; y(n+1))

L(θ̂; y(n))

In the following, we will call this as the evidential predictive
density. Notice that the evidential predictive density is
proportional to the predictive likelihood defined by Mathiasen
(1979), namely L(θ̃; y(n+1)). Bjornstad (1990) suggests using
normalized version of the predictive likelihood, namely

f
p
E (yn+1|y(n)) = L(θ̃;y(n+1))

∫

L(θ̃∗;y∗
(n+1)

)dy∗n+1

for predictive density and

shows that it has good coverage properties. In our case, instead
of the integral in the denominator, we use L(θ̂; y(n)) as an
approximate normalizing constant.

Let us now look at our linear regression problem to see how
the evidential predictive density compares with the true density
of the new observation. Figure 2 illustrates the comparison
between evidential predictive density and the true density for a
new observation and for different sample sizes.

In the Supplementary Material, we have provided an R
code that can be used to reproduce such a figure for different

values of Xnew and other variations. It is clear from this
figure that evidential predictive density is a reasonable, but
not very accurate, approximation of the true density of the
new observation. The area under the approximate Evidential
predictive density is generally not equal to 1 and that may be
the reason for the discrepancy. But such standardization breaks
down the invariance property. The approximation, as expected,
improves with sample size. An extensive simulation study of
the performance of the Evidential predictive density involving
various distributions, dependent data etc. will be needed to
see if this approach is better than other approaches in terms
of prediction coverage or density approximation. One can,
however, study the properties theoretically. The likelihood for
the parameter is only interpretable in a comparative fashion
as a likelihood ratio. It will be interesting to see if the
Evidential predictive density ratios, that correspond to profile
predictive likelihood ratios, will approximate the true predictive
density ratios.

5.4. Important Properties of the Evidential
Predictive Density
1. In the following, we show that this estimator is a consistent

estimator of the true density f (yn+1|y(n); θT). This is an
essential property that has to be satisfied by all predictive
densities. The result follows as long as the MLEs θ̃ and θ̂ are
consistent estimators of θT , the true parameter value.

f
p
E (yn+1|y(n)) = L(θ̃; y(n+1))

L(θ̂; y(n))

= f (yn+1|y(n); θ̃)L(θ̃; y(n))
L(θ̂; y(n))

−→f(yn+1|y(n); θT)

as n −→ ∞. This is a “pointwise convergence in
probability” result. It would be useful to obtain a uniform
convergence result.

2. The evidential predictive density is parameterization
invariant. This follows by the parameterization invariance of
the likelihood function.

3. The evidential predictive density, as defined above, does not
require integration, numerical or otherwise.

4. The evidential predictive density is easy to use for dependent
data, such as the time series or spatial data commonly
occurring in ecology and other applied sciences.

5. The evidential predictive density uses neither the sampling
distribution nor the posterior distribution of the estimator,
thus avoids both the specification of the experiment that
is to be repeated under the Classical paradigm or choice
of the prior distribution that should be chosen under the
Bayesian paradigm. Evidential predictive density depends
only on specification of the data generating mechanism.

6. Dealing with random effects, missing data etc. is simply
a prediction problem and hence evidential predictive
density can be used for analyzing hierarchical models.
Thus, this approach is applicable to many ecologically
interesting problems.
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7. The asymptotic validity of the evidential predictive density
does not depend on the asymptotic sampling distribution
or asymptotic posterior distribution. It only depends on
the consistency of the MLE which is a much more relaxed
assumption than existence of the asymptotic distribution.

8. The evidential predictive density is conditionally
appropriate. It conditions on the appropriate ancillary
statistics automatically by using the likelihood function in its
entirety. Highly informative data lead to tighter prediction
intervals and vice versa automatically.

9. The main disadvantage of the evidential predictive density,
as defined above, is that it is not guaranteed to be a
probability density function. That is, it may not integrate
to 1 exactly when integrated over the range of Y . Given the
consistency result, this is only a small sample problem. Initial
simulations suggest that even for small samples, this may
not be a major problem. Similar problem arises for some
non-parametric density estimators based on orthogonal
polynomials (e.g., Prakasa Rao, 1983) without causing many
problems in practice. A simple solution is to normalize

the predictive likelihood using
∫

L(y|y(n); ˜θ)dy. This integral
exists if the range of Y is finite. Simulation results in
Bjornstad (1990) suggest that predictive likelihood has good
coverage properties for reasonable sample size.

10. It is not completely clear how to use general evidence
functions in lieu of the likelihood function in the above
formulation. If such an extension is possible, one may be able
to make such inferences robust against outliers.

6. CONCLUSIONS

We studied three different ways to quantify uncertainty in
inferential statements.We can summarize our findings as follows.

• Classical paradigm uncertainty quantification depends on
deciding which experiment to replicate. Unfortunately this
leads to problems related to the pre- vs. post-data uncertainty.
The Classical uncertainty quantification does not always reflect
what the data at hand says about the parameter or future
observations. It averages the uncertainty over all possible
realizations of the process and hence punishes those who
happen to have good data and awards those with bad data. This
is scientifically inappropriate.

• Bayesian paradigm eschews aleatory probability and uses
epistemic probability to quantify uncertainty. Bayesian
approach does not need to answer the question of which
experiment to replicate and reflects the information in the
data at hand without averaging over what other data might
have been, but were not, observed. But it requires specifying
a prior distribution. Specifying a prior distribution leads to
the problems of subjectivity, aside from the specification of
the data generating mechanism, and possibility of untestable
mis-specification. The optimality claims about the Bayesian
inference are somewhat vacuous because there is no general
recipe to find the prior distribution that leads to such
optimal decisions.

• The Evidential paradigm addresses the issue of conditioning
on the observed data appropriately. It does not require

hypothetical replications of the experiment to obtain
uncertainty quantification about the observables. Evidential
quantification of uncertainty is aleatory, and hence falsifiable
in practice, that depends only on the data generating
mechanism and the choice of the evidence function. One of
the reasonable objections to the classical paradigm is that
the idea of replication makes no sense when analyzing time
series or spatial-time series data. However, evidential support
intervals, error probabilities and evidential predictive density
are applicable in a straight forward fashion to dependent data,
hierarchical models and other more complex situations.

The Evidential paradigm, unlike the Classical and Bayesian
paradigm, has not been extensively field tested in wide range
of practical situations. Its operational feasibility is largely
unknown and needs to be explored. For some examples of its
applications, see Jerde et al. (2019) for an important ecological
application in the study of allometry and Taper et al. (2019) in
model selection for linear regression analysis. Ironically, these
applications point out that reporting the strength of evidence
for different models needs to be bolstered by quantification of
the reliability of the estimate of the strength of evidence. If this
were to be the case in other situations, it will inevitably lead
to the problem of addressing the question: which experiment
do we replicate? and the associated conditionality conundrum.
May be we have not escaped the shackles of the hypothetical
replication of experiments when it comes tomaking inferential
statements about parameters, a statistical construct. On the
other hand, evidential predictive approach seems to satisfy
most of the desiderata. Although promising, jury is still out
for the evidential paradigm.

In conclusion, we show that to quantify uncertainty in statistical
inference, one has to choose either a specification of the
sampling distribution (conditional or unconditional) or a prior
distribution on the parameters or an evidence function. As
scientists and statisticians, we must understand and reflect upon
the implications of each of these choices.
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