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Echinoderm larvae have served as a fundamental system for understanding development

and life history evolution over much of the last century. In the last few decades, our

understanding of echinoderm larvae has expanded to the microbiota that they associate

with. These symbionts and the communities that they form in relation to echinoderm larval

host are the focus of this review. Our synthesis of the literature suggests three primary

themes. First, larval echinoderms associate with “subcuticle bacteria” that appear to

colonize select tissue types. Second, the bacterial communities associated with larval

echinoderms exhibit compositional shifts that are correlated with several fundamental

properties of larval biology (e.g., development and morphological plasticity) and ecology

(e.g., feeding environment). Third, echinoderm larvae exhibit specific responses to

pathogenic bacteria that may aid in maintaining the symbiont community and avoid

dysbiosis. To our knowledge, no studies have focused on whether climate-related

stressors impact the composition of these symbiont communities or how changes in

bacteria may modulate response by larvae to these environmental stressors. Lastly, we

conclude by outlining techniques that need to be established in echinoderm larvae to

transition from correlations between larvae and their associatedmicrobiota to the function

of these symbionts.

Keywords: microbiome, host-microbe, endosymbiont, marine invertebrate, development, life history, plasticity,

evolutionary ecology

ECHINODERMS AND THEIR LARVAE

The phylum Echinodermata is characterized by their pentaradial symmetry and global distribution
in marine ecosystems. This group first appeared in the Cambrian and is composed of ∼7,000
extant species (Appeltans et al., 2012) that are grouped into five classes: Crinoidea (feather stars
and sea lilies), Holothuroidea (sea cucumbers), Asteroidea (sea stars), Ophiuroidea (brittle stars),
and Echinoidea (sea urchins). Echinoderm life cycles are primarily bi-phasic, where the adults
reside on the sea floor and the embryonic stages are suspended in the water column (Thorson,
1950; Mileikovsky, 1971; Young and Chia, 1987). This phylum is, perhaps, most recognized for its
remarkable diversity of larval forms that have fascinated biologists for more than a century (Levin
and Bridges, 1995).

Echinoderm development, in general, follows either a lecithotrophic (non-feeding) or
planktotrophic (feeding) trajectory (Thorson, 1950; Mileikovsky, 1971; Strathmann, 1985).
Lecithotrophs develop from relatively large and energy-rich eggs (∼300 µm to 1mm in
diameter, or where s ≥ 1; Vance, 1973; McEdward and Miner, 2006) with sufficient maternal
investment to complete development and undergo metamorphosis. The developmental period for
lecithotrophs typically lasts a few days and, due to a shorter pelagic larval duration, can result in
marginal dispersal between populations (Thorson, 1950; Mileikovsky, 1971; Strathmann, 1985).
Planktotrophs, on the other hand, develop from more energy-poor eggs (∼100 to ∼300µm in
diameter, or where s < 1; Vance, 1973; McEdward and Miner, 2006) with sufficient maternal input
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to complete embryogenesis and develop into larvae with initial
feeding structures. The remaining energetic supply required
for larval development and metamorphosis is acquired from
exogenous resources (e.g., phytoplankton, detritus, and other
particles) that are concentrated by a cilia-lined feeding apparatus
(Strathmann, 1987; Feehan et al., 2018). These particulates are
often dilute, leading to a pelagic larval duration lasting weeks to
months and, in some cases, years (Thorson, 1950; Mileikovsky,
1971; Strathmann, 1985; Olson and Olson, 1989).

Nearly four decades ago, Rivkin et al. (1986) recognized that
the planktotrophic larvae of the asteroid Porania antarctica
selectively interacts with the environmental microbiota
through bacterivory. It has since been observed that additional
planktotrophic echinoderms exhibit bacterivory and that this
feeding mode is hypothesized to be important, but not essential,
to the metabolic requirements of the larva (Pearse et al., 1991;
Douillet, 1993; Ayukai, 1994; Moal et al., 1996; Gosselin and
Qian, 1997). Based on maximum clearance rates and particle
abundance, it is estimated that echinoderm larvae interact
with ∼20 million bacteria each day by feeding alone (Carrier
et al., 2018a). It is, however, unknown which bacterial (or
other microbial) groups that echinoderm larvae may target and
whether these microbes are selected strictly for bacterivory or as
a symbiont that may be acquired by horizontal transmission.

Just prior to recognizing that echinoderm larvae were
bacterivorous, Cameron and Holland (1983) observed that
bacteria were living inside the tissues of healthy larvae. In
this review we synthesize the properties of these bacteria
and how they relate to the biology and ecology of the
echinoderm larval host. In the first section, we provide an
overview of our understanding of echinoderm larvae and their
bacterial symbionts through the lens of microscopy and next-
generation sequencing. In the second section, we summarize
how larval-associated microbiota may be relevant in coping with
anthropogenic stressors and outline the techniques needed to
transition toward understanding the function of these symbionts.

BACTERIAL SYMBIONTS OF
ECHINODERM LARVAE

Over the last few decades our understanding of echinoderm
larvae and their microbes has gone through two primary phases.
The first phase uses microscopy and focuses on “subcuticle
bacteria” (or, due to their location within larval tissues, could
be also be characterized as endosymbionts but this has not been
explicitly tested). The second phase has developed in recent
years and uses next-generation sequencing and other molecular
tools to characterize larval-associated bacterial communities.
This phase may be further divided into two focal points:
the dynamics of these bacterial communities under different
ecological conditions and the immune responses of the larval
host when faced with pathogenic bacteria.

Subcuticle Bacteria
While determining how to preserve the thin cuticle overlying the
epidermis for transmission and scanning electron microscopy,

Holland and Nealson (1978) observed that adults for each of
the five echinoderm classes had a high abundance of what
they called ‘subcuticle bacteria.’ Holland and Nealson (1978)
did not test whether embryonic or larval stages also contained
subcuticle bacteria. They did, however, speculate on the nature
of transmission for echinoderms, stating that because the eggs
are “unattached to any follicle cells, and no bacteria have ever
been observed on or in echinoderm eggs” that “it is probable
that each new generation of such echinoderms acquires its
subcuticular bacteria from the surrounding sea water.”Moreover,
Holland and Nealson (1978) suggested that, if acquired during
the embryonic or larval stages, the echinoderm must select
for these symbiotic bacteria from a diverse community of
environmental microbiota.

Shortly thereafter and on multiple occasions since these
original observations, studies have identified subcuticle bacteria
in the developmental stages of echinoderms. These symbionts,
thus far, have been found in three asteroids (Cameron and
Holland, 1983; Bosch, 1992; Cerra et al., 1997), one ophiuroid
(Walker and Lesser, 1989), and one echinoid (Heyland et al.,
2018; Schuh et al., 2019) (Figure 1; Table 1). In these five species,
subcuticle bacteria have been observed within the mouth and gut
lumen, out-pockets of the extracellular matrix that surrounds the
larval body, embedded in the inner layer of the secondary cuticle
of the rudiment epidermis, and are engulfed and, in some cases,
digested by epidermal cells (Cameron and Holland, 1983; Walker
and Lesser, 1989; Bosch, 1992; Cerra et al., 1997; Heyland et al.,
2018; Schuh et al., 2019).

The function of these subcuticle bacteria remains essentially
unknown. Two cases, however, may suggest that these symbionts
interact with and functionally benefit the larval host. First, the
brittle star Amphipholis squamata has a “vestigial” pluteus (i.e.,
greatly reduced larval arms and lacking a ciliated mouth) that
is brooded within their central plate. Using transmission and
scanning electron microscopy, Walker and Lesser (1989) found
that a rod-shaped Octadecabacter was abundant and actively
dividing within the tissues of this “vestigial” pluteus (Morrow
et al., 2018). This Octadecabacter, which strictly associates with
these larvae and is not found in the environment, can uptake
dissolved free amino acids that are then incorporated into
bacterial proteins and increase the total amino acid uptake for
A. squamata (Walker and Lesser, 1989; Lesser and Blakemore,
1990; Lesser and Walker, 1992). Second, clonal larvae of the sea
star Luidia collected from the Gulf Stream had one to three rod-
shaped morphotypes of subcuticle bacteria (Bosch, 1992). For
Luidia as well asAcanthaster, some symbionts were located in the
gut and auto-fluoresced (Bosch, 1992; Galac et al., 2016; Carrier
et al., 2018b), suggesting the potential ability to be phototrophic.
Collectively, these examples suggest, but do not show explicitly,
that bacterial symbionts may have metabolic functions that could
potentially benefit the larval host.

Bacterial Communities
The subcuticle bacteria discussed above are a portion of
the collection of bacteria associated with echinoderm larvae.
Using next-generation sequencing, larval-associated bacterial
communities have been reported for six species of echinoderm
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FIGURE 1 | Echinoderm larvae and their symbionts. Properties of echinoderm larval biology and ecology with known correlated shifts in the associated

bacterial communities.

larvae: two asteroids (Galac et al., 2016; Carrier et al., 2018b)
and four echinoids (Carrier and Reitzel, 2018, 2019a,b; Carrier
et al., 2019) (Figure 1; Table 1). In general, these bacterial
communities are composed of a couple hundred bacterial
species (i.e., Operational Taxonomic Units or OTUs, as defined
by ≥99% similarity of the phylogenetically-conserved 16S
rRNA gene) (Galac et al., 2016; Carrier and Reitzel, 2018,
2019b; Carrier et al., 2018b, 2019). The predominant bacterial
families encompassing these diverse communities are the α-
and γ -Proteobacteria (Proteobacteria) and the Flavobacteriaceae
(Bacteroidetes) (Galac et al., 2016; Carrier et al., 2018b, 2019;
Carrier and Reitzel, 2019a,b).

Like many other studies of animal and plant microbes,
the bacterial communities associated with echinoderm larvae
are species-specific and taxonomically distinct from the
environmental microbiota (Galac et al., 2016; Carrier and Reitzel,
2018; Carrier et al., 2018b), suggesting that these communities
are, at least in part, selected by the host. This host-specificity,
however, appears to be lost when larvae are cultured under
traditional laboratory settings for rearing the developmental
stages of marine invertebrates (i.e., fine-filtered or artificial
saltwater) (Schuh et al., 2019). Specifically, Strongylocentrotus
purpuratus larvae cultured under traditional laboratory settings
associate with bacterial communities that are less diverse in
total taxa and the phylogenetic breadth of those taxa, and retain
∼40% of the OTUs harbored by “wild-type” counterparts (Schuh
et al., 2019). This implies that studying larval-associated bacterial
communities is most accurately performed at near-natural
conditions, such as by filtering ambient seawater to 5-µm to
remove most debris and planktonic predators while retaining
the environmental microbiota (Carrier and Reitzel, 2018; Hodin
et al., 2019).

Larval-associated bacterial communities are variable in
community membership and composition but exhibit non-
random shifts that correlate with multiple components of
larval biology and ecology. These communities, for example,

are established on unfertilized eggs but not the sperm of sea
urchins (Carrier and Reitzel, 2019b; Schuh et al., 2019). When
cultured using coarsely (5-µm) filtered seawater, echinoderm
larvae exhibit a development-based succession in symbiont
composition and, using fluorescent in situ hybridization, these
bacteria localize in the mouth and gut lumen (Carrier and
Reitzel, 2019b; Schuh et al., 2019). Following fertilization, the
diversity of these communities increases by ∼20% during the
early embryonic stages and decreased by nearly ∼85% following
hatching and through metamorphosis (Carrier and Reitzel,
2019b). From egg to hatching, the early embryonic stages appear
to converge taxonomically with the environmental microbiota
but then exhibit a host-mediated selection by diverging from
this community following the onset of feeding (Carrier and
Reitzel, 2019b). In cases where embryonic development includes
asexual reproduction (e.g., cloning), the larval clones deviate
little from the parent larva by maintaining a high proportion of
particular bacteria, including phototropic species (Galac et al.,
2016; Carrier et al., 2018b).

The six species of echinoderm larvae with profiled bacterial
communities are planktotrophs, and by definition, are required
to feed. Five of these species (echinoids: Strongylocentrotus
purpuratus, S. droebachiensis, Mesocentrotus franciscanus, and
Lytechinus variegatus; asteroid: Acanthaster sp.) have been
differentially fed to test whether community composition
varies with food quantity. In each case, bacterial communities
are diet-specific with well-fed larvae distinguished from
diet-restricted treatments (Carrier and Reitzel, 2018, 2019a;
Carrier et al., 2018b). When diet-restriction is prolonged, larval
sea urchins compensate by elongating their feeding arms to
increase water filtration capacity (Hart and Strathmann, 1994;
Miner, 2004; McAlister and Miner, 2018). This change in
morphology is correlated with a shift in the composition of
the bacterial symbionts, such that larval urchins associate with
phenotype-specific microbiota (Carrier and Reitzel, 2018, 2019a;
Carrier et al., 2018b).
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TABLE 1 | List of echinoderm species noted to associate with bacterial symbionts.

Species Type References

Asteroids Acanthaster sp. Bacterial community by 16S rRNA profiling Carrier et al., 2018b

Luidia sp. Subcuticle bacteria by electron microscopy Bosch, 1992

Patiria miniata Subcuticle bacteria by electron microscopy Cameron and Holland, 1983

Patiriella calcar Subcuticle bacteria by electron microscopy Cerra et al., 1997

Crinoidea N/A N/A N/A

Echinoids Lytechinus variegatus Bacterial community by 16S rRNA profiling Carrier and Reitzel, 2019a

Mesocentrotus franciscanus Bacterial community by 16S rRNA profiling Carrier and Reitzel, 2018, 2019b

Strongylocentrotus purpuratus Bacterial community by 16S rRNA profiling Carrier and Reitzel, 2018, 2019b

Subcuticle bacteria by in situ hybridization Schuh et al., 2019

Strongylocentrotus droebachiensis Bacterial community by 16S rRNA profiling Carrier and Reitzel, 2018, 2019b; Carrier et al.,

2019

Holothuroidea N/A N/A N/A

Ophiuroidea Amphipholis squamata Subcuticle bacteria by electron microscopy Walker and Lesser, 1989

Establishment of a phenotype-specific bacterial community
for larvae of the sea urchin L. variegatus follows a four-
stage succession (Carrier and Reitzel, 2019a). First, larvae
across degrees of food availability associated with bacterial
communities similar in both composition and structure. Second,
different food environments (i.e., algal concentrations) induced
diet-specific bacterial communities in both membership and
composition. Third, the bacterial communities of diet-restricted
larvae associated with similar bacterial communities that are also
distinct from that of well-fed larvae, with the latter coinciding
with a reduction in community diversity. Lastly, composition and
structure are maintained from the prior successional stage and
now correlate with the short- and long-arm phenotypes (Carrier
and Reitzel, 2019a). This suggests that changes in the larval-
associated bacterial community shifts prior to the expression of
the environmentally elicited morphological phenotypes and that
microbial communities may respond to environmental variation
more quickly than morphological changes.

Recent research also suggests that microbial communities
differ not only between species but also between populations
(e.g., ascidians: Dishaw et al., 2014; seaweed: Marzinelli et al.,
2015; fish: Llewellyn et al., 2016; sponges: Marino et al., 2017).
Differential feeding of larvae of the echinoid S. droebachiensis
from three populations in different ocean basins showed parallel
responses that resulted in diet-specific bacterial communities
(Carrier et al., 2019). Despite each population associating with
a diet-specific bacterial community, variation in membership
and community composition correlated more strongly with
geographic location (Carrier et al., 2019). Moreover, when
comparing the taxonomicmembership between populations, 20–
30% of bacterial taxa were specific to a single locationwhile∼10%
were shared between all three locations (Carrier et al., 2019).
Collectively, these data suggest that larvae for a given species
associates with a population-specific bacterial community. It is,
however, worth noting that this comparison was not performed
using common garden culturing, and that it would be expected
that these communities are more taxonomically similar but still
population-specific, when cultured using identical seawater.

Pathogenic Bacteria
Biological responses to foreign “particles” by echinoderm larvae
were first recognized in the late nineteenth century (Metchnikoff,
1891; Tauber, 2003). More recently, echinoderm larvae have been
used as a comparative system to define the cellular and molecular
mechanisms of immunity when combating pathogenic bacteria.
Due to the availability of a genome (Sodergren et al., 2006), the
majority of this work has used the echinoid Strongylocentrotus
purpuratus. The immune response by S. purpuratus to pathogenic
bacteria was recently reviewed by Buckley and Rast (2017) and
Heyland et al. (2018). We refer the reader to these in-depth
reviews for the molecular underpinnings of larval immunity, as
this section will focus on the ecological components.

From the amoebic disease (Paramoeba invadens) of S.
droebachiensis in Nova Scotia (Scheibling and Stephenson, 1984;
Feehan et al., 2013) to the major epizootic that decimated
Diadema antillarum throughout the Caribbean (Lessios et al.,
1984; Lessios, 2016) or, more recently, the densovirus-associated
wasting disease of asteroids (Hewson et al., 2014; Harvell et al.,
2019), the ecological impacts of disease on echinoderms have
been well-documented over the last few decades (Feehan and
Scheibling, 2014). Less of this work, however, has focused
on embryonic and larval echinoderms. Echinoderm larvae
potentially interact with∼20million bacteria each day by feeding
alone (Carrier et al., 2018a), and a portion of these bacteria
may be consumed through bacterivory, be symbionts acquired
by horizontal transmission, or pathogenic bacteria that require
an immune response.

When faced with variation in food quantity, larval echinoids
exhibit a trade-off in the expression of immune and metabolic
genes (Carrier et al., 2015, 2018a), such that well-fed larvae
upregulate metabolism and suppress immunity. High food
availability is also suitable environmental conditions for bacteria
to express pathogenic characteristics. If faced with a pathogen
in these feeding conditions, food-induced suppression of the
immune system may result in a suboptimal physiological
response, and larvae may be less able to regulate the
associated microbiota. Echinoid larvae may then be at risk of
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pathogen-induced disease or exhibiting dysbiosis, both of which
are hypothesized to be precursors to larval mortality (Carrier
et al., 2018a).

When faced with pathogenic bacteria, echinoid larvae exhibit
immune responses, for example, by expressing genes in the
interleukin 17 (IL17) complex (Ho et al., 2016; Buckley and
Rast, 2017; Buckley et al., 2017). IL17s are known to both
serve as a primary barrier to foreign bodies and to regulate
the composition of larval-associated microbiota (Buckley and
Rast, 2017). For S. purpuratus, exposure to the pathogen
V. diazotrophicus coincides with successive expression of gut
epithelial-specific IL17 subtypes to prevent progression of V.
diazotrophicus and maintain the gut microbiota (Buckley and
Rast, 2017; Buckley et al., 2017). When S. purpuratus larvae
are made nearly germ-free, they become more susceptible to
Vibrio-induced infections and mortality than counterparts with
their native bacteria (Schuh et al., 2019). Pathogens that elicit a
response appear to be lineage-specific, as not all Vibrio species
or strains induce the expression of the IL17s (Buckley and
Rast, 2017; Buckley et al., 2017). Such responses by the larval
host may contribute to maintaining homeostatic symbioses (e.g.,
Mortzfeld and Bosch, 2017), but the functional underpinnings
for larval echinoderms have yet to be determined (but see
Ho et al., 2016; Buckley and Rast, 2017; Buckley et al., 2017).

LARVAL ECHINODERMS IN A CHANGING
ENVIRONMENT

Our understanding of echinoderm larvae and their relationship
with microbial symbionts has been studied at ambient
conditions. Marine invertebrates and their life history stages
are, however, encountering a suite of anthropogenic stressors
(Byrne et al., 2018) that may disrupt homeostatic symbioses
(e.g., Rosenberg et al., 2007). To our knowledge, no studies
have focused on how climate-related stressors (e.g., temperature
and pH) affect the associated microbiota of echinoderm larvae.
Similar to the cnidarian planula (Mortzfeld et al., 2015) and
sponge amphiblastula (Webster et al., 2011), we hypothesize
that an acclimation response to abiotic or biotic stressors would
include shifts in symbiont composition. This, in particular,
provides larvae with an opportunity to acquire bacterial
symbionts with genes that are novel to the larval hologenome
and that may aid in ameliorating physiological stress. Whether
at ambient conditions or facing climate-related stressors, the
function of larval-associated symbionts as well as if the host
benefits from these partnerships remains uncertain.

Determining if and howmicrobial symbionts contribute to the
larval holobiont requires a transition from 16S rRNA profiling to
functional studies (Williams and Carrier, 2018). The functional
potential and expression profiles of microbial symbionts may
be assessed using metagenomics (e.g., Slaby et al., 2017) and
metatranscriptomics (e.g., Moitinho-Silva et al., 2014). The
impact that particular taxa or the symbiont community have on
the larval host may then be assessed by generating microbe-free
larvae through an antibiotic treatment or gnotobiotic chambers
(Rawls et al., 2004; Bates et al., 2006; Smith et al., 2007;

Gloeckner et al., 2013; Leigh et al., 2016; Schuh et al., 2019)
and adding back single or a mix of culturable taxa (e.g., Domin
et al., 2018). Such techniques can be coupled with established
visualization approaches (electron microscopy: Cerra et al., 1997;
fluorescent in situ hybridization: Schuh et al., 2019) to define
the spatial distribution of these symbiont and which tissues they
colonize. Lastly, viruses, archaea, and fungi are also functionally
important members of host-associated microbial communities
(e.g., Webster and Thomas, 2016). Similar molecular and
sequencing approaches can and should be used to characterize
if and how they interact with the larval host as well as other
microbial groups within the microbiome.

CONCLUSION

Our understanding of symbioses between larval echinoderms
and microbes has primarily developed in the last few years;
yet, in this time we suggest that three primary themes have
materialized. First, larval echinoderms associate with subcuticle
bacteria that appear to colonize select tissues. Second, the
bacterial communities associated with larval echinoderms exhibit
compositional shifts that are correlated with several fundamental
properties of larval biology and ecology. Third, the echinoderm
larval host exhibits strict responses to pathogenic microbiota
that may aid in maintaining the symbiont community to
avoid dysbiosis.

As echinoderms larvae continue to serve as a fundamental
system for understanding development and life history evolution
(Love and Strathmann, 2018), this diversity in form and function
may act as a strong foundation to understand how and to
what extent bacteria and other microbes influence the many
dimensions of larval biology (Hammer et al., 2019). In particular,
these diverse developmental approaches enable the fields of
animal-microbe symbiosis and larval biology to test for unique
functional links between host and symbiont during, for example,
morphological plasticity and life history transitions. And in a
time where it is becoming clear that the bacterial flora cannot be
ignored, we must remember that echinoderm larvae have always
and will continue to live and evolve in a sea of microbes (Walne,
1956; Zilber-Rosenberg and Rosenberg, 2008; McFall-Ngai et al.,
2013; Bordenstein and Theis, 2015).
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