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Carnivore depredation of livestock is a global problem which negatively impacts both

agropastoral livelihoods and carnivore population viability. Given the gravity of this

issue, research has increasingly focused on applied techniques capable of quantifying

the factors that increase the risk of livestock depredation. One such technique is

risk modeling. This multivariate approach is designed to produce predictions of the

spatial configuration of depredation so as to prioritize interventionist activities. Thus,

the efficacy of subsequent interventions is, in part, dependent upon the accuracy of

the predictions deriving from the risk models. The predictability of spatial patterns in

carnivore depredation of livestock is influenced by the degree of spatial autocorrelation

evident in the data distributions. We conducted a multi-year assessment to quantify

the degree of spatial autocorrelation within livestock depredation data. We centered

our study in the Maasai steppe of Tanzania, which experiences some of the highest

rates of human-carnivore conflict in the world. We applied three geostatistical measures

to assess spatial clustering in data describing livestock depredation by lions (Panthera

leo), leopards (Panthera pardus), spotted hyenas (Crocuta crocuta), black-backed

jackals (Canis mesomelas), and cheetahs (Acinonyx jubatus) at the household (i.e.,

livestock enclosure) scale. Using an ordinal spatial scan statistic, a Bernoulli spatial scan

statistic, and the Getis-Ord local spatial statistic, we found that the spatial patterns

in carnivore depredation of livestock tended not to significantly differ from random.

As the predictive ability of spatial risk models may be limited where spatial patterns

of carnivore depredation of livestock do not statistically differ from random, explicitly

assessing such patterns is an important component of conflict mitigation efforts. We

discuss the inferences of this analysis for the optimization of interventionist activities

intending to develop sustainable solutions for human-carnivore conflict.

Keywords: human-carnivore conflict, livestock depredation, spatial autocorrelation, risk modeling, conflict

intervention

INTRODUCTION

Large carnivore hunting and killing of domesticated livestock represents one of the most common
triggers of human-carnivore conflict globally (Mizutani, 1999; Frank et al., 2005; Maggi et al.,
2014). Within this context, people who have experienced livestock losses will often retaliate against
those carnivores perceived to be responsible or in an effort to prevent future livestock losses
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(Kissui, 2008; Hazzah et al., 2009; Goldman et al., 2013; Dickman
et al., 2014; Lichtenfeld et al., 2014; Kahler and Gore, 2015).
Termed “livestock depredation,” this driver of conflict has been
exacerbated by increasing population growth, range expansion,
and meat dependency among the global human population
(Naughton-Treves et al., 2003; Treves and Karanth, 2003; Ripple
et al., 2014). Today, >75% of the world’s large carnivore species
are experiencing population declines, and retaliatory killing
in response to depredation is one of the primary threats to
the conservation of these species (Treves and Karanth, 2003;
Linnell et al., 2012; Inskip et al., 2013; Chapron et al., 2014;
Ripple et al., 2014). Given the importance of this issue, much
research has been devoted to documenting the biotic and
abiotic conditions that correlate with carnivore depredation of
livestock (Miller, 2015; Montgomery et al., 2018a,b).

Typically, this research seeks to develop predictions capable
of optimizing the implementation of interventionist activities
meant to decrease carnivore attacks on livestock (Treves
et al., 2011; Meena et al., 2014; Miller, 2015). There are
a number of models used to predict spatial patterns in
carnivore depredation of livestock, which are often referred to
as risk models. These models generally fall into one of three
categories including correlation modeling, spatial interpolation,
and spatial associations (Miller, 2015). Correlation modeling
and spatial interpolation inherently test for associations between
depredation incidents and the landscapes in which they occur
(Hebblewhite et al., 2005; Northrup et al., 2013). Spatial
association analyses, in contrast, test for spatial autocorrelation
among depredation locations independent of the landscape
(Baruch-Mordo et al., 2008; Dale and Fortin, 2014; Peeters et al.,
2015). Across the three categories, the models developed to
predict carnivore depredation of livestock are all informed by
the principles of spatial autocorrelation (Miller, 2015). Thus, if
spatial patterns in depredation are spatially autocorrelated then
the number of carnivore-killed livestock should exhibit clustering
at close distances and dispersion with increasing distance. The
calculations of clustering or dispersion are carried out via a
comparison of the data to a completely spatial random pattern
(Aldstadt, 2010; Chakraborty, 2011; Diggle, 2014).

As such, prior to predictive model fitting, diagnostic tests,
including the calculation of spatial autocorrelation, should be
assessed (Baruch-Mordo et al., 2008; Chakraborty, 2011; Miller,
2015). If tests of this type are not assessed or described in
risk mapping of carnivore depredation of livestock, it is unclear
whether measured spatial patterns in these data conform to the
principles of spatial autocorrelation. It might bemore challenging
to derive applied management actions from the outputs of spatial
risk models if patterns in carnivore depredation of livestock are
not statistically different from random. Correspondingly, this
would hamper the implementation of interventions built from
those models.

Here we conducted a series of diagnostic tests, typically
carried out prior to predictive spatial modeling, to determine
the degree of spatial autocorrelation evident in carnivore
depredation of livestock data. Our objective was to explicitly
assess the assumption of spatial autocorrelation. In doing so,
we hope to draw conclusions about important considerations

in future depredation risk modeling studies, to increase the
efficacy of the management and intervention efforts that
are based on such models. As there are multiple possible
approaches to testing for spatial autocorrelation within a data
set, and given that these tests are rarely described in the
risk mapping literature, we used a triangulation approach
to further verify our results. We applied three diagnostic
tests (the ordinal spatial scan statistic, the Bernoulli spatial
scan statistic, and the Getis-Ord local spatial statistic) of
spatial autocorrelation to our depredation data. We discuss
the results of our analysis for spatial modeling of carnivore
depredation data and the interventionist activities that are
typically associated with this research. Spatially autocorrelated
patterns of livestock depredation are used to inform predictions
of future predation risk, and management efforts to reduce this
risk. Therefore, the ecological inferences that derive from such
analyses have important implications for the optimization of
activities that are meant to alleviate conflict between humans
and carnivores.

METHODS

Study Area
We positioned our study in the Maasai steppe of Northern
Tanzania, a 22,000 km2 landscape consisting of a complex matrix
of protected areas and village lands (Figure 1). Twenty-three
villages with an estimated 350,000 people largely maintaining
agro-pastoral lifestyles are interspersed among Tarangire
National Park (2,800 km2), Lake Manyara National Park (330
km2), and Manyara Ranch Conservancy (140 km2; Nelson, 2005;
Kissui, 2008). These villages are dispersed across a mosaic of
wards, a Tanzanian administrative unit consisting of multiple
villages. Villages are organized within wards which are organized
within districts (see Figure 2). The villages are also flanked to
the northwest by the 8,290 km2 Ngorongoro Conservation Area
(Figure 1). Livestock-owners keep sheep and goats (collectively
referred to as shoats), cattle, and donkeys. All of these livestock
are vulnerable to depredation, especially at night when they are
herded into enclosures (hereafter referred to as bomas; Ogada
et al., 2003, Kissui, 2008). The landscape also supports large
numbers of wildlife, including a globally important population
stronghold for lions (Panthera leo; see Riggio et al., 2013), as
well as robust populations of leopards (Panthera pardus) and
spotted hyenas (Crocuta crocuta; Bauer et al., 2004, 2015; Kissui,
2008). Within this system, and in East Africa more broadly,
these three species are commonly responsible for the majority
of depredation of livestock (Kolowski and Holekamp, 2006;
Kissui, 2008; Linnell et al., 2012), though to a lesser extent
black-backed jackals (Canis mesomelas) and cheetahs (Acionyx
jubatus) also contribute (Maingi et al., under review). Due to
the high spatial overlap between human communities and this
sympatric suite of carnivores, the Maasai steppe experiences
some of the highest rates of human-carnivore conflict triggered
by livestock depredation in the world (Graham et al., 2005;
Kissui, 2008; Ripple et al., 2014; Mkonyi et al., 2017a,b; Kissui
et al., 2019).
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FIGURE 1 | The spatial configuration of bomas in the Maasai steppe of

Northern Tanzania. The depredation intensity of each of the 113 bomas

between June 2009 and October 2013 is represented by the symbol color.

Bomas that experienced no depredation are in blue, those that experienced

low depredation intensity are in orange, and those that experienced high

depredation intensity are in red.

FIGURE 2 | The spatial configuration of villages in the Maasai steppe of

Northern Tanzania, categorized by study inclusion. Villages that were sampled

for livestock depredation intensity are indicated with a star, those that were not

sampled are indicated by a circle.

Data Collection
Between 2009 and 2013, we collected detailed records of
livestock depredation events across our study area as part of
the Tarangire Lion Project’s long-term human-carnivore conflict
monitoring program (Kissui, 2008; Kissui et al., 2019; Figure 1).
We collected this data among 13 focal villages in the Maasai

steppe (Emboreet, Engaruka, Esilalei, Kakoi, Lokisale, Losirwa,
Makuyuni, Minjingu, Mswakini, Naiti, Olasiti, Oltukai, and
Selela). These villages were distributed among nine distinct wards
(Figure 2). We selected bomas for monitoring according to a
stratified random sample designed to incorporate the breadth
of boma structures present in our study region. We defined a
depredation event as a discrete occasion where a carnivore killed
or injured ≥1 head of livestock (e.g., cattle, shoats, or donkeys).
We collected data on livestock depredation evens through a
combined approach, wherein the entire suite of study bomas
were monitored through regular revisits on a 30-days cycle and
bomas were visited within 24 h of a reported depredation event.
In the occasional case when extenuating circumstances made it
unfeasible to conduct the standard monthly visits, we applied
an additional approach to collect depredation records. In these
instances, an additional interview was conducted with the boma
owner as soon as possible to collect information on depredation
attempts within the previous 30 days. For reported depredation
events, initial reports were collected by local residents who
were trained to collect detailed records of livestock depredation
events. These local assistants then alerted our research team
so we were able to conduct a visit to the boma to verify the
depredation event via semi-structured interviews with herders
or livestock owners. Notably, there is no active compensation
scheme for livestock depredation in Tanzania. Thus, there is
minimal incentive to report loss of livestock, and it is likely
that fewer livestock depredation events were reported than
occurred leading to an underestimate in the extent of depredation
(Kissui, 2008). At all reported events, we collected the following
information: (i) type and number of livestock attacked, (ii)
GPS location of the boma, (iii) outcome of the attack (whether
the livestock was injured or killed), and (iv) species of the
responsible carnivore whenever possible. Identification of the
carnivore species responsible for each attack was determined via
direct sightings of carnivores by respondents or distinctive tracks,
signs, and behavioral characteristics that are commonly known
and easily differentiated among the raiding carnivores in the
region. Thus, the final database for analysis consisted of multiple
depredation events at the household scale (sensu Montgomery
et al., 2018a). Each entry included a categorical response variable,
with bomas reporting either livestock depredation event =

1 or no event = 0. In the case of the former, the entry
included additional details regarding the depredation event. We
combined all records by boma, resulting in a total count of
depredation events for each boma during the study period. We
then categorized these values into three bins, representing the
intensity of livestock depredation events at each boma (No, Low,
and High). We determined the break values for each category
using the Jenks natural breaks method. This method, also known
as the goodness of fit variance, reduces within class variance while
maximizing variance between classes (Jenks, 1977).

Data Analysis
We evaluated the degree of spatial autocorrelation inherent to
these data using the ordinal spatial scan statistic, the Bernoulli
spatial scan statistic, and the Getis-Ord local spatial statistic.
We chose these three statistical approaches given two key
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considerations. First, the spatial association analyses conducted
had to be capable of accurately testing for spatial autocorrelation
among categorical data (i.e., modeling discrete events; see
Aldstadt, 2010). As there are multiple ways to do so, we
chose to use three different statistical tests as a triangulation
approach to verify our results. Second, there is a clear research-
implementation gap that separates risk modeling for human-
carnivore conflict and the development of policies designed to
conserve these species (Miller, 2015; Gray et al., 2019). Thus,
our secondary consideration involved the scale of inference of
the statistic. We chose statistics with analytical and inferential
power at fine scales, as those are the scales most relevant to the
implementation of human-carnivore conflict mitigation efforts
(Jarvis et al., 2015; Montgomery et al., 2018a).

Ordinal Spatial Scan Statistic
Using SaTScan ver. 9.5 (http://www.satscan.org), we applied the
spatial scan statistic to evaluate spatial clustering in the intensity
of carnivore depredation of livestock, modeled as an ordinal
distribution (Jung et al., 2007). Spatial scan statistics detect
spatial or temporal clusters with significantly high or low event
occurrence. The resulting clusters are ranked according to the
statistical likelihood that the observed event occurrence differs
from that in the background population (Kulldorff, 1997, 1999,
Fukuda et al., 2005, Riitters and Coulston, 2005). While it has
been used in epidemiological studies for decades, the spatial scan
statistic has only recently been applied to ecological research.
Nevertheless, the statistic has been identified as having great
promise for assessments of ecological data (Dale and Fortin,
2014).

Under the ordinal distribution, the probability of depredation
of any given intensity (k) occurring within the scanning window
(pk) is equal to the probability of depredation of the same
intensity outside of the scanning window (qk).

H0 : p1 = q1, . . . pk = qk

Within this hypothesis testing framework the alternative
hypothesis articulates that the detected clusters represent a set of
bomas in which the probability of high intensity depredation is
significantly (at the α < 0.05 level) different than that outside the
scanning window. At least one inequality must be strict, and the
inequalities can be reversed when assessing for cold spots (Jung
et al., 2007).

Ha :
p1

q1
≤

p2

q2
≤ . . . ≤

pk

qk

The test compares all categories individually, as well as in
ordered groups. For example, the likelihood of bomas with no
depredation can be compared to the likelihood of bomas with low
depredation intensity and bomas with high depredation intensity
combined. The order of the categories is maintained, and at
least one category must be isolated to produce a likelihood ratio
ordering (Jung et al., 2007).

Bernoulli Spatial Scan Statistic
Next, we modeled these data using the spatial scan statistic
as a Bernoulli distribution (Kulldorff and Nagarwalla, 1995).

The Bernoulli distribution allows for an examination of spatial
patterns among two states. We first compared bomas with no
depredation, to those with high depredation intensity. We then
tested bomas with no depredation against those with low or
high intensity. Our interest here was to compare bomas with
no livestock depredation to those with livestock depredation.
Under the null hypothesis in the Bernoulli model, the probability
of having a boma with livestock depredation of the specified
intensity is the same inside and outside the scanning window
(Kulldorff and Nagarwalla, 1995; Kulldorff, 1997). As in the
ordinal model, the corresponding alternative hypothesis is that
the probability differs within and outside the scanning window.
Such a result indicates non-random patterns in the spatial
distribution of livestock depredation by carnivores (Chen et al.,
2008).

For each of the spatial scan statistics (i.e., the ordinal and
Bernouli models), we tested for both low and high clusters. We
set the maximum cluster size to 50% of the total population (Jung
et al., 2007), and the scanning windows centered on the boma
locations. We evaluated the distribution of maximum likelihood
under the null hypothesis using the Monte Carlo hypothesis
testing set with 999 simulations (Fukuda et al., 2005; Riitters and
Coulston, 2005; Jung et al., 2007). In both cases, we mapped the
resulting clusters in ArcMap 10.5 (ESRI, Redlands, CA).

Getis-Ord Local Spatial Statistic
Finally, we used the Getis-OrdG

∗

i statistic to evaluate the presence
and significance of spatial hot- and cold-spots of depredation
intensity in the study area (Getis and Ord, 1992). This statistic
measures the degree of association in a given variable by
evaluating the level to which each point is surrounded by
points with similar values of that variable (Getis and Ord, 1992;
Haining, 2003; Ord and Getis, 2010; Peeters et al., 2015). More
specifically, G∗

i compares the concentration of values within a set
distance of the point of interest (i.e., the “neighborhood”) to the
concentration of values of that variable across the entire study
area. Each point is spatially weighted, and the concentration is
given by the sum of the values for these points (Getis and Ord,
1992; Baruch-Mordo et al., 2008; Ord and Getis, 2010; Peeters
et al., 2015). Thus, this technique allows for the identification of
hot spots (i.e., statistically significant clustering) or cold spots
(i.e., statistically significant dispersion) in the spatial data. We
defined this neighborhood as the ward (see Figure 5). Here;

G∗

i is defined as:

G
∗

i =

∑n
j=1 wij

(

d
)

xj
∑n

j=1 xj
jmay equal i, (1)

where the expected value (assuming complete randomness)
depends on the number of local neighbors:

E
(

G
∗

i

)

=
1

n

∑n

j=1
wij (2)

G∗

i measures the degree of association in depredation count for j
points within distance d of point i within each ward (Ord and
Getis, 1996; Dale and Fortin, 2014). Locations of high spatial
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TABLE 1 | The number of bomas that experienced livestock depredation.

Depredation intensity Category # of

depredation

attempts

n %

1 No 0 50 44.25

2 Low 1–2 47 41.59

3 High ≥3 16 14.16

Each boma is categorized by a depredation intensity determined by the total number of

depredation incidents recorded at that location. Both the number (n) and corresponding

percentage (%) of all bomas studied are reported.

TABLE 2 | The number and percentage of bomas experiencing no, low, and high

livestock depredation intensity (see Table 1) in the Maasai steppe, Tanzania

collected from 2009 to 2013.

Species No Low High

n % n % n &

Hyena 52 46.02 48 42.48 13 11.50

Lion 111 98.23 2 1.77 0 0.00

Leopard 108 95.58 5 4.42 0 0.00

Jackal 111 98.23 2 1.77 0 0.00

Cheetah 112 99.12 1 0.88 0 0.00

The data is shown for each responsible carnivore.

association (hot spots) will be indicated with positive z-scores
near the maximum ends of the data distribution, while locations
of low spatial association (cold spots) will be indicated with low z-
scores near the minimum ends of the data distribution. Z-scores
>1.96 or < −1.96 indicate significant (at the α < 0.05 level) hot
spots and cold spots, respectively (Baruch-Mordo et al., 2008;
Dale and Fortin, 2014; Meena et al., 2014). We calculated the
G∗

i statistic to identify clusters of bomas based on the intensity
of livestock depredation. We used the “zone of indifference”
spatial relationship, which is most appropriate for point data
without sharp boundaries in neighborhood relationships (Getis
and Aldstadt, 2010; Peeters et al., 2015).

RESULTS

Between 2009 and 2013 we collected a total of 170 records
from 113 bomas, including 119 confirmed livestock depredation
events. Just under half of the bomas surveyed (44.2%, n =

50 of 113) experienced no livestock depredation activity (“no
depredation”), 41.6% (n = 47) experienced 1–2 depredation
events (“low intensity”), and the remaining 14.2% (n =

16) experienced three or more events (“high intensity”;
Table 1). Close to 90% (n = 107) of depredation events were
by spotted hyenas, with only 4.2% (n = 5) by leopards,
2.5% (n = 3) each by lions and black-backed jackals,
and 0.8% (n = 1) by cheetahs. Hyenas killed livestock
at low and high intensity, whereas the other species were
only responsible for low intensity depredation at any given
boma (Table 2).

FIGURE 3 | The results of the cluster analysis mapping the intensity of

livestock depredation by carnivores in the Maasai steppe, TZ from 2009 to

2013, conducted using the spatial scan statistic under the ordinal model.

Ordinal Spatial Scan Statistic
Via the ordinal spatial scan statistic we detected two significant
clusters (Figure 3). Cluster one was the most likely cluster
identified (LLR = 12.68, p < 0.001), while Cluster two (LLR
= 9.56, p < 0.05) was a lower-likelihood secondary cluster,
with the clusters ordered by their statistical significance (Table 3;
Figure 3). Cluster one was a cold spot, in which the number
of high intensity depredation bomas was lower than expected,
as compared to that in the area outside the scanning window.
More specifically, this cluster identified an area with a low
number of bomas with low and high depredation intensity
combined. Cluster two was a hot spot, identifying an area with
a higher than expected number of bomas with high depredation
intensity (Figure 3).

Bernoulli Spatial Scan Statistic
The Bernoulli spatial scan statistic identified one significant
cluster when comparing high depredation intensity bomas to
control bomas (Figure 4A; Table 3). This cluster (LLR = 9.52,
p < 0.01) was a hot spot, indicating a higher proportion of
high intensity bomas inside the scanning window than outside.
The second component of the statistic, which compared bomas
with low and high depredation intensity combined to bomas
with no depredation, revealed two significant clusters (Figure 4B;
Table 3). Cluster one (LLR= 10.69, p< 0.01) was a cold spot, and
Cluster two (LLR= 7.91, p < 0.05) was a hot spot.

Getis-Ord Local Spatial Statistic
Application of the Getis-Ord G∗

i statistic detected 19 bomas
(16.8%) that were significantly clustered (i.e., Z-scores of ≥
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TABLE 3 | The results of the cluster analysis for intensity of livestock depredation by carnivores in the Maasai steppe, Tanzania from 2009 to 2013, conducted using the

spatial scan statistic with the ordinal and Bernoulli models.

Radius (km) Categories #O/#E RR LLR p-value Implication

Ordinal model Cluster 1 57.07 (1, [2,3]) 2.26, 0 2.75, 0 12.68 0.0009 Cold spot

Cluster 2 1.71 (1, 2, 3) 0, 1.09, 3.85 0, 1.10, 5.56 9.56 0.0150 Hot spot

Bernoulli model Cluster 1 1.71 1, 3 4.13 6.00 9.52 0.0028 Hot spot

Cluster 1 36.68 1, [2, 3] 0.00 0.00 10.69 0.0014 Cold spot

Cluster 2 3.10 1, [2, 3] 1.69 1.95 7.91 0.0240 Hot spot

Results are shown for all responsible carnivore species combined. The heading Categories is the intensity of depredation (see Table 1) compared for each cluster, #O/#E is the ratio of

number of events observed to number of events expected, RR is the relative risk of each category, and LLR is the log-likelihood ratio.

FIGURE 4 | The results of the cluster analysis mapping the intensity of livestock depredation by carnivores in the Maasai steppe, TZ from 2009 to 2013, conducting

using the spatial scan statistic under the Bernoulli model. (A) Shows the results for the comparison of high depredation intensity and no depredation. (B) Shows the

results for the comparison of low and high depredation intensity combined vs. no depredation.

1.96). Of these bomas, 18 were tightly clustered within one ward
(Figure 5). There were eight bomas with Z-scores of ≤-1.96,
indicating a significant cold spot. These bomas were dispersed
in clusters of two to three bomas each, within two neighboring
wards (Figure 5).

DISCUSSION

Via the application of three different model diagnostic
approaches, we detected little evidence of spatial patterning
in the intensity of carnivore depredation of livestock data. All
three statistical methods identified just one primary hot spot
consisting of only 18 bomas (15.9% of those studied) located
in a cluster north of Tarangire National Park (Figures 3–5).
Thus, in terms of the intensity of livestock depredation events,
the majority of our study site did not differ from a completely
spatial random pattern. This result suggests that there may be

some other processes, potentially ecological or methodological
in form, influencing or obscuring the spatial patterns of livestock
depredation in this region. Without an understanding of such
processes, and incorporation of that knowledge into spatial
pattern analyses of this nature, the ability to develop accurate
predictive models for human-carnivore conflict will be limited.
Here, we discuss the potential processes that could inform this
observed spatial randomness.

We had anticipated that patterns in livestock depredation
would be non-random, indicating the presence of behaviorally-
grounded carnivore hunting strategies similar to those observed
in wild prey predation by the same species. This assumption
was supported by previous research showing that the risk of
livestock depredation by hyenas increased with vegetative cover
(Kolowski and Holekamp, 2006) and depredation risk from
lions was significantly higher near riverine habitats (Abade
et al., 2014). Nevertheless, the majority of the spatial patterns
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FIGURE 5 | The results of the Getis-Ord G*
i hot spot analysis for intensity of

livestock depredation in the Maasai steppe, TZ from 2009 to 2013. The bright

red circles depict significant clustering of livestock depredation event hot spots

(Z ≥ 1.96), and the dark blue circles depict significant cold spots (Z ≤ −1.96).

of livestock depredation events examined here exhibited spatial
randomness even though extensive research has documented that
large carnivores do not pursue wild prey randomly (Hopcraft
et al., 2005; Hayward, 2006; Hayward et al., 2006; MacNulty et al.,
2007). As an example, previous research has shown that lions
preferentially hunt in areas of semi-dense vegetation and cover,
such as tall grasses and open shrublands (Elliott et al., 1977;
Scheel, 1992; Spong, 2002; Hopcraft et al., 2005; Fischhoff et al.,
2007). This pattern is likely due to the fact that lions are primarily
ambush-style predators, relying on vegetation that can hide their
presence from prey species until the last possible moment while
not restricting their view of potential prey individuals (Hopcraft
et al., 2005; Valeix et al., 2009). Similarly, leopards prefer to
hunt in areas with moderate woody plant cover, such as open
mixed woodlands (Balme et al., 2007). However, substantially
less is known about the behaviors of these carnivores in relation
to encountering domestic prey. This is particularly true at the
household scale (i.e., the scale of bomas; Montgomery et al.,
2018a). It remains unclear however, the extent to which hunting
behaviors of lions, leopards, or hyenas for wild prey might apply
to the selection of livestock for depredation. Therefore, it is
possible that the carnivores, in fact, respond to potential livestock
prey in the boma randomly.

It is also likely that human presence and activity at the boma
contributed to the inherent randomness in the spatial patterns
in carnivore depredation of livestock. Livestock husbandry
practices, the structural integrity of bomas, as well as cues of
human presence including noises, lights, the presence of dogs,
and many other elements can be deterrents to large carnivores
(Ogada et al., 2003; Frank, 2010; Loveridge et al., 2017).
Thus, humans have a capacity to intentionally or inadvertently

disturb large carnivores intending to kill livestock at the boma.
However, the exact combination of factors that might best deter
advancing carnivores has not yet been identified. Importantly,
our assessment was focused only on known attacks of livestock,
not the other stages of the depredation process (Macarthur and
Pianka, 1966; MacNulty et al., 2007; i.e., carnivore search and
pursuit of livestock in the boma). To assess how human behavior
influences the probability of attack, the rates at which carnivores
encounter bomas and do not attack must be calculated. Within
wild prey systems, encounter rates are one of the primary
determinants of predation intensity (Hebblewhite et al., 2005;
Balme et al., 2007). We identify the study of the rates at which
carnivores encounter livestock at the boma and do not attack as a
productive area of future research.

Finally, the spatial randomness that we observed may also
be attributable, at least in part, to noise in the data collection
system. Such noise would include issues in sampling, translation,
misreporting of depredation events, or spatio-temporal
dimensionality. For instance, we considered depredation data
from 2009 to 2013, and collapsing the temporal extent of
the data could have obscured fine scale temporal dynamics
in the depredation patterns. Many studies have shown the
importance of temporal resolution in revealing and predicting
the mechanisms driving spatial patterning (Elliott et al., 1977;
Van Orsdol, 1984; Stander and Albon, 1993). Examining
the temporal dynamism associated with these data is part of
a separate analysis in which we discovered strong effect of
seasonality, with attacks being 2.84 times more likely to occur
in the wet season than the dry season, aligning with a similar
influence of seasonality found by Kuiper et al. (2015), Kissui et al.
(2019). Additionally, our data showed substantial year-to-year
variation in hyena depredation patterns (Kissui et al., 2019).

Our study emphasizes the importance of conducting model
diagnostic tests of spatial autocorrelation in depredation risk
models. Such tests provide the framework for meaningful
application of conflict intervention efforts (Baruch-Mordo
et al., 2008; Chakraborty, 2011; Miller, 2015). As the principles
of spatial autocorrelation underlie the majority of risk model
analyses (Chakraborty, 2011; Miller, 2015), without explicit
examination of the autocorrelative patterns within the
depredation datasets, the results may be misrepresentative
of the processes occurring on that landscape. Spatial randomness
may indicate that there is no clustering of livestock depredation
events, when that result may in fact be due to the presence of
other processes that exhibit spatially random patterns at the
spatial or temporal scale of assessment. Consideration of such
factors is essential for effective application and interpretation of
livestock depredation risk models.

The outputs of these risk models are used to identify high-
priority locations in which to apply conflict intervention or
mitigation efforts around the world, thus informing preventative
action to maximize impact and minimize cost (Marucco and
Mcintire, 2010; Treves et al., 2011; Miller, 2015). Notably, the
exact processes at play may differ depending on the ecological
community, human culture, and environmental characteristics
of the study location. However, the range of alternative spatial
processes identified here are representative of the diversity of
factors that should be considered within these examinations.
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Therefore, such diagnostic approaches can be applied to other
study systems to inform subsequent examinations of biotic
and abiotic correlates of carnivore depredation of livestock.
Without refined understanding of the potential sources of
spatial randomness, the model output may not be well-aligned
with the implementation of interventions meant to reduce
depredation. This misapplication of intervention efforts could
result in higher livelihood costs for local communities, increased
rates of retaliatory killing of carnivores, and overall increase
in conflict between the two (Dickman, 2010; Inskip et al.,
2013). Such concerns are not limited to the East African
system in which this study is situated, but are relevant to any
location experiencing human-carnivore conflict over livestock
depredation. The widespread and urgent nature of this threat
underscores the necessity of effective use of all available resources
and tools, and livestock depredation risk models are a valuable
contribution to this effort (Treves et al., 2011; Miller, 2015;
Miller et al., 2015). With attention to spatial processes such as
those identified here, they are more likely to provide accurate
management-relevant predictions of livestock depredation, thus
increasing the impact of research-informed conservation efforts
and the management practices derived therein.
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