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Resource subsidies affect nutrient cycling, species interactions, and food webs in
ways that influence ecosystem structure and function, but their effects depend on the
history, magnitude, and recurrence frequency of the subsidies. In aquatic ecosystems,
plant detritus has been considered the predominant form of such subsidies; however,
while considered less abundant in many ecosystems, carrion represents subsidies
with relatively rapid turnover and highly concentrated nutrient and energy release
that can have strong and lasting effects on ecosystems. Carrion subsidies can be
both autochthonous or allochthonous, and come in the form of natural senescence
or disease-related non-consumptive mortality, phenology-based programed death
(e.g., salmon spawning and death), or stochastic and episodic events (e.g., mass
fish die-offs). All aquatic ecosystems have some level of non-consumptive mortality
that provides a background level of carcasses to aquatic ecosystems, while others
have a natural history of carrion resource subsidies (e.g., natural salmon-bearing
streams), and some have only recently been exposed to phenology-based carrion
subsidies (e.g., anthropogenic salmon introductions around the world). Many aquatic
ecosystems experience episodic subsidies in the form of unexpected mass mortalities
(e.g., eutrophication-, disease-, or climate-related mass die-offs) or have seasonally
dependent pulses, like that of marine or lake snow in the form of zooplankton carcasses.
The responses of ecosystems to these different histories and frequencies of carrion
subsidies have often been independently investigated, with little effort to compare
and bridge research boundaries in the broader context of resource subsidies. In this
review, we provide a synthesis of how pulsed carrion nutrient and energy subsidies
have widespread and lasting impacts on many aquatic ecosystems. We do this with
a synthesis of literature from freshwater and marine ecosystems along three themes
of how carrion is produced and decomposes: autochthonous and allochthonous
necromass; phenology-based mortality; and stochastic and episodic mass mortality
subsidies. Studies of charismatic megafauna carrion (e.g., whales) have described
significant impacts in deep ocean systems, but much less is understood for other groups
of animals. Quantifying the energy, nutrient, and foodweb effects of carrion is needed
for more species and among habitats to more fully understand how ubiquitous forms of
necromass contribute to aquatic ecosystem structure and function.

Keywords: decomposition, microbial, ecosystem metabolism, community assembly, necrobiome, carrion, mass
mortality, forensics
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INTRODUCTION TO NECROMASS
RESOURCE SUBSIDIES IN AQUATIC
ECOSYSTEMS

Background
Decaying organic matter, or necromass, comes in the form
of both plant and animal biomass, recently differentiated as
autotrophically (e.g., leaf litter) and heterotrophically (e.g.,
carrion) derived biomass, respectively, and is recycled back into
ecosystems by the necrobiome community (Benbow et al., 2019).
While both forms of necromass are considered important to
ecosystems, plant detritus processing has historically dominated
research as the main energy pathway in aquatic ecosystems
(Vannote et al., 1980; Webster and Benfield, 1986; Getz,
2011; Boyero et al., 2016), especially for lotic systems lacking
anadromous fish populations (Moore et al., 2004; Gessner et al.,
2010; Benbow et al., 2019). Until recently (McDowell et al.,
2017; Subalusky et al., 2017; DuBose et al., 2019; Wenger
et al., 2019), aquatic studies of animal necromass (carrion) have
largely focused on fish carcass decomposition (Richey et al.,
1975; Garman, 1992; Schindler, 1992), or lake/marine snow
represented by zooplankton carcasses in the water column of
lentic ecosystems (Alldredge and Silver, 1988; Grossart and
Simon, 1998; Giering et al., 2014). Some research has addressed
the long-term decomposition of whale (and other vertebrate) falls
in the oceanic abyss (Allison et al., 1991; Bennett et al., 1994;
Smith and Baco, 2003; Kemp et al., 2006; Higgs et al., 2014). Much
of past research on carrion in aquatic ecosystems has focused on
species that are large in size, have anthropogenic importance (e.g.,
salmon runs), or elicit public intrigue (e.g., whale falls); however,
a large portion of aquatic ecosystem necromass comes in the form
of smaller organisms (e.g., phytoplankton, zooplankton, and
invertebrates) with fast generation times and high turnover rates
that substantially contribute to ecosystem production (Waters,
1977; Benke, 1998; Huryn and Wallace, 2000; Landry and Calbet,
2004; Patrick et al., 2019). While we acknowledge the importance
of phototrophically derived necromass in aquatic ecosystems
and the associated trophic relationships (Little and Altermatt,
2018), we direct interested readers to the many extensive
reviews and empirical research of such resources ranging from
phytoplankton, seaweed, and macrophytes to large wood debris
(Lindeman, 1942; Mann, 1969; Wallace et al., 1999; Moore et al.,
2004; Entrekin et al., 2009; Tank et al., 2010).

For this review, we focus on heterotrophically derived
necromass (from bacteria to whales) with emphasis on animal
carrion, and also acknowledge that dung, frass, and other forms
of animal tissue (e.g., gametes) contribute to the larger resource
pool (Subalusky et al., 2015; Dutton et al., 2018; Subalusky and
Post, 2018; Benbow et al., 2019). For an informative argument
for the importance of egested heterotrophically derived forms of
particulate organic matter to energy budgets of pelagic zones of
lake ecosystems we direct readers to Wetzel (1995).

In general, the importance of carrion has been qualitatively
considered relatively greater in large lakes and oceans (Alldredge
and Silver, 1988; Smith and Baco, 2003; Tang et al., 2014)
compared to shallow wetlands and marshes (Brinson et al., 1981;

Duggins et al., 1989). However, Subalusky and Post (2018)
discuss how recipient ecosystem qualities (e.g., productivity
or trophic structure) are important for understanding cross-
system effects of carrion. In watersheds, carrion has been
largely studied as pulsed resource subsidies like fish die-offs
(Parmenter and Lamarra, 1991) or as part of programed
phenologically driven semelparous death like salmon life cycles
(Moore et al., 2004; Benbow et al., 2019). Regardless of origin,
most organic matter ultimately decomposes and is recycled in
ecosystems (Wetzel, 1995; Moore et al., 2004; Benbow et al.,
2019), providing an intimate connection between ecosystem
structure and function through interacting necrobiome species
responsible for the breakdown (physical destruction into smaller
and smaller units) and decomposition (biochemical alteration
and conversion) of necromass (Lindeman, 1942; Putman, 1983).
This process of decomposition, or turnover rate, is also known
to be much faster for carrion compared to plant litter biomass,
and is more important to ecosystems than once considered
(Barton et al., 2019).

Precedent From Terrestrial Ecosystems
Most studies of carrion ecology have been conducted in terrestrial
ecosystems. Here we provide examples from terrestrial habitats
to show the potential of carrion to ecosystems, which can
potentially be transferred to aquatic conditions. In terrestrial
systems, carrion has often been thought to contribute marginally
to ecosystem energetics (Swift et al., 1979; Barton et al.,
2019). However, Barton et al. (2019) argue that because of
the high turnover rate of carrion, carcasses have historically
gone understudied since they are quickly recycled back into the
ecosystem and are hidden from observation; thus, they have
been presumed to have a negligible contribution to energy and
nutrient flow in ecosystems. This view is plausible because it
has been historically difficult to quantify natural rates of carrion
decomposition in ecosystems, and so the relative production
of energy from carrion compared to the production from an
equivalent amount of plant necromass may be disproportionate
and underestimated (Barton et al., 2019). As one example (see
review by Scott, 1998), burying beetles have been shown to
remove and conceal 91% of exposed small (21–210 g) mammal
carcasses by burial within an average of 1.4 days (Trumbo,
1992). In the same study, 22.7% of the exposed carcasses
were eaten or removed by vertebrate scavengers. This example
demonstrates how quickly small carrion can be removed from
scientists’ observation.

Decomposing carcasses contribute hot spots of nutrient
release (Carter et al., 2007; Benbow et al., 2019) that in
terrestrial systems can have direct and indirect long-term (e.g.,
months to years) effects on soil conditions (Bornemissza, 1957;
Strickland and Wickings, 2015), plant communities (Towne,
2000; Wardle et al., 2004), and both invertebrate and vertebrate
scavengers (Bump et al., 2009; Beasley et al., 2012; Barton
et al., 2013; Benbow et al., 2015). The spatial extent of such
effects in ecosystems has not been well documented, but could
be potentially important over decades (Bump et al., 2009).
As an example of this potential, Hawlena et al. (2012) found
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that fear of spider predation by living grasshoppers resulted
in carcasses with significantly higher carbon to nitrogen ratios
than non-stressed specimens, and the resulting change in carcass
quality, even when the biomass was about 140 times lower
than the plant litter biomass, affected below ground community
function and subsequent leaf litter decomposition on carcass
sites in an old prairie ecosystem. Thus, even small amounts of
carrion biomass have significant effects on measurable ecosystem
processes, such as leaf litter decomposition and soil function,
suggesting that if scaled by population density, mortality rates,
and turnover in a landscape carcasses may significantly impact
ecosystem functions in ways yet to be examined. If scaled in
this manner, carrion will likely be shown to have collective
ecosystem level effects like those recognized for ungulate dung
and urine deposition in prairies (Norman and Green, 1958;
Seastedt et al., 1991) or hippopotamus dung for some African
rivers (Subalusky et al., 2015).

The Need to Scale From Carcass to
Collective Effects
The hypothesis that individual carcass effects can have large
spatial and long temporal scale effects has been supported by
work in Isle Royale National Park, Michigan (Bump et al., 2009).
In this 50-year study of the effects of over 3,600 wolf-killed moose
carcasses on landscape heterogeneity and ecosystem function,
Bump et al. (2009) reported that soil nutrients (e.g., 100–600%
higher inorganic nitrogen at carcass compared to control sites),
microbial biomass, microbial community composition, and
surrounding plant leaf nitrogen (e.g., leaf nitrogen was 25–47%
greater at carcass sites) was significantly elevated for at least
2–3 years at carcass deposition locations. In case studies of whale
falls, Smith and Baco (2003) estimate that the sediment beneath
whale carcasses receive a pulse of organic matter that is equal to
almost 2000 years of background material over decomposition.
Furthermore, in observations on large elasmobranch (i.e., whale
shark and mobulid rays) carcass falls, Higgs et al. (2014)
estimated that such carcasses represent on average about 4% of
the normal particulate organic carbon flux to the seafloor in
the bounding area of their occurrence. The authors suggest that
the deep-sea scavenger communities benefit most from these
significant energetic subsidies.

The same considerations for the underappreciated role of
carrion in terrestrial ecosystems or the deep sea abyss is true
for other aquatic ecosystems, where studies have documented
localized carcass effects in salmon-bearing streams, whale falls,
and other fauna of the deep ocean benthos (Smith and Baco, 2003;
Kemp et al., 2006; Anderson and Bell, 2014; Higgs et al., 2014),
including prehistoric carrion (Reisdorf et al., 2012; Danise et al.,
2014); fish and waterfowl carcasses of salt marshes (Parmenter
and Lamarra, 1991); and additional carcass effects likely in most
aquatic habitats.

Indeed, vertebrate carrion placed in deep (300–3000 m)
marine habitats initiates a succession of both invertebrate and
vertebrate scavengers that take advantage of this punctuated,
heterotrophically derived subsidy (Kemp et al., 2006; Anderson
and Bell, 2016). What is less understood is how individual

carcasses scale with mortality at population and community
levels of biological organization. New studies are needed to
better use population demographics and mortality estimates
for calculating ecosystem level carrion production from species
that do not have phenology-based or episodic mass mortalities.
In Figure 1 of Barton et al. (2019) aquatic carrion biomass
ranged from 102 kg/km2 for copepods up to 107 kg/km2 for
bivalves, with different species of fish ranging from about 103

to 106 kg/km2. Among the examples they provided, terrestrial
vertebrate biomass was at least two orders of magnitude lower
than aquatic species at 103 kg/km2. While this example is not
comprehensive, it does suggest that the effect of heterotrophically
derived necromass in ecosystems is likely much greater than
historically considered. To better incorporate the contributions
of carrion in aquatic ecosystem energy and nutrient budgets,
additional studies are needed that directly quantify carcass
necromass and turnover across biomes. Such broadly available
data on non-consumptive heterotrophically derived necromass
in ecosystems would advance theory in consumer-resource and
food web ecology (Getz, 2011).

In this paper we support the arguments of Subalusky
and Post (2018) and Barton et al. (2019) that carrion
resources are important subsidies in most ecosystems. We
do this with a synthesis of literature from freshwater and
marine ecosystems along three themes of how carrion is
produced and decomposes through the following: autochthonous
and allochthonous necromass decomposition; phenology-based
mortality; and stochastic and episodic mass mortality subsidies.
We provide examples and case studies that collectively show
that carrion, along a size continuum that spans multiple
orders of magnitude, likely plays an underappreciated role in
ecosystem energetics and nutrient dynamics. Furthermore, we
posit that death links living resource pools of multiple and
interacting populations of species through pathways of non-
consumptive mortality that result in a dead resource pool
represented by carcasses that are quickly decomposed and
recycled back into the living resource pool through detritivores
and omnivores (Figure 1). In aquatic systems, such carrion
represents autochthonous or allochthonous energy and nutrient
subsidies that affect foodwebs and ecosystem function in complex
and understudied ways.

AUTOCHTHONOUS AND
ALLOCHTHONOUS CARRION
NECROMASS

Similar to phototrophically derived detritus, carrion necromass
in aquatic ecosystems can come in the form of autochthonous and
allochthonous sources. Carrion necromass of aquatic ecosystems
can be generated from within or outside of a system in the
form of autochthonous and allochthonous resources, respectively
(Figure 1). As part of the autochthonous resource pool, carcasses
resulting from natural senescence, physiological intolerance, or
disease-related death of aquatic heterotrophs enter the detrital
pool based on rates of mortality, disease, partial predation, and
generation times related to natural senescence. These resources
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FIGURE 1 | Conceptual diagram linking living resource pools to dead resource pools through the death and decomposition of heterotrophically derived biomass in
the form of carrion subsidies. Each species is part of a living resource pool that encompasses growth, development, and reproduction; however, death of a
proportion of the living individuals leads to the scavenging or decomposition of the once living biomass (or necromass) that ultimately becomes incorporated into the
living resource pool through food web interactions. Death can come in the form of consumptive mortality (i.e., cannibalism or predation) where the nutrients and
energy of dead organisms goes back to the living resource pool. Death can also come in the form of non-consumptive mortality, as part of natural senescence of the
life cycle that can be through phenology-based (e.g., salmon life cycle) or stochastic/episodic (e.g., mass mortality of bivalve populations) processes. The resulting
decomposition of these carrion subsidies can be autochthonous or allochthonous, depending on the life history and range of the once living species, affecting
energy and nutrient flow within and among ecosystems.

represent necromass from all organisms that live in aquatic
habitats, from bacteria to blue whales (Minshall et al., 1991;
Fenoglio et al., 2005; Subalusky and Post, 2018).

For any specific taxon, the degree of natural senescence,
physiological intolerance (e.g., temperature, physical and
chemical thresholds), or disease-related non-consumptive death
contribute to the within-system detrital pool and associated
energy and nutrient dynamics. For instance, non-consumptive
mortality is a natural part of the population dynamics of any
species, but the overall magnitude is rarely quantified, except
for studies related to aquaculture production of commercially
important taxa (Rowe et al., 1989; Karunasagar et al., 1994;
Chen et al., 1995; Lorenzen, 1996). Furthermore, the mere
presence of predators is known to have negative effects on life
history traits and fitness of many species (Preisser et al., 2005).
Since many organisms are prey for a variety of predators, this
collective effect of non-consumptive predation threats can lead to
facilitated senescence within many animal populations, although
this form of non-consumptive mortality has not been broadly
studied. In general, non-consumptive predator effects have been
documented to be as strong or stronger than direct predation
effects for many species, and the non-consumptive predator

presence effect is generally stronger in aquatic than terrestrial
ecosystems (Preisser et al., 2005).

Non-consumptive effects can come in the form of increased
costs of defensive strategies that include lower mating success,
increased vulnerability to other predators, energetic investments
related to finding resources or defensive structures (e.g.,
morphology or biochemical), or through reduced survivorship
(Kotler et al., 1993; Preisser et al., 2005; Sheriff et al., 2009).
For instance, McCauley et al. (2011) reported significant
non-consumptive predator induced mortality and failed
metamorphosis to adults in dragonfly larvae exposed to
predatory fish and other dragonfly predators. Depending on
predator density, survivorship was 1.2–4.3 higher under no-
predator mesocosm conditions. The mechanisms responsible for
such non-consumptive predator induced mortality are not clear,
but have been speculated to be related to increased susceptibility
to disease and energetic costs of foraging related to induced
stress (Ramirez and Snyder, 2009; Hawlena and Schmitz, 2010).
This example demonstrates that just the presence of a predator
leads to greater mortality, supporting the hypothesis that
there are degrees of non-consumptive mortality that occur in
natural environments; however, the mechanisms and sources of
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non-consumptive mortality are difficult to identity and quantify.
Such non-consumptive mortality may result in increased
heterotrophically derived necromass contributions to ecosystem
organic matter budgets through decomposition (Figure 1).

The non-consumptive component of population mortality
has not been studied in any detail for most aquatic organisms,
and is often presumed negligible in ecosystem level budgets
or calculations of secondary production where predator
consumption rates have often been assumed to lead to 100%
prey mortality (Hynes, 1970; Waters, 1977; Wetzel, 1995).
This absolute consumption rate is not often the case in natural
systems, with many individuals of a population avoiding
predation and succumbing to other means (e.g., disease or
starvation) of mortality (Wetzel, 1995). Thus, the availability of
carcasses to aquatic ecosystems is likely larger than previously
assumed, especially if the effects of individual carcasses are
scaled by their collective density and rates of availability in the
environment as discussed by Barton et al. (2019).

The effect of individual carcasses on ecosystem structure
and function has been shown to be variable (Minshall et al.,
1991; Fenoglio et al., 2005; Barton et al., 2019; Benbow et al.,
2019); however, individual carcass effects have not been scaled
to account for population level mortality over space and time in
a way that would reveal the collective pool of heterotrophically
derived necromass for ecosystems based on natural, non-
consumptive rates of mortality (Barton et al., 2019). A significant
challenge to addressing this need lies with differentiating natural
senescence, starvation, climate, or disease-related mortality from
predation or consumption rates for a specific population.
Quantifying non-consumptive mortality is inherently difficult,
but could potentially be done by evaluating life tables (Deevey,
1947) of organisms with and without predators, much like that
for humans (Haldane, 1953). Additional studies are needed to
devise ways to account for non-consumptive mortality, much
like that of recent examples that quantified seal (Quaggiotto
et al., 2018) and wildebeest (Subalusky et al., 2017) mortality
on aquatic ecosystems. However, there have been surprisingly
few studies on non-consumptive mortality of micro- and
macroinvertebrates; those taxa that can often have fast generation
times and high mortality.

Potential ways to quantify non-consumptive mortality of
macroinvertebrates can come from life history and secondary
production studies in the absence of predators in natural
ecosystems or from more artificial conditions, such as those
conducted for ecotoxicology studies and aquaculture. Some
estimates of macroinvertebrate secondary production are
available from fish-bearing and fishless lakes (Arnott and Vanni,
1993; Northington et al., 2010), but the body size distributions
are not often reported to allow for estimates of non-consumptive
mortality and how that may mediate secondary production.
It is often assumed in studies of secondary production that
population loss can all be attributed to predation, but this is likely
not the case. Data from control groups (e.g., no treatment with
a contaminant) used in ecotoxicology studies may also provide
data on non-consumptive mortality, but often these experiments
are done under artificial conditions associated with laboratory or
field mesocosms, where densities and abiotic conditions may not

represent natural conditions (Rand et al., 1995; Boudou, 2018).
These artificial conditions are similar to aquaculture systems and
associated research (Huet et al., 1986). The degree to which non-
consumptive mortality in aquaculture conditions differs from
natural ecosystems is not well understood. Another potential
mechanism for determining non-consumptive mortality in
aquatic populations, and employed in fisheries management,
is to derive mortality–weight relationships in populations
in different natural ecosystems compared to conditions
with eliminated or significantly reduced predation pressure
(Lorenzen, 1996, 2000). For instance, Lorenzen (1996) reported
allometric scaling of fish mortality to non-predatory mortality
by modeling mortality–weight relationships of fish populations
from natural ecosystems compared to ponds/cages and tanks
with no predation pressure. In these conditions, mortality
is attributed to diseases, water quality problems, or winter
starvation (Huet et al., 1986). The derived weight exponents
of mortality were consistently negative for populations in
ponds/cages/tanks compared to natural ecosystems, suggesting
non-predatory mortality is more weight (i.e., surrogate for age)
dependent than is predatory mortality.

Additional information on carrion impacts on aquatic
ecosystems can be gathered from mass mortality studies of
autochthonous heterotrophs (see the section “Stochastic and
Episodic Mass Mortality and Decomposition”) and those related
to programed phenology-based death of allochthonous taxa. As
part of allochthonous resources, carcasses ultimately come from
outside of the system and may include anadromous (e.g., salmon,
sturgeon) or catadromous (e.g., eels) vertebrates, crustaceans,
and molluscs (e.g., amphidromous shrimp and snails) that spend
a portion of their life cycle growing and developing in other
habitats or ecosystems (e.g., ocean or mangroves), but complete
their life cycle in the freshwater environment (McDowall,
1988; Cederholm et al., 1989; Thuesen et al., 2011; Weaver
et al., 2018). These resource subsidies can be made available
through natural senescence, physiological intolerance, starvation,
or disease-related, non-consumptive death (e.g., amphidromous
herring) or through programed phenology-based mortality
(e.g., post-spawning salmon). The effects of allochthonous
sources of necromass have been studied in considerable detail,
especially for salmon, both within its native range (Cederholm
et al., 1989; Schindler, 1992; Chaloner et al., 2002; Janetski
et al., 2009), but also where it has been introduced to naïve
watersheds (Richey et al., 1975; Schuldt and Hershey, 1995;
O’Toole et al., 2006).

Parasitized terrestrial insects can also represent allochthonous
inputs in aquatic systems, entering streams from the riparian
canopy due to modified behavior associated with their
parasites (Schmidt-Rhaesa, 2001; Thomas et al., 2002).
In one well-documented example, the horsehair worm
(Nematomorpha) infects the camel cricket (Orthoptera:
Rhaphidophoroidae) in Japanese watersheds. Once infected,
the riparian crickets either slowly enter or jump into the
streams, upon which the parasite leaves the body immediately
or soon after the cricket is dead. These terrestrial subsidies
have been shown to lower predation of resident aquatic
invertebrates (Sato et al., 2008, 2011a,b, 2012). While not
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as well studied, other parasite-infected terrestrial insects
(e.g., praying mantis) can also enter water with immediate
horsehair release (Schmidt-Rhaesa, 2001). These examples
suggest that parasitized insect subsidies enter the detrital
pool upon death if not consumed, and may also offer a
predatory release of other species that could potentially lead
to additional non-consumptive mortality of those species in
stream ecosystems.

PHENOLOGY-BASED MORTALITY AND
DECOMPOSITION

A variety of aquatic organisms use phenology-based cues,
such as temperature and day length, to control important
behaviors including migration, hatching, and spawning. While
these behaviors play critical roles in the fitness of the organisms
themselves, they also affect other taxa throughout the food
web. For example, the movement of anadromous fish can
transport large amounts of nutrients and biomass upstream
through their spawning activities and phenology-based mortality
(Cederholm et al., 1999; Schindler et al., 2003; Wipfli et al., 2003),
which are then used by other consumers (Bilby et al., 1996;
Chaloner et al., 2002; Baxter et al., 2005; Hocking and Reynolds,
2011). Although mass mortality events of semelparous fish (e.g.,
salmon) following spawning are a dramatic introduction of
necromass into freshwater systems, the release of eggs (which
commonly exhibit high rates of mortality) and excrement by both
iteroparous and semelparous fish comprise an important, though
less studied, component of the available necromass, in some cases
exceeding the nutrient inputs from carcasses (Tiegs et al., 2011;
Childress and McIntyre, 2015). These inputs represent a major
linkage of marine and freshwater systems as many anadromous
fish derive most of their mass (>95%) from marine-based sources
before migrating into freshwater systems via migration and
subsequent semelparous death (Mathisen et al., 1988; Cederholm
et al., 1999; Lamberti et al., 2010).

In contrast to stochastic mass mortality events, phenology-
based events provide a regular input of nutrients into aquatic
systems, with many organisms altering their life histories to
coincide with these predictable influxes of resources (Hocking
and Reynolds, 2011; Lisi and Schindler, 2011; Deacy et al.,
2017). Predators, such as mink (Mustela vison) or brown bears
(Ursus arctos), alter their behavior and timing of reproduction to
coincide with the availability of salmon runs (Ben-David, 1997).
These scavengers use salmon as a major nutritional source, in
some locations obtaining >90% of their carbon and nitrogen
from these fish (Willson and Halupka, 1995; Hilderbrand et al.,
1996, 1999). The landscape can also affect how salmon carcass
resource subsidies impact terrestrial and estuarine ecosystems,
with differences reported in how wolves and bears transport
carcasses to riparian forests and meadows depending on stream
size and location within the watershed (Harding et al., 2019).
A range of other mammals, birds, and insects use the carcasses of
anadromous fish as resources that can affect the decomposition
dynamics in streams (Cederholm et al., 1989; Zhang et al.,
2003) and alter their behavior to better use and consume these

resources (Moore and Schindler, 2010). In addition to direct
consumption by eukaryotes, carcasses in aquatic systems can have
strong interactions with microbial communities (Wipfli et al.,
1998; Pechal and Benbow, 2016; Pechal et al., 2019). Although
the impact of decomposing carcasses is highly dependent on
biotic and abiotic factors (e.g., stream physical structure, riparian
conditions, organisms present, etc.) the input of nutrients from
carcasses stimulates microbial activity and primary production
(Mitchell and Lamberti, 2005), leading to additional effects on
higher trophic levels (Wipfli et al., 1998; Cederholm et al., 1999;
Gende et al., 2002).

Salmon carcasses can also act as a resource subsidy to estuaries
of salmon-bearing streams (Cederholm et al., 1999; Gende et al.,
2004; Cak et al., 2008), with linkages to macroalgae through
copepods (Fujiwara and Highsmith, 1997), marine invertebrates
including echinoderms and crustaceans (Reimchen, 1994), and
vertebrate taxa, such as coyotes and wolves (Gende et al., 2004).
The availability of these resources to estuary systems can be
mediated by complex interactions among trophic groups and
habitat conditions. While the feeding activity of gray wolves
(Canis lupus) and bears (Ursus spp.) can transfer carcasses from
stream reaches to riparian habitats (Gende et al., 2004), where
they become available to other scavengers, how many and which
species of salmon they transfer depends on both species-specific
interactions and landscape structure (e.g., riparian habitat and
length of spawning reach) (Harding et al., 2019). Besides their
well-documented effects during spawning seasons, inputs of
necromass can have residual effects across seasons, with spawning
salmon biomass in the autumn predictive of bird density and
diversity in estuaries the following summer (Field and Reynolds,
2011). Findings such as these illustrate the important and
complex roles necromass and phenology-based mortality play in
aquatic ecosystems.

Although few aquatic insects have evolved to feed directly
on carrion, the influx of nutrients from salmon carcasses, and
resulting increases in primary production, can increase aquatic
insect density by 8–25 times in artificial and natural streams
where carcasses are present (Wipfli et al., 1998; Fenoglio et al.,
2014). Isotopic studies have shown that salmon-derived carbon
and nitrogen is incorporated into both primary producers and
invertebrate feeding groups that consume microbes (e.g., filterers
and grazers) (Bilby et al., 1996; Johnston et al., 1997; Guyette
et al., 2014). While salmon remains the best studied example of
phenology-based mortality (Schindler et al., 2003), they are by
no means the only group of aquatic animals with programed
mortality that leads to cascading effects in aquatic ecosystems.
In addition to bony fish and invertebrates (see below), carcasses
of other aquatic organisms, such as the sea lamprey (Petromyzon
marinus), represent important nutrient sources, connect marine
and freshwater systems, and can stimulate primary productivity
(Weaver et al., 2018). While catadromous organisms which
migrate to the ocean to spawn, [e.g., eels (Anguilla spp.)], also
link marine and freshwater systems; how their behavior impacts
marine ecosystems remains largely unknown. However, their
spawning and subsequent death likely introduces considerable
nutrients into otherwise oligotrophic environments where
spawning occurs (e.g., Sargasso Sea).
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STOCHASTIC AND EPISODIC MASS
MORTALITY AND DECOMPOSITION

Vertebrate Carrion Mass Mortalities
One of the most striking examples of vertebrate mortality altering
aquatic ecosystem comes in the form of episodic mass death,
and the resulting carcasses that undergo decomposition, due
to stochastic factors not easily predicted in nature (Fey et al.,
2015). Mass fish kills are one of the most visible forms of
this kind of mass mortality, where tens of thousands of fish
may die within a short (e.g., hours to days) period of time,
causing mass decomposition in the water and on banks of aquatic
ecosystems (Ochumba, 1990; Thronson and Quigg, 2008). Fey
et al. (2015) reported fish mass mortality events made up about
56% of all mass mortality events reported in scientific literature
since the 1940s (N = 727). Episodic mass mortalities can be
the result of stochastic changes in physical–chemical conditions
(Cooper, 1993), toxic algal blooms (Hallegraeff, 1993), disease
(Grizzle and Brunner, 2003), pollutants (Cooper, 1993), and
other unknown factors. In many instances these conditions are
the result of eutrophication over many years (Vollenweider,
1970; Harper, 1992; Nixon, 1995), or through punctuated
high inputs of nutrients, like in the case of hippopotamus
urine and feces (Subalusky et al., 2015) or mass drownings of
wildebeest (Subalusky et al., 2017; Dutton et al., 2018). There
are also other forms of vertebrate mass mortality that occur
in aquatic ecosystems (Fey et al., 2015). For instance, annual
mass drownings of wildebeest (Subalusky et al., 2017), aquatic
reptiles (Rachowicz et al., 2006) and mammals that succumb
to disease (Osterhaus et al., 1997; Kennedy, 1998) have both
short- and long-term effects on ecosystem function. Fey et al.
(2015) also provide an excellent quantitative assessment of
mass mortality events worldwide, showing an increase in their
occurrence for mammals, birds, amphibians, reptiles, fish, and
marine invertebrates since 1940.

Invertebrate Carrion Mass Mortalities
Much like cicada emergences that have been quantified
to have significant impacts on terrestrial food webs and
ecosystems (Yang, 2004), mayflies (Ephemeroptera), midges
(Gratton et al., 2008), salmonflies (Plecoptera) (Walters et al.,
2018; Wesner et al., 2019), and other aquatic insects (Baxter
et al., 2005) emerge in masses as adults to mate and die,
with their carcasses falling back to the aquatic habitat or
into the adjacent riparian zones and inland landscapes (Gergs
et al., 2014). When these mass emergences cross habitat or
ecosystem boundaries (e.g., from a stream or lake onto the
shoreline), such cross-ecosystem resource subsidies (Polis et al.,
1997) can represent significant nutrient and energy pulses
(Polis, 1994; Polis and Hurd, 1996). For example, Wesner
et al. (2019) reported that for several stream sites with
massive emergences of salmonflies (Pteronarcys californica),
the resulting insect carrion deposition on the adjacent shore
over only a single week was equal to or greater than annual
atmospheric nitrogen and phosphorus deposition and the
annual secondary production of all terrestrial insects from

that watershed. Such contributions to the detrital pools of
adjacent ecosystems have not been well studied, especially
compared to the living emerged insects that are consumed by
predators. Indeed, more studies are needed to better quantify the
contributions of necromass originating from aquatic ecosystems
and acting as resource subsidies to the decomposition budgets of
adjacent ecosystems.

Mass mortalities of aquatic invertebrates, beyond what
was discussed above with parasite-mediated terrestrial insect
drownings, also affect in-stream and riparian communities and
ecosystem properties. While not as well documented as fish
subsidies, invertebrate mass mortalities have significant and
sometimes long lasting effects on aquatic ecosystems since
many of the invertebrate species, like mussels, have important
functional roles (Vaughn, 2018), but also can contribute mass
subsidies of highly recalcitrant structures, such as shells of
molluscs (McDowell et al., 2017; DuBose et al., 2019). Beyond
the pulsed effects of nutrient release related to rapid soft tissue
decomposition of bivalves, Wenger et al. (2019) estimated that
mussel shells from mortality events may have once provided
about 1% of total phosphorus load in streams and rivers of the
southeastern United States.

McDowell and Sausa (2019) reviewed the effects of mass
mortality effects of the invasive bivalves Corbicula sp., the zebra
mussel Dreissena polymorpha, the golden mussel Limnoperna
fortunei, and the Chinese pond mussel Sinanodonta woodiana.
Low and high water temperatures and water levels were the
leading causes of mass mortality of both invasive and native
species. There were short-term (i.e., over days) nutrient pulse
releases associated with en masse soft tissue decomposition and
longer-term microhabitat effects in the form of remaining shells
both as part of the benthic substrata but also on stream and river
banks. For instance, a mass mortality event of about 100 million
C. fluminea contributed an estimated 751 kg of carbon, 180 kg of
nitrogen, and 45 kg of phosphorus to a stream over the course of
several days (McDowell et al., 2017). The dead and dying bivalve
carcasses may also serve as food resources for local scavengers
like fish, invertebrates, and birds (Mouthon and Daufresne, 2006;
McDowell and Sausa, 2019). Mass mortality of C. fluminea left on
stream banks attract a wide diversity of terrestrial invertebrates
(Novais et al., 2015) and below ground nutrients (Novais et al.,
2017), suggesting that bivalves washed onto banks during floods
can become pulsed resources subsidies for adjacent habitats.

Mass mortality events also occur throughout the world in
marine and estuarine habitats, and not surprisingly changing
climate patterns and warming temperatures are increasing their
magnitude and frequency (Coma et al., 2009). While not always
independent of increases in water temperature, diseases also
contribute to marine invertebrate mass mortality (Harvell et al.,
1999). Not matter what the cause, marine invertebrate mass
mortality has significant effects on coral reef and intertidal
ecosystems by affecting both hard and soft corals, benthic
burrowers and filterers with cascading effects on upper trophic
level consumers (Knowlton, 2004). These massive death events
are often extensive. For instance, in 2016, one of the three pan-
tropical mass coral bleaching events occurred in the Great Barrier
Reef of Australia as a result of a significant marine heat wave,
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where 90% of the surveyed reefs suffered mortality (Hughes
et al., 2017). The ecosystem consequences of this event included
significant community restructuring, functional changes, and
widespread declines in consumers resulting directly from the
water temperature increases, but also in relation to coral loss
(Stuart-Smith et al., 2018). Increased frequency and magnitudes
of such global weather events will have widespread ecological
impacts on all ecosystems, with mass mortalities contributing to
many of the most negative effects of a changing climate.

SUMMARY

Death and decomposition occur in all ecosystems, but the
extent and magnitude of the resulting necromass varies in
space and time. Some forms of necromass come from within
the system, as part of the life cycles and life histories of the
resident organisms (e.g., planktonic snow in a lake or ocean
or insects in a stream) or during mass deaths resulting from
changing and intolerable habitat conditions (e.g., fish kills
and coral reef bleaching). Other forms of necromass subsidies
come from outside of the system, sometimes as migratory
fish (e.g., salmon) or parasitized terrestrial insects that have
been behaviorally hijacked to enter aquatic habitats where
they drown. In all cases, the once living biomass becomes
an often significant and functionally important component of
the detrital pool. This component of heterotrophically derived
necromass has historically been difficult to quantify due to the
rapid turnover of such labile resources, and has arguably been
overlooked or underappreciated in many ecosystem level energy
and nutrient budgets. Recent work has provided conceptual
models and methods for improving the ability to identify,
quantify, and better study how carrion resource subsidies
affect aquatic ecosystems, ranging from small, headwater
streams to saltmarshes and mangroves, to the deep oceanic
abyss and enormous stretches of coastline habitats around
the world. Furthermore, while studies of megafauna carrion
(e.g., whales and whale sharks) have demonstrated significant
impacts to deep ocean habitats, much less is understood for

other groups of animals. Quantifying the energy, nutrient,
and foodweb effects of autochthonous and allochthonous
carrion resulting from non-consumptive morality, phenology-
based mortality and stochastic and episodic mortality events
will allow broader assessments of all necromass contributions
in aquatic ecosystems. With advances in geographical (e.g.,
drones and satellite imagery), genomic (e.g., next-generation
sequencing), and other forms of technology (e.g., cell phone
cameras and associated software) it will become increasingly
feasible to quantify baseline levels of carrion to more fully
evaluate how this resource subsidy affects ecosystem energy and
nutrient dynamics.
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