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Threatened freshwater ecosystems urgently require improved tools for effective

management. Food web analysis is currently under-utilized, yet can be used to generate

metrics to support biomonitoring assessments by measuring the stability and robustness

of ecosystems. Using a previously developed analysis pipeline, we combined taxonomic

outputs from DNA metabarcoding with a text-mining routine to extract trait information

directly from the literature. This pipeline allowed us to generate heuristic food webs

for sites within the lower Saint John/Wolastoq River and the Grand Lake Meadows

(hereafter called the “GLM complex”), Atlantic Canada’s largest freshwater wetland.

While these food webs are derived from empirical traits and their structure has been

shown to discriminate sites both spatially and temporally, the accuracy of their properties

have not been assessed against other methods of trophic analysis. We explored

two approaches to validate the utility of heuristic food webs. First, we qualitatively

compared how well-trophic position derived from heuristic food webs recovered spatial

and temporal differences across the GLM complex in comparison to traditional stable

isotope approaches. Second, we explored how the trophic position of invertebrates,

derived from heuristic food webs, predicted trophic position measured from δ
15N values.

In general, both heuristic food webs and stable isotopes were able to detect seasonal

changes in maximum trophic position in the GLM complex. Samples from the entire GLM

complex demonstrated that prey-averaged trophic position measured from heuristic food

webs strongly predicted trophic position inferred from stable isotopes (R2 = 0.60), and

even stronger relationships were observed for some individual models (R2 = 0.78 for

best model). Beyond their areas of congruence, heuristic food web and stable isotope

analyses also appear to complement one another, suggesting a surprising degree of

independence between community trophic niche width (assessed from stable isotopes)
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and food web size and complexity (assessed from heuristic food webs). Collectively,

these analyses indicate that trait-based networks have properties that correspond to

those of actual food webs, supporting the routine adoption of food web metrics for

ecosystem biomonitoring.

Keywords: DNA metabarcoding, ecological network, trait, food web, stable isotope, trophic position, Bayesian

mixing model

INTRODUCTION

Freshwater ecosystems, which house a disproportionate amount
of Earth’s biodiversity (Dudgeon et al., 2006), facemultiple threats
(Cazzolla Gatti, 2016; Hu et al., 2017). Freshwater availability
(Rodell et al., 2018) and habitat extent (e.g., Dixon et al., 2016)
are in decline in most parts of the world. Yet, the very structural
and ecological complexity that gives freshwater systems their
capacity for biodiversity and ecosystem services also makes them
very difficult to study. This is particularly true for the planet’s
wetlands, which are generally viewed as hard to define, seasonally
variable, and often inaccessible.

While widely studied by ecologists, food web networks are
under-utilized in bioassessment, even though they provide a
wide range of information–from taxon-specific, node-to-node
information to higher order information aggregated across the
community–and are a tool for visualizing the dense information
in complex systems, such as wetlands. Metrics from food
web analysis can be used to infer their stability (May, 1972),
robustness to biodiversity loss (Estrada, 2007; Gilbert, 2009), and
different assembly or interaction mechanisms (Vázquez, 2005;
Williams, 2011). Food web networks explicitly show biodiversity,
species interactions, and structural and functional relationships
of ecosystems (Dunne et al., 2002b; Thompson et al., 2012),
and are an intuitive communication tool for environmental
managers, particularly when presenting to lay audiences.
However, constructing food webs is laborious (Thompson et al.,
2012), underscoring the need for new tools that can facilitate
this process to support wider implementation in bioassessment
(Bohan et al., 2017).

DNA metabarcoding has the potential to revolutionize
biomonitoring and bioassessment by providing a fast way of
consistently observing biodiversity in high-resolution detail
(Baird and Hajibabaei, 2012). Further, DNA metabarcoding
can be both more cost-effective and more efficient than
traditional biomonitoring (Aylagas et al., 2018). The rapid
adoption of DNA metabarcoding can be seen in the exponential
rise in the number of papers published about biomonitoring
with DNA metabarcoding in the last decade1. While much
of the early literature focused on assessing how well DNA
metabarcoding technologies could reproduce biodiversity data
collected by traditional means (e.g., Gibson et al., 2015;
Emilson et al., 2017), more recent efforts have expanded
the application of this approach, exploring possibilities for
leveraging genomic data in novel ways (e.g., Gray et al.,

1Makiola, A., Compson, Z. G., Baird, D. J., Barnes, M. A., Boerlijst, S. P., Bouchez,
A., et al. (2019). Key questions for the next-generation of biomonitoring. Front.
Ecol. Evol.

2014; Bohan et al., 2017; Derocles et al., 2018; Deagle et al.,
2019).

Concurrently, efforts have sought to make use of
organism traits to leverage existing biodiversity knowledge
for bioassessment. Traits-based approaches assume that
environmental filtering selects species with suites of traits that
allow them to coexist under similar environmental conditions
(Poff, 1997). Since many species share the same traits, traits-
based approaches are taxon-free measures of biodiversity (sensu
Damuth et al., 1992; Doledec and Statzner, 2008; Andrews and
Hixson, 2014). Body size, for example, is a trait that aggregates
information across taxonomic groups, and has been invoked
as a powerful, trait-based indicator of community responses
to disturbance (Liu et al., 2015). While growing interest in
traits-based approaches has prompted some of its key advocates
to call it a “bandwagon” (McGill, 2015; Didham et al., 2016),
we argue trait-based approaches have failed to realize their
full potential, focusing primarily upon phenomenological case
studies and relying on re-application of traits approaches to
traditional analyses (e.g., ordination approaches). This approach
has led to vacuous generalizations about traits approaches,
lacking in mechanistic evidence (Didham et al., 2016). Recently
there has been growing interest in using key traits to construct
ecological networks by linking them to the rich taxonomic
lists generated by DNA metabarcoding. Bohan et al. (2017)
advocated for such an approach to improve biomonitoring,
and tools for the construction of heuristic food webs from
biological community data have been developed (Gray et al.,
2015; Compson et al., 2018). Nonetheless, while these studies
have demonstrated a proof-of-concept for heuristic food
web construction from ecological traits, the scale of these
applications has been limited, and their connection to real
food webs remains unknown, as are their relationships to
ecosystem functions.

Stable isotope analysis is one of the primary ways of assessing
food webs, yet it is an imperfect approach, often elucidating
only part of the food web, and requires (1) information for all
consumer food sources, failing when isotopic signatures are too
similar (Birkhofer et al., 2017), (2) an understanding of how
different sources fractionate for different isotopes, tissues, and
life stages of the consumer (Post, 2002; McCutchan et al., 2003),
and (3) an appropriate number of isotopes (i.e., n – 1 per food
source, Fry, 2006), as the usefulness of mixing models declines
when the number of sources exceeds the number of isotopes
(Lerner et al., 2018). Thus, despite the complementarity of DNA
metabarcoding and stabile isotope information (Kartzinel et al.,
2015), the promise of merging this information to provide new
ecological insights has not been fully realized.
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Here, we assess the spatial and temporal variability of
invertebrate food webs of a large wetland complex, and
examine how trait-based and stable isotope approaches can be
used to assess these complex systems. Specifically, this study
explores how stable isotope information can be used to both
validate and improve the inference from heuristic food webs
that are themselves constructed from DNA metabarcoding
data integrated with trait information. We first explore the
performance of heuristic food web properties (e.g., trophic links,
omnivory, trophic position) at resolving spatial and temporal
differences in a large wetland complex. Second, we qualitatively
explore how heuristic food web and stable isotope approaches
compare at resolving spatial and temporal patterns of trophic
position. Third, we compare how strongly the trophic position of
invertebrates inferred using heuristic food webs predicts trophic
position as measured by δ

15N values. Fourth, we examine how
the unprecedented detail provided by DNA-derived heuristic
food webs provides complementary information to stable isotope
analysis of trophic niche width. We conclude with an exploration
of the utility of heuristic food web analysis as a management tool
for rapid bioassessment.

MATERIALS AND METHODS

Study Sites and Sample Collection
Our study area encompassed the lower Saint John/Wolastoq
River (SJWR) and the connected Grand Lake Meadows (GLM),
Atlantic Canada’s largest freshwater wetland (Figure 1); hereafter,
we refer to the SJWR and GLM collectively as the “GLM
complex.” We examined three regions within this vast wetland
complex: a region within the mainstem SJWR (“mainstem”), a
region within the Portobello National Wildlife Refuge area in
the heart of the GLM (“wetland”), and a region in the Jemseg
River (“transition”), which is a low-flow, intermediate system
connecting the GLM to the SJWR. Within each of these three
regions, sites (n = 6 sites per region) were chosen to capture the
range of habitat and flow variability across these regions, and to
provide a wide range of trophic variability by which to explore
relationships between metrics from heuristic food web and stable
isotope analyses.

Sites were sampled in early June, early September, and mid-
December, 2016. We chose these time points because they
represented the beginning, middle, and end of the active, ice-free
season in our system. In the spring, ice break up occurs, creating
large ice jams and massive spring flooding in the SJRW and GLM
systems; consequently, June was the earliest point that we could
sample with conditions returning to base flow. Peak productivity
occurred in late-August into early September, and the active, ice-
free season ended in mid-December during our final sampling
event. Because major ice-flows scoured our system in spring of
2016, very little aquatic insect biomass was observed post-flood in
June. Because of this, stable isotope samples were only collected
in September and December, when there was enough biomass
for sampling. Because early September (the peak of biological
activity) and mid-December (when ice began reforming in our
system) represented extremes in the biological activity in our
system, the time points we selected for stable isotope sampling

FIGURE 1 | Map of the study area. (A) The Grand Lake Meadows complex,

located in southern New Brunswick, is Atlantic Canada’s largest freshwater

wetland. (B) This complex is protected both nationally (diagonal lines) and

provincially (light gray). Our study area consisted of three distinct regions (dark

gray): the wetland (Wetland), the mainstem Saint John/Wolastoq River

(Mainstem), and the Jemseg River (Transition), which connects the wetland to

the mainstem region. Within each region, six sites were sampled three times

(early June, early September, and mid-December).

were expected to represent extremes in associated food webs and
trophic dynamics.

At each site (n = 18, each sampled at three
time points), paired benthic kick-net samples were
collected using the standard protocol from the
Canadian Aquatic Biomonitoring Network (CABIN;
https://www.canada.ca/en/environment-climate-change/services/
canadian-aquatic-biomonitoring-network.html): one sample for
bulk sequencing and DNA metabarcoding of invertebrates, and
a second sample for assessment of morphological identification
of these taxa, organism body size, abundance, and analysis of
stable isotopes (δ13C and δ

15N). For bulk DNA samples, sterile
technique was used and nets were sterilized between samples
in a 1% bleach solution. DNA benthic samples (“DNA”) were
preserved in 95% ethanol and stored at −80◦C, but samples for
microscopy and stable isotope analysis (“morphological”) were
directly frozen (−20◦C) on return to the lab, to avoid altering
their isotopic composition (Arrington and Winemiller, 2002;
Barrow et al., 2008). Additionally, samples for producer baselines
were taken at each site, including detritus, biofilm, and dominant
macrophytes; these samples were placed in paper bags and dried
at 60◦C in the lab for at least 72 h.

Laboratory Processing
Morphological samples were thawed and sorted, with
invertebrates identified to the lowest taxonomic level (usually
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genus) using standard morphological keys (e.g., Merritt et al.,
2008). Voucher samples and high-resolution digital images of
key taxa are stored at the Environment and Climate Change
Canada lab at the University of New Brunswick, Fredericton.
Additionally, individuals were measured (total length, mm),
and dried at 60◦C. For stable isotope samples, all dominant
taxa (based on biomass) were selected from samples covering
all major functional feeding groups. Because of the mass
requirements for stable isotope samples, we only included
samples for taxonomic groups that had a dry biomass of
≥0.6mg. This usually translated to each stable isotope sample
including many individuals (>20); however, many predator
groups were assessed from fewer individuals (often <3) because
of the rarity of these taxa. Dried macroinvertebrate and food
web base (i.e., biofilm, macrophytes, and leaf litter) samples were
homogenized, weighed on a Sartorius MC21S microbalance
(3.0 ± 0.1mg for biofilm and plant tissue and 1.0 ± 0.1mg
for macroinvertebrate tissue), enclosed in 4 × 6mm tin cups
(Costech Analytical Technologies Inc., Valencia, California,
USA), and delivered to the Stable Isotopes in Nature Laboratory
(SINLAB) at the University of New Brunswick (http://www.unb.
ca/research/institutes/cri/sinlab/) for stable isotope analysis.

Stable Isotope Analysis
Natural abundance stable isotopes of C and N were assessed for
aquatic invertebrates and the food web base. Invertebrate and
food web base 13C, 15N, C, and N content were measured using a
Carlo Erba NC 2500 Elemental Analyzer (CE Instruments, Milan,
Italy) with a Thermo-Finnigan Delta Plus XP (Thermo-Electron
Corp., Bremen, Germany) isotope ratio mass spectrometer at
SINLAB. Macroinvertebrate and food web base δ

13C and δ
15N

isotope compositions were expressed in parts per thousand
(‰) relative to Vienna PeeDee Belemnite for C and air for N,
as follows:

δ = ([Rsample/Rstandard]− 1)×1, 000 (1)

where R is the ratio 13C/12C or 15N/14N. Instrumental error—
measured as the standard deviation of repeated measurements of
working laboratory standards (i.e., caffeine (δ13C = −35.05‰,
δ
15N = −2.87‰), bovine liver (δ13C = −18.8‰, δ15N = 7.2‰)
and muskellunge liver (δ13C = −22.3‰, δ

15N = 14‰))—was
<0.1 ‰ for both δ

13C and δ
15N.

DNA Extraction and Sequencing
Benthic samples for DNA metabarcoding were packed on ice
and shipped to the Biodiversity Institute of Ontario at the
University of Guelph for DNA extraction, PCR amplification,
and high throughput sequencing (HTS). Briefly, samples were
homogenized in sterile blenders and the slurry was subsampled
into 50mL conical tubes. Samples were centrifuged, excess
preservative ethanol was removed, and residual ethanol was
evaporated at 65◦C. Once dry, the homogenate was subsampled
into 2mL lysing matrix tubes (MP Biomedicals, Solon, Ohio)
and further homogenized using a MP FastPrep-24 Classic tissue
homogenizer (MP Biomedicals). Samples were then extracted
using a NucleoSpin Tissue Kit (Machery-Nagel, Düren, German)

according to the manufacturer’s protocol, eluting with 30 uL
molecular grade water. Samples were extracted in batches of
12–18 with a negative control (no sample added) for each batch.

Two COI fragments were amplified using the primer
sets BR5 (B_F 5′ CCIGAYATRGCITTYCCICG, R5_R
5′ GTRATIGCICCIGCIARIACIGG−314 bp) and F230R
(Folmer_F 5′ GGTCAACAAATCATAAAGATATTGG 230R_R
5′ CTTATRTTRTTTATICGIGGRAAIGC−230 bp) in a two-step
PCR following the protocol outlined in Gibson et al. (2015),
with the exception of having a 35 cycle regime in the first PCR.
For both primer sets, the annealing temperature (Ta) was 46◦C
for 1min. The melting temperatures (Tm) for these primers
are as follows: BR5 (forward = 61.4◦C, reverse = 56.4◦C)
and F230 (forward = 50.5◦C, reverse = 56.7◦C). For further
information about these primers, which were designed to target
a wide range of arthropod orders, see Gibson et al. (2015). A
negative control was included for each batch of PCR, which was
carried through each of the two PCR steps. Amplification success
was confirmed visually using a 1.5% agarose gel. Amplicons
were purified using a MinElute DNA purification system
(Qiagen) and quantified using a Quant-iT (Invitrogen, Waltham
Massachusetts, United States) PicoGreen dsDNA assay on a
TBS-380 Mini-Fluorometer (Turner Biosystems Sunnyvale
California, United States). All samples were normalized to the
same concentration, and the two amplified fragments were
pooled for each sample prior to dual-indexing using the Nextera
XT Index Kit (Illumina, San Diego, California) (FC-131-1002).
Indexed samples were pooled into one tube, purified through
magnetic bead purification, and quantified using the PicoGreen
dsDNA assay. Average fragment length was determined on an
Agilent Bioanalyzer 2100 (Santa Clara, California, United States)
before sequencing the library on an Illumina MiSeq using the
V3 sequencing chemistry kit (2 × 300) (MS-102-3003). A 10%
spike-in of PhiX was used as a control.

Bioinformatic Methods
Raw Illumina MiSeq paired-end reads were processed using
the SCVUC v2.1 COI metabarcode pipeline, available on
GitHub at https://github.com/Hajibabaei-Lab/SCVUC_COI_
metabarcode_pipeline. At each step, read and ESV statistics
were calculated (Supplementary Table S1) using custom scripts
(available at the above link). Briefly, forward and reverse raw
reads were paired using SEQPREP (available from https://github.
com/jstjohn/SeqPrep) with a Phred quality score cutoff of 20 and
an overlap of at least 25 bp (St. John, 2016). For each marker,
forward and reverse primers were trimmed using CUTADAPT
v1.14, ensuring trimmed reads were at least 150 bp long, allowing
no more than 3 N’s, and ensuring a minimum Phred quality
score of 20 at the ends (Martin, 2011). A global ESV analysis
was conducted by pooling all the data together, dereplicating
the reads using VSEARCH v2.4.2 with the “derep_fulllength”
command, and denoising with USEARCH v10.0.240 using
the unoise3 algorithm (Edgar, 2016; Rognes et al., 2016). The
denoising step removes sequences with predicted sequence
errors, any PhiX carryover from MiSeq sequencing, putative
chimeric sequences, and rare clusters. We defined rare clusters
as exact sequence variant (ESV) clusters including only one or
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two reads (singletons and doubletons) (Callahan et al., 2017).
A sample ESV matrix was generated using VSEARCH with the
“usearch_global” command with an identity of 1.0 (100% exact
sequence mapping, including matching of exact substrings).
The denoised ESVs were taxonomically assigned using the COI
classifier v3.2 (Porter and Hajibabaei, 2018; https://github.com/
terrimporter/CO1Classifier).

Heuristic Food Web Construction
Heuristic food webs were constructed using a previously
published pipeline (Compson et al., 2018). Briefly, this pipeline
takes presence-absence taxonomic lists generated by DNA
metabarcoding and pairs it with a customized interaction
database covering the taxa found in our system. Our database
of pairwise trophic interactions was created using a) information
gathered from existing trophic databases (e.g., Database of
Trophic Interactions; Brose et al., 2005), b) information from
a secondary text-mining pipeline, and c) information manually
gathered from systematic literature searches. Specifically, we
used an updated trophic linkage database from Compson
et al. (2018), which we updated to include novel taxa found
in the GLM complex. Information gaps on species linkages,
caused by missing species in our trophic interaction database,
were inferred using a series of trait filters based on other
information, including functional feeding group, body size, and
phylogenetic relatedness. From the complete set of possible
pairwise interactions, linkages were first reduced based on the
known functional feeding group of each taxa, and then further
reduced based on the average body size of each taxa. When
functional feeding group or body size traits were not available,
we obtained these traits from the next closest related species.
The updated trophic linkage database includes 50,975 pairwise
interactions and covers 965 invertebrate genera. Using this
updated database, we created adjacency matrices by constraining
interactions to only taxa present in a sample (for individual food
webs) or region (for metawebs). We then used the cheddar R
package (version 0.1-633; Hudson et al., 2013) to create food webs
for each replicate sample and extract relevant food web metrics
used for subsequent analyses.

Mixing Models for Trophic Position
Analysis of trophic position was done in two ways. First, we
created a two-source, two-isotope Bayesian mixing model using
the tRophicPosition position package (version 0.7.7; Quezada-
Romegialli et al., 2018) in R to summarize trophic position of
consumers in each of the dominant functional feeding groups
in our system (i.e., predators, collectors, grazers, omnivores, and
shredders) (Model 1):

δ
15Nc = 1N(TP − λ)+ α(δ15Nb1 + δ

15Nb2)− δ
15Nb2, (2)

where δ
15Nc is the nitrogen isotopic ratio of the consumer,

δ
15Nb1 is the nitrogen isotopic ratio of the first baseline (biofilm),

δ
15Nb2 is the nitrogen isotopic ratio of the second baseline (leaf
litter), 1N is the trophic enrichment factor (TEF) for nitrogen,
TP is the trophic position of the target consumer, and λ is the
trophic position of the baseline. Additionally, this model uses
a secondary mixing model to calculate α, which accounts for

fraction in δ
13C and estimates the relative contribution of each

source to the consumer’s trophic position:

α = ([δ13Cb2 − (δ13Cc + 1C)]/(TP − λ))/(δ13Cb2 + δ
13Cb1), (3)

where δ
13Cc is the carbon isotopic ratio of the consumer for

which we want to estimate trophic position, δ13Cb1 is the carbon
isotopic ratio of the first baseline (biofilm), δ13Cb2 is the carbon
isotopic ratio of the second baseline (leaf litter), and 1C is the
TEF for carbon. The Bayesian approach allows Equations (2)
and (3), which both include TP and α, to be solved iteratively,
with δ

13C and δ
15N values and TEFs for both consumers and

baselines modeled as random variables with vague prior normal
distributions of their means [dnorm(0,τ ), τ = 1/SD2] and
vague prior uniform distributions of their standard deviations
[dunif (1,100)]; TP and α are treated as random parameters with
uniform and Beta prior distributions, respectively (Quezada-
Romegialli et al., 2018). We used the function “multiSpeciesTP”
to define and initialize the Bayesian model, and to sample the
posterior distribution of trophic position. The Bayesian model
ran 10,000 iterations used for the parameters “n.adapt,” “n.iter,”
and “burnin” and used five parallel Markov Chain Monte Carlo
(MCMC) simulations using the JAGS (version 4.3.0) Gibbs
sampler (Plummer, 2003).

The second approach we employed for calculating trophic
position (TP) was a more conventional model (Model 2; Post,
2002):

TP = λ + (δ15Nc − [δ15Nb1 × α + δ
15Nb2 × (1− α)])/1N. (4)

Here, α is defined as,

α = (δ13Cc − δ
13Cb2)/(δ

13Cb1 − δ
13Cb2). (5)

This model allowed us to calculate individual trophic position
values for all consumers in our system, including those taxa
represented by few individuals; Bayesian models, which require
replicate observations for each consumer estimated, could only
provide group-level estimates and confidence intervals for well-
represented individuals and functional feeding groups across
food webs. Consequently, trophic position values obtained from
Model 2 were used for all linear regression analyses. For both
Model 1 and Model 2, TEFs were based on values for whole
organisms reported in McCutchan et al. (2003). Additionally, for
predators, we explored models using consumers as the baseline,
which involved changing the baseline trophic position from
λ = 1 (for biofilm and detritus) to λ = 2 for consumers feeding
primarily on biofilm (i.e., grazers) and terrestrial leaf litter (i.e.,
shredders). Finally, from trophic position (TP) estimated from
Model 2, we also calculated adjusted trophic position (ATP),
which used known information about the habits of each organism
or functional feeding group to constrain trophic position to not
go below these trophic levels (i.e., λ = 2 for consumers and λ = 3
for predators).
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Bayesian Estimates of Isotopic Food Web
Size
To compare how community-wide trophic niche breadth
varied spatially and temporally, we used the SIBER R package
(version 2.1.4; Jackson et al., 2011). Specifically, we examined
the Bayesian posterior estimate of the convex hull area of
each community, which encompasses all species in δ

13C-δ15N
bi-plot space and is a measure of the total amount of niche
space occupied by the community (Layman et al., 2007).
The Bayesian model utilized a JAGS Gibbs sampler with five
MCMC chains. This model fit initial multivariate normal
distributions to each group in the dataset with rjags (version
4-8), using the recommended default SIBER parameters and
priors (Jackson et al., 2011). The default priors included an
inverse Wishart prior for fitting ellipses and a vague normal
prior for the means; vague normal priors are recommended for
fitting the means because SIBER internally z-score standardizes
the data before model fitting, aiding in the JAGS fitting
process (Jackson et al., 2011). Because of spatial and temporal
variation in our producer baselines (Supplementary Figure S1,
Supplementary Table S2), prior to running Bayesian models
we converted our δ

13C data to autochthonous reliance
values (0–1) and our δ

15N data to trophic position values
(based on Model 2).

Statistical Analyses
All statistical analyses were conducted in R (version 3.6.0; R
Core Team, 2013). To assess the spatial and temporal variability
in heuristic food web metrics, including estimates of trophic
position, we created a linear mixed effects model using the
lme4 package (version 1.1-21; Bates et al., 2019), where Season
and Region were fixed effects, and Site was a random effect
nested in Region. Contrasts were set up a priori to maximize
comparisons across the different levels of the individual terms
and interactions. Model terms and interactions were assessed
using both t values and calculated statistical significance using
Satterthwaite’s method for approximating the degrees of freedom
using the lmerTest package (version 3.1-0, Kuznetsova et al.,
2017).

Linear regression analyses were used to assess how well-
trophic position measured from heuristic food webs predicted
trophic position measured from stable isotope values. First, we
extracted trophic position values from all food webs, including
metawebs, using the TrophicLevels function in the cheddar
package (version 0.1-633; Hudson et al., 2013). This function
provides multiple estimates of trophic position for each node
in the food web, including prey averaged trophic position
(PATP) and chain-averaged trophic position (CATP) (Levine,
1980; Cohen et al., 2003; Williams and Martinez, 2004; Jonsson
et al., 2005). We then paired these values with trophic position
estimates from stable isotope values (Model 2, Equations 4 and
5) according to taxa (at the genus level) and conducted separate
analyses with different predictor (i.e., PATP and CATP) and
response (i.e., TP and ATP) variables. Model significance was
assessed using p-values (α = 0.05), and models were compared
qualitatively using R2 statistics.

RESULTS

Heuristic Food Webs
Heuristic food webs constructed from DNA and paired trait
information elucidated both spatial and temporal patterns
in the GLM complex. Metawebs (i.e., food webs aggregated
across samples) from the wetland region of the complex
were relatively larger (i.e., more nodes), denser (i.e., higher
connectance), and had a higher maximum trophic position
(due in part because of more predators) than metawebs from
the transition and mainstem regions of the complex; metawebs
from the transition region were generally the smallest and
sparsest, with lower numbers of nodes, links, and maximum
trophic positions compared to metawebs of the other regions
(Figure 2). Metawebs generally constricted through time, such
that they got smaller moving from early June, to early September,
to mid-December; however, metawebs from the transition
region of the GLM complex were the smallest, least complex
food webs overall, and varied little over the study period
(Figure 2).

Assessment of food web properties across individual heuristic
food webs revealed seasonal but little spatial variation. The
strongest patterns appeared to occur between June and
December, but differences between other months were also
apparent (Supplementary Table S3, Figure 3), with September
exhibiting the most variation in food web metrics compared
to the other months (Figure 3). Spatial patterns were weaker,
with no significant Region terms for any of the metrics and Site
variation explaining only a small amount of the residual variation
via the random effects, but there were Season∗Region interactions
for the number of trophic links and chain-averaged trophic level
(Supplementary Table S3).

Stable Isotope Analysis of Trophic Position
and Community Niche Width
Bayesian estimation of trophic position using stable isotopes
(Model 1, Equations 2 and 3) revealed no significant seasonal
differences in maximum trophic position (i.e., the trophic
position of predators) between September and December
(Supplementary Table S4). However, when the model was run
with primary consumers as the baseline instead of the food web
base (i.e., leaf litter and biofilm), trophic position of predators was
significantly lower in the wetland region in December compared
to September (Supplementary Table S4). This, however, was
the only significant pattern revealed by Bayesian analysis of
trophic position (Supplementary Table S4). Because Bayesian
mixing models are very different from linear mixed effects
models and stable isotope data were only collected in September
and December, we also qualitatively assessed maximum trophic
position assessed from stable isotopes (Model 2, Equations 4
and 5) with maximum trophic position assessed from heuristic
food webs using a series of reduced linear mixed effects
models (Supplementary Table S5). These results indicated that
the stable isotope approach showed differences in maximum
trophic position in September compared to December, while
heuristic food webs did not (Supplementary Table S5). Similar
to Bayesian and full linear mixed effects models, these reduced
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FIGURE 2 | Metawebs for the Portobello Creek wetland complex (Wetland), the Jemseg River connecting the wetland to the mainstem (Transition) and the Saint

John/Wolastoq River (Mainstem) in (A–C) June, (D–F) September, and (G–I) December of 2016. Trophic position for each node was calculated as the food

chain-averaged value for that consumer or resource. For nodes, green squares depict producers, blue squares depict consumers, and open blue circles depict

cannibalistic consumers. The size of nodes and thickness of links are scaled to the maximum trophic position for each food web.

models failed to show any significant effects among regions
(Supplementary Table S5).

Invertebrate community trophic niche widths varied little
spatially and temporally (Figure 4). In general, trophic niche
widths were slightly larger for all regions in December—when
trophic positions were also higher for all regions (Figure 4A)—
compared to September, but these differences were not strong
as the 95% confidence intervals for all regions and seasons
overlapped (Figure 4B). While the trophic niche widths did
not change spatially or temporally, energy pathways did change
among regions through time (Figure 4A). Communities in the
wetland and transition regions, for example, both increased
in their autochthonous reliance moving from September to
December; communities in the mainstem region, however,
decreased in their autochthonous reliance moving from
September to December (Figure 4A). In general, communities
in the mainstem region were fueled by autochthonous
resources in September, but shifted toward a mixture of

autochthonous and allochthonous resources in December, while
communities in the wetland and transition regions relied on
both autochthonous and allochthonous resources in September
and increased in their reliance on autochthonous resources in
December (Figure 4A).

The Relationship Between Estimated and
Measured Trophic Position
Trophic position estimated from heuristic food webs was
generally a strong predictor of trophic position estimated from
stable isotope values (Supplementary Table S6). Prey-averaged
trophic position (PATP) was consistently the strongest predictor
of trophic position estimated from stable isotope values,
exhibiting the highest R2 values across models (seasonal models,
R2 range: 0.51–0.78; global models, R2 range: 0.48–0.60). The
strength of the relationships generally increased for predictions
of adjusted trophic position (ATP) (Supplementary Table S6),
as this variable constrained trophic position estimates based
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FIGURE 3 | Boxplots of the eight measured heuristic food web properties, expressed across the three regions of the GLM complex (Wetland, Transition, and

Mainstem) and across the three seasons of the study (June, September, and December). Food web metrics included the following whole-network properties: (A) the

number of nodes, (B) the number of trophic linkages among nodes, (C) the proportion of omnivory, (D) relative trophic vulnerability, or the average vulnerability across

all nodes, standardized by the number of trophic linkages, (E) the number of unique trophic species, (F) the trophic similarity measured across all nodes, (G) the

maximum prey-averaged trophic position, and (H) the maximum chain-averaged trophic position.
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FIGURE 4 | (A) Convex hulls for the three regions of the GLM complex in

September [open squares = wetland (WS), open circles = transition (TS), open

triangles = mainstem (MS)] and December [filled squares = wetland (WD), filled

circles = transition (TD), filled triangles = mainstem (MD)]. Convex hulls are

based on the centers of each of the functional feeding groups that make up

each community. (B) Density plots of the convex hull area are based on

posterior estimates from Bayesian mixing models analyzed using the R

package SIBER. Black dots depict group modes, and the shaded boxes

represent the 50% (dark gray), 75% (gray), and 95% (light gray) confidence

intervals.

on knowledge of the minimum possible trophic position of
a consumer. The global model predicting ATP (including all
paired samples across all regions and seasons) was significant
for both maximum PATP (R2 = 0.60, p < 1.00 e-15; Figure 5A)
and maximum chain-averaged trophic position (CATP; R2 =

0.38, p < 1.00 e-15; Figure 5C), and these relationships were
generally stronger for specific regions at specific time periods
(PATP R2 range: 0.58–0.78; CATP R2 range: 0.34–0.62). For these
models, the deviation in predicted andmeasured trophic position
varied based on functional feeding group. For example, the
best predictor (i.e., PATP) tended to underestimate the trophic
position inferred from stable isotopes for filter-feeders, but
predictions closely matched for collector-gatherers, shredders,
and predators, the latter which exhibited the lowest amount of
variation in trophic deviation (Figure 5B). Trophic deviation

patterns changed when CATP was used as the predictor, which
tended to better predict the trophic position of functional feeding
groups closer to the base of the food web and over predict
the trophic position of functional feeding groups at higher
trophic levels (Figure 5D). Finally, across all individual food
webs, models that only included the maximum trophic position
of each food web revealed that heuristic food web estimates
significantly predicted the maximum trophic position estimated
by stable isotope analysis (Supplementary Table S6, producer
baseline models; all p < 0.05), but that these patterns were
relatively weak (R2 range: 0.13–0.17); these patterns, however, did
not hold when consumer baselines were used in trophic position
models instead of producer baselines (Supplementary Table S6,
consumer baseline models; all p > 0.05).

DISCUSSION

The Predictive and Discriminatory Power
of Heuristic Food Webs
We have demonstrated that heuristic food webs can provide a
reliable and powerful tool for the characterization of invertebrate
community structure and assessment of spatial and temporal
differences among the wetland, transitional, and mainstem
regions of the GLM complex. Metawebs of the three regions
indicated that all food webs became less connected moving
from June to September to December, and that the largest
spatial differences across regions were in June and December,
where the wetland trophic network was clearly larger and
denser than transition and mainstem networks. Analysis of
individual food webs indicated that temporal patterns were
more pronounced than spatial patterns. All the food web
properties we examined showed significant variation seasonally,
whereas none showed significant spatial variation, though there
were significant Region∗Season terms for both trophic links
and chain-averaged trophic position (Supplementary Table S3).
These results support those found in another study examining
DNA-based heuristic food webs in a different wetland complex,
the Peace-Athabasca Delta, in northern Alberta (Compson et al.,
2018). Given that extensive flooding in both the Peace-Athabasca
Delta and GLM complex are regular events, connecting the
wetlands to the main river channels, perhaps it is not surprising
that these aquatic habitats can appear structurally homogeneous
(Thomaz et al., 2007). However, the apparent contradiction
between our metawebs, which showed clear structural differences
among regions, and analysis of individual food webs suggests
that it is more likely that spatial variability among sites within
these regions was high, and this was certainly the case at all
sites in September (Figure 3). This highlights one of the key
advantages of metawebs as a visualization tool for biodiversity
and community structure: while they do not convey the site-
level variation within a region, because they are an aggregator
of all detected biodiversity in a system, they give an overview of
how these taxa are structured and interact trophically, providing
scientists with a tool for making predictions about how a
system might respond to perturbations (e.g., species extirpations
or invasions, changes in resource availability, anthropogenic
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FIGURE 5 | Global linear regression models illustrating how well two heuristic food web estimates of trophic position [(A) prey-averaged trophic position and (C)

chain-averaged trophic position] predicted trophic position inferred from stable isotope analysis. Points have been jittered for visualization purposes. (B,D) Deviation of

different functional feeding groups are indicated by black dots with 95% confidence intervals; negative values indicate when heuristic food web analysis

underestimated stable isotope trophic position, and positive values indicate when heuristic food web analysis overestimated stable isotope trophic position.

impacts) and how ecosystems function (reviewed in Thompson
et al., 2012).

Stable isotope analysis generally confirmed the spatial and
temporal patterns revealed by our heuristic food web analysis.
For example, our Bayesian mixing models (Model 1, Equations
2 and 3) demonstrated that predators had a significantly
higher trophic position in September compared to December
at sites in the wetland region, but that there were no spatial
differences in the trophic position of predators or any other
consumers. Given that we only collected stable isotope samples
in September and December, a more direct comparison of how
well-heuristic food webs and stable isotopes resolved spatial and
temporal patterns is a qualitative assessment of the reduced
linear mixed effects models (Supplementary Table S5). Again,
analysis of trophic position calculated from stable isotope values
(Model 2, Equation 4 and 5) indicated that maximum trophic
position only varied seasonally, and that there were no spatial
differences. Interestingly, the two food web metrics we examined
(i.e., prey-averaged trophic position and chain-averaged trophic

position) differed neither spatially nor temporally using the
reduced linear mixed effects models (i.e., using only September
and December data) (Supplementary Table S5). Here, the
discrepancy of the two approaches could have arisen because
the maximum trophic position measured using stable isotopes
is based on the single, highest value of all taxa examined in
the community, whereas both heuristic food web metrics for
maximum trophic position are integrated estimates of all the
possible links to the top predator, meaning that the heuristic
approach is a more integrated estimate across the entire food
web. Additionally, these differences could have arisen because
of our sampling design, since we targeted functional feeding
groups with sufficient biomass to support stable isotope analysis.
While we assessed all predators in our samples in order to get
the best estimate of maximum trophic position, this approach
means that in September, when we found many more predators
than in December, we increased our chances of finding a
single predator with a high trophic position value, potentially
exacerbating differences between September and December.
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This illustrates why Bayesian mixing models, which integrate
variation in trophic position across all predators (or other
functional feeding groups), are a more robust approach for
measuring trophic position compared to point estimates from
simpler mixing models. Similarly, heuristic food webs, which are
created from DNA-metabarcoding data of the entire community
in the sample, are likely to be a more robust estimate of
maximum trophic position, as these estimates integrate all
members of the community and are less biased to subsampling
of larger individuals.

One of the most promising results emerging from this
study was the finding that trophic position measured from
heuristic food webs predicted trophic position inferred from
stable isotope analysis. Significant variation was explained when
measured across all paired samples (i.e., global models, R2

range: 0.31–0.60; all models p < 0.05), which improved further
(R2 range: 0.34–0.78, all models p < 0.05) when the analysis
was constrained within the metaweb of a specific region and
season (Supplementary Table S6, Figure 5). One caveat of these
models is that the cluster of points at the baselines has
a strong leveraging effect on the linear patterns; when we
examined the models with the baselines removed, patterns were
generally weaker (data not shown). Further, when we explored
models for individual functional feeding groups or maximum
trophic position, patterns were much weaker and often not
significant (Supplementary Table S6). Consequently, it is likely
that heuristic food webs will do a better job at predicting the
trophic structure of an entire community and not necessarily the
specific trophic position of individual consumers or functional
feeding groups. However, it is important to emphasize that
deviation from these linear patterns was predictable, especially
for some functional feeding groups. For example, models using
prey-averaged trophic position consistently underestimated the
trophic position of filter-feeders, while other groups were much
more consistently predicted (Figure 5B). These findings suggest
the possibility of calibrating heuristic food webs using stable
isotope data. While it is impractical—if not impossible—to
collect stable isotope data for all members of a community,
our findings suggest that collecting samples from a few key
functional feeding groups could allow the trophic position of
some groups to be better predicted by heuristic food web
analysis. Importantly, despite some groups (e.g., collector-
gatherers, omnivores) exhibiting a wide range of variation in
their deviation from these linear predictions, estimates of trophic
position for invertebrate predators exhibited the least deviation,
perhaps because they obtain biomass from many different chains
in a food web.

Given that our heuristic food web and stable isotope analyses
did not assess fish and other vertebrate predators feeding higher
in the food web, these taxa represent important groups for
future case studies linking ecological network and stable isotope
approaches. Based on our findings, which indicate that heuristic
food webs best predict the trophic position of invertebrate
predators in models covering a wide range of functional feeding
groups, we hypothesize that including vertebrate predators in
these food webs will (a) improve whole-food web regression
models of trophic position, and (b) lead to more accurate

estimates of trophic position of these vertebrate top predators,
with less trophic deviation, compared to invertebrate predators
and consumers. These hypotheses are contingent upon the scale
of the study, the hydrological connectivity of the system, seasonal
flow dynamics, and the disbursal and trophic specialization of
the taxa studied. For example, in hydrologically distinct systems
where vertebrate predators are disbursal limited or have narrow
trophic niches, trophic position estimates of these predators
will likely be the most accurate, while they should be relatively
weaker in hydrologically interconnected systems with mobile,
generalist predators. A larger-scale study—covering a wider
range of spatially and hydrologically distinct systems—would
likely be needed to assess patterns of mobile predators like fish.
However, given the hydrological interconnection of the GLM
complex and the extreme seasonal dynamics of this system, the
strong trophic position patterns we demonstrate for invertebrate
predators shows the promise of the heuristic food web approach,
even when ideal conditions are not met. If the trophic deviation
patterns we demonstrate hold in different systems, heuristic food
webs might live up to the promise of being a rapid indicator of
both trophic structure and trophic dynamics, which would be
especially useful in biodiverse systems that are difficult to study.

Merging DNA Metabarcoding and
Ecological Network Analysis
Measuring food webs poses a great challenge. Constructing a
food web requires the ability to sample and identify every species
in a system and then to determine, or at least infer, all the
trophic interactions among these species, which requires further
information about species traits (reviewed in Thompson et al.,
2012). These challenges illustrate why so few quality food webs
have been described in the literature (Dunne et al., 2002a).
Here, we have demonstrated the utility of employing a food-
web generating pipeline based on DNA-derived biodiversity
knowledge (Compson et al., 2018). Food webs can be generated
in this manner in a fraction of the time that would otherwise
be needed to quantify a trophic network, especially those
as complex as wetland food webs (Halls, 1997; Millennium
Ecosystem Assessment, 2005); yet, the quality and coverage of
trait information available for the breadth of biodiversity in trait
databases remains heterogeneous and incomplete (reviewed in
Schneider et al., 2019). Our pipeline was therefore based onmany
assumptions about species interactions (detailed in Compson
et al., 2018). Nonetheless, the generated heuristic food webs
performed well as predictors of trophic position derived from
stable isotope analysis, and exhibited similar spatial and temporal
patterns in trophic position compared to those revealed by stable
isotope analysis.

Exploring the composition of biological communities
based on their DNA signature permits rapid acquisition of
sequence-based occurrence data and thus orders of magnitude
more taxonomic information when compared with traditional
microscope-based taxonomy (Gibson et al., 2015). When
this high-resolution biodiversity information is organized
into ecological networks, it yields even more information on
connections among organisms and how this structures the
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food web; understanding the variation in this connectivity
can reveal complex ecological relationships (Winemiller, 1989;
Dunne et al., 2002b; Poisot and Gravel, 2014). Indeed, while
ecological networks have long been proposed as inexpensive
tools for assessment of biostructure (McCann, 2007), the added
resolution DNA-based networks provide can improve their use
as a tool, and even radically change the inferences we make
(Wirta et al., 2014). What is more, using DNA metabarcoding to
assess communities does not always require direct observation of
interactions, as gut contents, blood meal, or feces, for example,
can be sequenced and interactions inferred directly from DNA
metabarcoding results, circumventing the need for laborious
field observations, rearing experiments, or gut content analysis
(Clare et al., 2019). For this reason, genomics approaches are
particularly useful for resolving difficult trophic situations,
such as those involving hard to identify taxa, relationships
involving cryptic species, or interactions with fluid feeders.
These potential advantages of DNA-based ecological networks
are opening a new frontier in ecosystem monitoring, permitting
exploration of how networks change through space and time
in other ecosystems and, importantly, across stronger gradients
of environmental change. Our study demonstrated that strong
seasonal gradients dominate in the GLM complex, but this
system is relatively unimpaired and is hydrologically connected,
so it is not surprising that stronger spatial patterns were not
observed among regions. Further, while our study explored one
important food web metric—trophic position—it is unclear how
this and other food web metrics will relate to ecosystem function.
Certainly, network metrics provide a promising opportunity
to develop novel indicators (sensu Kissling et al., 2018) of
ecosystem change1.

Stable Isotope Analysis and DNA-Based
Ecological Network Analysis:
Complimentary Approaches
One of the more interesting results that emerged from this
study was how the unique information from heuristic food
web analysis and stable isotope analysis provided surprising,
yet complementary results, illuminating the complexity of the
food webs in the GLM complex. While heuristic food web
analysis provided both visual and quantitative data on the relative
structure, size, and complexity of the food webs in the three
regions of our study, stable isotope analysis illuminated the
trophic niche widths and energy pathways of communities in
these regions. For example, while trophic niche widths (based on
stable isotope analysis) differed neither seasonally nor spatially
in our system (Figure 4B), metawebs (based on heuristic food
web analysis) were clearly larger in the wetland region, and across
all regions, became generally smaller later in the year (Figure 2).
One of the explanations for these findings is that heuristic food
webs measure all of the organisms DNA can detect in a system,
whereas stable isotope analysis in our study considered only
dominant taxa (i.e., taxa with enough abundance or biomass to
constitute a composite isotope sample), and this could mean that
while a lot of the rare or non-dominant taxa were reduced (at least
below the levels of DNA detectability) later in the season, the core

food web backbone (sensu Serrano et al., 2009; Lu et al., 2016) was
more resilient to seasonal change in our system, an idea that is
beyond the scope of this study but that warrants more attention.
Future studies might be able to use network principles (e.g., the
friendship paradox; Pires et al., 2017) to identify highly connected
species critical to food webs prior to sampling the entire network,
which could aid in project development, enabling researchers to
identify key community members of a food web to sample for
stable isotope analysis.

Another example of the complementary information stable
isotope and heuristic food web analyses provide is the
finding that—despite the lack of differences in trophic niche
widths across space and time—stable isotopes revealed a
shift in autochthonous reliance from September to December:
the wetland and transition regions generally increased in
autochthonous reliance moving later into the year, while
the mainstem region decreased in autochthonous reliance
(Figure 4A). It is possible that these differing patterns in resource
use could reflect the different flow and productivity dynamics
in the three regions of the GLM complex. In the highly
productive wetland and transition regions, where allochthonous
litter subsidies are probably exhausted or buried in sediments
later in the year, leaf litter is likely less important in the winter;
however, in the mainstem region, where flows are much higher
and ice cover takes longer to establish, tributaries of the SJWR
likely deliver a relatively high allochthonous subsidy later in
the year. Consequently, while food webs were getting relatively
smaller across the regions of the GLM complex throughout
the year, the dominant energy pathways of the food webs
changed in different regions and in different ways, indicating that
seasonality, and potentially other disturbances that reduce food
web size (e.g., Lu et al., 2016), could impact the structure and
function of these ecosystems differently. It should be noted that
while our study used aggregate samples (i.e., many individuals of
a particular taxon made up an isotope sample), one advantage of
stable isotope analysis compared to heuristic food web analysis
is that, when a single sample is taken for each individual, it
is possible to measure the variation among individuals in a
population, enabling the elucidation of intraspecific energy flow
pathways, especially for larger bodied consumers, like fish; in
studies where a more nuanced energy flow assessment is the aim,
the stable isotope and heuristic food web approaches will provide
even more complementary information, with heuristic food webs
providing a broad picture of how all of the organisms in a food
web are connected, and stable isotope analysis elucidating specific
pathways of interest.

Collectively, the complementary information gleaned from
stable isotope and heuristic food web analyses may indicate
important ways communities in the GLM complex function and
utilize resources. Intra- and interspecific competition, ecological
opportunity, and predation all govern among-individual niche
variation, which likely both affects and is affected by community
dynamics (Araújo et al., 2011). Because these mechanisms can
be affected by seasonality in wetlands, where the flood regime
and seasonal drying can exert strong pressures on organisms
and communities (Costa-Pereira et al., 2017), they also likely
influence community niche width, which is linked to ecosystem
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function (Salles et al., 2009). In the GLM complex, which is
subject to late-season drying and early winter ice formation,
these seasonal processes can act to both decrease ecological
opportunity by reducing habitat connectivity and increase
competition by reducing resource availability, two processes
that would have opposite effects on community niche width.
This supposition is congruent with our findings that trophic
niche width differed among regions in neither September (when
habitat connectivity was reduced due to late season drying) nor
December (when habitat connectivity was further reduced by
ice formation), and likely the reduced habitat connectivity by
these events limited any increase in trophic niche width that
could have arisen from increased competition. Our findings
differed from those of another study in the Pantanal wetland,
where habitat constriction in the dry season led to reduced niche
width in a tetra fish population despite increased competition
(Costa-Pereira et al., 2017). The differing patterns found in our
study could be attributed to the fact that habitat constriction
likely impacts the niche width of fish, which are relatively mobile,
more than invertebrates, especially at the scales examined in
our study.

Our results illustrate the complementary nature of DNA-
based network analysis and stable isotope analysis. Stable isotope
analysis provides a longer-term picture of energy flow patterns
of key or dominant taxa, while DNA-based heuristic food
web analysis provides a high-resolution snapshot in time of
the entire community of interest. These two approaches will
likely be synergistic in cases where (1) multiple pressures
drive biodiversity and trophic patterns differently, (2) direct
observation of trophic interactions cannot be made, (3) a
community has a lot of cryptic species that are in competition
or could undergo niche differentiation, (4) general energy
flow pathways can be established with stable isotope mixing
models, but more resolution is required to elucidate the players
responsible for these patterns (e.g., DNA metabarcoding the gut
contents of fish or riparian predators to better resolve aquatic-
terrestrial linkages), and (5) researchers exploring heuristic
food web analysis require additional evidence about interaction
strengths among linkages. Of these potential synergies, the latter
is probably the most challenging, especially in complex food
webs, because while heuristic food webs can accommodate
an unlimited number of basal food web resources, even the
most sophisticated isotopic mixing model is mathematically
constrained by the number of isotopic tracers in the system,
which must also exhibit isotopically distinct signatures (Fry,
2006). Even in cases where food webs are very complex, however,
stable isotopes could elucidate the food web backbone (sensu
Serrano et al., 2009), such that dominant energy pathways of a
food web are quantified. Certainly, interaction strengths among
nodes of heuristic food webs could be quantified in other ways,
including through added abundance or biomass information
(Thompson et al., 2012), mathematical occupancy modeling
with replicate DNA metabarcoding samples (Doi et al., 2019),
probabilistic models of interaction (Morales-Castilla et al., 2015),
or even using relative read abundances (Deagle et al., 2019). How
much this added information will improve heuristic food web
predictions of ecosystem structure and function remains to be

seen and will likely vary based on ecosystem type and spatial and
temporal scales, but this question is at the forefront of the field of
ecological network analysis.

Overcoming the Limitations of DNA-Based
Heuristic Food Webs as a Rapid
Bioassessment Tool
Ecological network analysis has long been argued to be a tool
that could provide inexpensive analysis of biostructure (McCann,
2007), and with the advent of next-generation sequencing
approaches, this tool has the potential to be part of an
analytical pipeline for rapid bioassessment (Gray et al., 2014;
Bohan et al., 2017). At the time of writing, we were unaware
of any international jurisdiction which is actively employing
DNA metabarcoding for biomonitoring purposes or ecological
network analysis. Heuristic food webs—which take ecological
co-occurrence networks and build upon them by integrating
known or measured trait information, such as information about
feeding habits, species interactions, or stable isotopes—present
challenges for use as a rapid bioassessment tool, despite the clear
advantages they provide over simple co-occurrence networks
(e.g., calculation of food web metrics, such as trophic position or
relative network vulnerability).

We have identified five key advances that will overcome
many of the limitations preventing widespread adoption of
DNA-based heuristic food web analysis as a tool for rapid
bioassessment. (1) A more widespread adoption of genomics
tools is needed, particularly among groups in charge of
biomonitoring programs. As standardized field sampling
methods are established for environmental genomics sampling
(e.g., see CABIN and National Ecological Observatory Network
protocols), DNA sequencing technologies are advanced (Singer
et al., 2019), genomics laboratory procedures are refined, and
primers are optimized (sensu Hajibabaei et al., 2019), the cost of
implementing genomics approaches will come down and public
adoption should increase, but technological advancements are
not often readily adopted by resource managers and policy
makers (Darling and Mahon, 2011). Consequently, more needs
to be done to improve biomonitoring of aquatic ecosystems
by bringing stakeholders together, such as GEO BON (www.
geobon.org), GEOSS (www.earthobservations.org), COST
action DNAqua-Net (www.dnaqua.net), and SYNAQUA (www.
interreg-francesuisse.eu) (Hering et al., 2018; Leese et al., 2018;
Lefrançois et al., 2018; Pawlowski et al., 2018). (2) Bioinformatics
pipelines need to be developed, reviewed (sensu Mangul et al.,
2019), and made publicly available via open-source archival
services, like GitHub or SourceForge, and through package
managers, like Bioconda (Grüning et al., 2018). (3) Open-source
databases for both genomic (e.g., BOLD, GenBank) and trait
data (e.g., GloBI, EPA’s Freshwater Biological Traits Database)
need to be improved. Currently, the coverage of these databases
is lacking, especially for understudied systems (Compson et al.,
2018; Curry et al., 2018), but efforts to develop and integrate
databases for ecological network analysis are underway (e.g.,
Poisot et al., 2016; Vissault et al., 2019). (4) We require more
case studies demonstrating the utility of DNA-based network
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and food web analyses and the meaning of their derived
network metrics. Testing these tools will be important in novel
ecosystems, across extreme environmental gradients, and across
large spatial and temporal scales, especially in cases where we
can pair these assessments with measured estimates of ecosystem
function. (5) To facilitate these efforts and to house and curate
the massive amount of data next-generation biomonitoring
will generate (sensu Hey and Trefethen, 2003; Bell et al., 2009),
an international biomonitoring consortium needs to emerge,
with federated centers for data aggregation1. Promisingly,
advancements in any one of these areas will improve the utility
and adoption of DNA-based network approaches, as progress in
these areas will be linked but not necessarily limited by uneven
advancement. Collective advancements made on these five fronts
will enable heuristic food webs to steadily improve in their
resolution, utility, and predictive power.

DATA AVAILABILITY STATEMENT

Raw data, R scripts, metadata, and supplementary
material supporting the conclusions of this manuscript
can be found in the project GitHub repository:
https://github.com/zacchaeus-compson/Biomonitoring-with-
DNA-based-food-webs. Additionally, the NCBI SRA BioProject
ID is PRJNA555584, and the data will be released upon
publication of the manuscript.

AUTHOR CONTRIBUTIONS

ZC, WM, BH, ZO’M, and DB conceived and designed the
experiment. ZC and ZO’M conducted the field and lab work.
MH and MW performed the DNA extraction, amplification,
and sequencing. TP performed all the bioinformatics related
to genomics data. The lab of BH processed the stable isotope
samples. ZC and WM performed all the statistical analyses.

ZC wrote the first draft of the manuscript, and all authors
contributed to subsequent revisions.

FUNDING

DB wishes to acknowledge funding support for this work
from Environment and Climate Change Canada’s Strategic
Application of Genomics in the Environment (STAGE) program.
CB acknowledges a joint IPSNP/NSERC Engage Grant (EGP
486592-15), which provided funding for database development
and an associated text mining pipeline, as well as financial
support to MA from this program and from Environment &
Climate Change Canada. Research support was also provided
by a Natural Sciences and Engineering Research Council of
Canada Collaborative Research and Development grant (NSERC
CRD CRDPJ 462708-13) awarded to DB, RC, and others, Grand
Lake Meadows Endowment Fund awarded to WM, ZC, and
others, and New Brunswick Environmental Trust Fund and New
Brunswick Wildlife Trust Fund awarded to WM, ZC, and BH.
ZC, TP, and AB were funded by the Government of Canada
through the Genomics Research and Development Initiative
(GRDI) Ecobiomics project.

ACKNOWLEDGMENTS

We thank members of the Canadian Rivers Institute and
Mactaquac Aquatic Ecosystem Study who provided field and
laboratory assistance, including Colin DeCoste, Liam MacNeil,
and Laura Hunt.

SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found
online at: https://www.frontiersin.org/articles/10.3389/fevo.
2019.00395/full#supplementary-material

REFERENCES

Andrews, P., and Hixson, S. (2014). Taxon-free methods of palaeoecology. Ann.
Zool. Fennici 51, 269–285. doi: 10.5735/086.051.0225

Araújo, M. S., Bolnick, D. I., and Layman, C. A. (2011). The
ecological causes of individual specialisation. Ecol. Lett. 14, 948–958.
doi: 10.1111/j.1461-0248.2011.01662.x

Arrington, D. A., and Winemiller, K. O. (2002). Preservation effects on
stable isotope analysis of fish muscle. Trans. Am. Fish. Soc. 131, 337–342.
doi: 10.1577/1548-8659(2002)131<0337:PEOSIA>2.0.CO;2

Aylagas, E., Borja, Á., Muxika, I., and Rodríguez-Ezpeleta, N. (2018).
Adapting metabarcoding-based benthic biomonitoring into routine
marine ecological status assessment networks. Ecol. Indic. 95, 194–202.
doi: 10.1016/j.ecolind.2018.07.044

Baird, D. J., and Hajibabaei, M. (2012). Biomonitoring 2.0: a new paradigm in
ecosystem assessmentmade possible by next-generation DNA sequencing.Mol.

Ecol. 21, 2039–2044. doi: 10.1111/j.1365-294X.2012.05519.x
Barrow, L. M., Bjorndal, K. A., and Reich, K. J. (2008). Effects of preservation

method on stable carbon and nitrogen isotope values. Physio. Biochem. Zool.

81, 688–693. doi: 10.1086/588172

Bates, D., Maechler, M., Bolker, B., Walker, S., Christensen, R. H. B., Singmann,
H., et al. (2019). Package ‘lme4’. Linear Mixed-Effects Models Using S4 Classes. R
package version, 1.1-21. Available online at: https://github.com/lme4/lme4/

Bell, G., Hey, T., and Szalay, A. (2009). Beyond the data deluge. Science 323,
1297–1298. doi: 10.1126/science.1170411

Birkhofer, K., Bylund, H., Dalin, P., Ferlian, O., Gagic, V., Hambäck, P. A., et al.
(2017). Methods to identify the prey of invertebrate predators in terrestrial field
studies. Ecol. Evol. 7, 1942–1953. doi: 10.1002/ece3.2791

Bohan, D. A., Vacher, C., Tamaddoni-Nezhad, A., Raybould, A., Dumbrell, A.
J., and Woodward, G. (2017). Next-generation global biomonitoring: large-
scale, automated reconstruction of ecological networks. Trends Ecol. Evol. 32,
477–487. doi: 10.1016/j.tree.2017.03.001

Brose, U., Cushing, L., Berlow, E. L., Jonsson, T., Banasek-Richter, C., Bersier,
L. F., et al. (2005). Body sizes of consumers and their resources. Ecology 86,
2545–2545. doi: 10.1890/05-0379

Callahan, B. J., McMurdie, P. J., and Holmes, S. P. (2017). Exact sequence variants
should replace operational taxonomic units in marker-gene data analysis. ISME

J. 11, 2639–2643. doi: 10.1038/ismej.2017.119
Cazzolla Gatti, R. (2016). Freshwater biodiversity: a review of local and global

threats. Int. J. Environ. Stud. 73, 887–904. doi: 10.1080/00207233.2016.1204133

Frontiers in Ecology and Evolution | www.frontiersin.org 14 November 2019 | Volume 7 | Article 395

https://github.com/zacchaeus-compson/Biomonitoring-with-DNA-based-food-webs
https://www.frontiersin.org/articles/10.3389/fevo.2019.00395/full#supplementary-material
https://doi.org/10.5735/086.051.0225
https://doi.org/10.1111/j.1461-0248.2011.01662.x
https://doi.org/10.1577/1548-8659(2002)131<0337:PEOSIA>2.0.CO;2
https://doi.org/10.1016/j.ecolind.2018.07.044
https://doi.org/10.1111/j.1365-294X.2012.05519.x
https://doi.org/10.1086/588172
https://github.com/lme4/lme4/
https://doi.org/10.1126/science.1170411
https://doi.org/10.1002/ece3.2791
https://doi.org/10.1016/j.tree.2017.03.001
https://doi.org/10.1890/05-0379
https://doi.org/10.1038/ismej.2017.119
https://doi.org/10.1080/00207233.2016.1204133
https://www.frontiersin.org/journals/ecology-and-evolution
https://www.frontiersin.org
https://www.frontiersin.org/journals/ecology-and-evolution#articles


Compson et al. Biomonitoring With DNA-Based Food Webs

Clare, E. L., Fazekas, A. J., Ivanova, N. V., Floyd, R.M., Hebert, P. D., Adams, A.M.,
et al. (2019). Approaches to integrating genetic data into ecological networks.
Mol. Ecol. 28, 503–519. doi: 10.1111/mec.14941

Cohen, J. E., Jonsson, T., and Carpenter, S. R. (2003). Ecological community
description using the food web, species abundance, and body size. Proc. Nat.
Acad. Sci. U.S.A. 100, 1781–1786. doi: 10.1073/pnas.232715699

Compson, Z. G., Monk, W. A., Curry, C. J., Gravel, D., Bush, A., Baker, C. J.,
et al. (2018). Linking DNA metabarcoding and text mining to create network-
based biomonitoring tools: a case study on boreal wetland macroinvertebrate
communities. Adv. Ecol. Res. 59, 33–74 doi: 10.1016/bs.aecr.2018.09.001

Costa-Pereira, R., Tavares, L. E., de Camargo, P. B., and Araújo, M. S. (2017).
Seasonal population and individual niche dynamics in a tetra fish in the
Pantanal wetlands. Biotropica 49, 531–538. doi: 10.1111/btp.12434

Curry, C. J., Gibson, J. F., Shokralla, S., Hajibabaei, M., and Baird, D. J. (2018).
Identifying North American freshwater invertebrates using DNA barcodes:
are existing COI sequence libraries fit for purpose? Freshw. Sci. 37, 178–189.
doi: 10.1086/696613

Damuth, J. D., Jablonski, D., Harris, J. A., Potts, R., Stucky, R. K., Sues, H. D., et al.
(1992). “Taxon-free characterization of animal communities,” in Terrestrial

Ecosystems Through Time: Evolutionary Paleoecology of Terrestrial Plants and

Animals, eds A. K. Behrensmeyer, J. D. Damuth, W. A. DiMichele, R. Potts, H.
Sues, and S. L. Wing (Chicago, IL: University of Chicago Press), 183–203.

Darling, J. A., and Mahon, A. R. (2011). From molecules to management:
adopting DNA-based methods for monitoring biological invasions in aquatic
environments. Env. Res. 111, 978–988. doi: 10.1016/j.envres.2011.02.001

Deagle, B. E., Thomas, A. C., McInnes, J. C., Clarke, L. J., Vesterinen, E. J.,
Clare, E. L., et al. (2019). Counting with DNA in metabarcoding studies: how
should we convert sequence reads to dietary data? Mol. Ecol. 28, 391–406.
doi: 10.1111/mec.14734

Derocles, S. A., Bohan, D. A., Dumbrell, A. J., Kitson, J. J., Massol, F., Pauvert,
C., et al. (2018). Biomonitoring for the 21st century: integrating next-
generation sequencing into ecological network analysis. Adv. Ecol. Res. 58,
1–62. doi: 10.1016/bs.aecr.2017.12.001

Didham, R. K., Leather, and, S. R., and Basset, Y. (2016). Circle the
bandwagons–challenges mount against the theoretical foundations of applied
functional trait and ecosystem service research. Insect Conserv. Divers. 9, 1–3.
doi: 10.1111/icad.12150

Dixon, M. J. R., Loh, J., Davidson, N. C., Beltrame, C., Freeman, R., and Walpole,
M. (2016). Tracking global change in ecosystem area: the wetland extent trends
index. Biol. Conserv. 193, 27–35. doi: 10.1016/j.biocon.2015.10.023

Doi, H., Fukaya, K., Oka, S. I., Sato, K., Kondoh, M., and Miya, M. (2019).
Evaluation of detection probabilities at the water-filtering and initial PCR steps
in environmental DNA metabarcoding using a multispecies site occupancy
model. Sci. Rep. 9:3581. doi: 10.1038/s41598-019-40233-1

Doledec, S., and Statzner, B. (2008). Invertebrate traits for the biomonitoring of
large European rivers: an assessment of specific types of human impact. Freshw.
Biol. 53, 617–634. doi: 10.1111/j.1365-2427.2007.01924.x

Dudgeon, D., Arthington, A. H., Gessner, M. O., Kawabata, Z. I., Knowler,
D. J., Lévêque, C., et al. (2006). Freshwater biodiversity: importance,
threats, status and conservation challenges. Biol. Rev. 81, 163–182.
doi: 10.1017/S1464793105006950

Dunne, J. A., Williams, R. J., and Martinez, N. D. (2002a). Food-web structure and
network theory: the role of connectance and size. Proc. Nat. Acad. Sci. U.S.A.
99, 12917–12922. doi: 10.1073/pnas.192407699

Dunne, J. A., Williams, R. J., and Martinez, N. D. (2002b). Network structure and
biodiversity loss in foodwebs: robustness increases with connectance. Ecol. Lett.
5, 558–567. doi: 10.1046/j.1461-0248.2002.00354.x

Edgar, R. C. (2016). UNOISE2: improved error-correction for Illumina 16S and
ITS amplicon sequencing. bioRxiv [Preprint]. doi: 10.1101/081257

Emilson, C. E., Thompson, D. G., Venier, L. A., Porter, T. M., Swystun,
T., Chartrand, D., et al. (2017). DNA metabarcoding and morphological
macroinvertebrate metrics reveal the same changes in boreal watersheds across
an environmental gradient. Sci. Rep. 7:12777. doi: 10.1038/s41598-017-13157-x

Estrada, E. (2007). Food webs robustness to biodiversity loss: the roles of
connectance, expansibility and degree distribution. J. Theor. Biol. 244, 296–307.
doi: 10.1016/j.jtbi.2006.08.002

Fry, B. (2006). Stable Isotope Ecology. New York, NY: Springer.

Gibson, J. F., Shokralla, S., Curry, C., Baird, D. J., Monk, W. A., King,
I., et al. (2015). Large-scale biomonitoring of remote and threatened
ecosystems via high-throughput sequencing. PLoS ONE 10:e0138432.
doi: 10.1371/journal.pone.0138432

Gilbert, A. J. (2009). Connectance indicates the robustness of food
webs when subjected to species loss. Ecol. Indic. 9, 72–80.
doi: 10.1016/j.ecolind.2008.01.010

Gray, C., Baird, D. J., Baumgartner, S., Jacob, U., Jenkins, G. B., O’Gorman, E. J.,
et al. (2014). Ecological networks: the missing links in biomonitoring science. J.
Appl. Ecol. 51, 1444–1449. doi: 10.1111/1365-2664.12300

Gray, C., Figueroa, D. H., Hudson, L. N., Ma, A., Perkins, D., and Woodward,
G. (2015). Joining the dots: an automated method for constructing food
webs from compendia of published interactions. Food Webs 5, 11–20.
doi: 10.1016/j.fooweb.2015.09.001

Grüning, B., Dale, R., Sjödin, A., Chapman, B. A., Rowe, J., Tomkins-Tinch, C. H.,
et al. (2018). Bioconda: sustainable and comprehensive software distribution for
the life sciences. Nat. Methods 15, 475–476. doi: 10.1038/s41592-018-0046-7

Hajibabaei, M., Porter, T.M.,Wright, M., and Rudar, J. (2019). COImetabarcoding
primer choice affects richness and recovery of indicator taxa in freshwater
systems. PLoS ONE 14:e0220953. doi: 10.1371/journal.pone.0220953

Halls, A. (1997). Wetlands, Biodiversity and the Ramsar Convention: The Role of

the Convention on Wetlands in the Conservation and Wise Use of Biodiversity.
Gland: Ramsar Convention Bureau.

Hering, D., Borja, A., Jones, J. I., Pont, D., Boets, P., Bouchez, A., et al. (2018).
Implementation options for DNA-based identification into ecological status
assessment under the European Water Framework Directive. Water Res. 138,
192–205. doi: 10.1016/j.watres.2018.03.003

Hey, A. J., and Trefethen, A. E. (2003). “The data deluge: an e-science perspective,”
in Grid Computing: Making the Global Infrastructure a Reality, eds F. Berman,
G. Fox, and T. Hey (West Sussex, England: John Wiley & Sons Ltd.), 809–824.
doi: 10.1002/0470867167.ch36

Hu, S., Niu, Z., Chen, Y., Li, L., and Zhang, H. (2017). Global wetlands:
potential distribution, wetland loss, and status. Sci. Total Environ. 586, 319–327.
doi: 10.1016/j.scitotenv.2017.02.001

Hudson, L. N., Emerson, R., Jenkins, G. B., Layer, K., Ledger, M. E., Pichler, D. E.,
et al. (2013). Cheddar: analysis and visualisation of ecological communities in
R.Methods Ecol. Evol. 4, 99–104. doi: 10.1111/2041-210X.12005

Jackson, A. L., Inger, R., Parnell, A. C., and Bearhop, S. (2011). Comparing isotopic
niche widths among and within communities: SIBER–Stable Isotope Bayesian
Ellipses in R. J. Anim. Ecol. 80, 595–602. doi: 10.1111/j.1365-2656.2011.01806.x

Jonsson, T., Cohen, J. E., and Carpenter, S. R. (2005). Food webs, body size, and
species abundance in ecological community description. Adv. Ecol. Res. 36,
1–84. doi: 10.1016/S0065-2504(05)36001-6

Kartzinel, T. R., Chen, P. A., Coverdale, T. C., Erickson, D. L., Kress, W. J.,
Kuzmina, M. L., et al. (2015). DNA metabarcoding illuminates dietary niche
partitioning by African large herbivores. Proc. Nat. Acad. Sci. U.S.A. 112,
8019–8024. doi: 10.1073/pnas.1503283112

Kissling, W. D., Walls, R., Bowser, A., Jones, M. O., Kattge, J., Agosti, D., et al.
(2018). Towards global data products of essential biodiversity variables on
species traits. Nat. Ecol. Evol. 2, 1531–1540. doi: 10.1038/s41559-018-0667-3

Kuznetsova, A., Brockhoff, P. B., and Christensen, R. H. B. (2017). lmerTest
package: tests in linear mixed effects models. J. Stat. Softw. 82, 1–26.
doi: 10.18637/jss.v082.i13

Layman, C. A., Arrington, D. A., Montaña, C. G., and Post, D. M. (2007).
Can stable isotope ratios provide for community-wide measures of trophic
structure? Ecology 88, 42–48. doi: 10.1890/0012-9658(2007)88[42:CSIRPF]2.0.
CO;2

Leese, F., Bouchez, A., Abarenkov, K., Altermatt, F., Borja, Á., Bruce, K., et al.
(2018). Why we need sustainable networks bridging countries, disciplines,
cultures and generations for aquatic biomonitoring 2.0: a perspective
derived from the DNAqua-Net COST action. Adv. Ecol. Res. 58, 63–99.
doi: 10.1016/bs.aecr.2018.01.001

Lefrançois, E., Apothéloz-Perret-Gentil, L., Blancher, P., Botreau, S., Chardon,
C., Crepin, L., et al. (2018). Development and implementation of eco-
genomic tools for aquatic ecosystem biomonitoring: the SYNAQUA
French-Swiss program. Environ. Sci. Pollut. Res. 25, 33858–33866.
doi: 10.1007/s11356-018-2172-2

Frontiers in Ecology and Evolution | www.frontiersin.org 15 November 2019 | Volume 7 | Article 395

https://doi.org/10.1111/mec.14941
https://doi.org/10.1073/pnas.232715699
https://doi.org/10.1016/bs.aecr.2018.09.001
https://doi.org/10.1111/btp.12434
https://doi.org/10.1086/696613
https://doi.org/10.1016/j.envres.2011.02.001
https://doi.org/10.1111/mec.14734
https://doi.org/10.1016/bs.aecr.2017.12.001
https://doi.org/10.1111/icad.12150
https://doi.org/10.1016/j.biocon.2015.10.023
https://doi.org/10.1038/s41598-019-40233-1
https://doi.org/10.1111/j.1365-2427.2007.01924.x
https://doi.org/10.1017/S1464793105006950
https://doi.org/10.1073/pnas.192407699
https://doi.org/10.1046/j.1461-0248.2002.00354.x
https://doi.org/10.1101/081257
https://doi.org/10.1038/s41598-017-13157-x
https://doi.org/10.1016/j.jtbi.2006.08.002
https://doi.org/10.1371/journal.pone.0138432
https://doi.org/10.1016/j.ecolind.2008.01.010
https://doi.org/10.1111/1365-2664.12300
https://doi.org/10.1016/j.fooweb.2015.09.001
https://doi.org/10.1038/s41592-018-0046-7
https://doi.org/10.1371/journal.pone.0220953
https://doi.org/10.1016/j.watres.2018.03.003
https://doi.org/10.1002/0470867167.ch36
https://doi.org/10.1016/j.scitotenv.2017.02.001
https://doi.org/10.1111/2041-210X.12005
https://doi.org/10.1111/j.1365-2656.2011.01806.x
https://doi.org/10.1016/S0065-2504(05)36001-6
https://doi.org/10.1073/pnas.1503283112
https://doi.org/10.1038/s41559-018-0667-3
https://doi.org/10.18637/jss.v082.i13
https://doi.org/10.1890/0012-9658(2007)88[42:CSIRPF]2.0.CO;2
https://doi.org/10.1016/bs.aecr.2018.01.001
https://doi.org/10.1007/s11356-018-2172-2
https://www.frontiersin.org/journals/ecology-and-evolution
https://www.frontiersin.org
https://www.frontiersin.org/journals/ecology-and-evolution#articles


Compson et al. Biomonitoring With DNA-Based Food Webs

Lerner, J. E., Ono, K., Hernandez, K. M., Runstadler, J. A., Puryear, W. B., and
Polito, M. J. (2018). Evaluating the use of stable isotope analysis to infer the
feeding ecology of a growing US gray seal (Halichoerus grypus) population.
PLoS ONE 13:e0192241. doi: 10.1371/journal.pone.0192241

Levine, S. (1980). Several measures of trophic structure applicable to complex food
webs. J. Theor. Biol. 83, 195–207. doi: 10.1016/0022-5193(80)90288-X

Liu, T., Guo, R., Ran, W., Whalen, J. K., and Li, H. (2015). Body size is
a sensitive trait-based indicator of soil nematode community response to
fertilization in rice and wheat agroecosystems. Soil Biol. Biochem. 88, 275–281.
doi: 10.1016/j.soilbio.2015.05.027

Lu, X., Gray, C., Brown, L. E., Ledger, M. E., Milner, A. M., Mondragón, R. J.,
et al. (2016). Drought rewires the cores of food webs. Nat. Clim. Change 6:875.
doi: 10.1038/nclimate3002

Mangul, S., Martin, L. S., Eskin, E., and Blekhman, R. (2019). Improving the
usability and archival stability of bioinformatics software. Genome Biol. 20:47.
doi: 10.1186/s13059-019-1649-8

Martin, M. (2011). Cutadapt removes adapter sequences from high-throughput
sequencing reads. EMBnet J. 17, 10–12. doi: 10.14806/ej.17.1.200

May, R. M. (1972). Will a large complex system be stable? Nature 238:413.
doi: 10.1038/238413a0

McCann, K. (2007). Protecting biostructure. Nature 446:29. doi: 10.1038/446029a
McCutchan, J. H. Jr., Lewis, W. M. Jr., Kendall, C., and McGrath, C. C.

(2003). Variation in trophic shift for stable isotope ratios of carbon,
nitrogen, and sulfur. Oikos 102, 378–390. doi: 10.1034/j.1600-0706.2003.
12098.x

McGill, B. J. (2015). Steering the Trait Bandwagon. Dynamic Ecology. Available
online at: https://dynamicecology.wordpress.com/2015/07/01/steering-the-
trait-bandwagon/

Merritt, R. W., Cummins, K. W., and Berg, M. B. (2008). An Introduction to the

Aquatic Insects of North America, 4th Edn. Dubuque, IA: Kendall-Hunt.
Millennium Ecosystem Assessment (2005). Ecosystems and Human Well Being:

Wetlands and Water Synthesis. Millennium Ecosystem Assessment Series.
Washington, DC: World Resources Institute.

Morales-Castilla, I., Matias, M. G., Gravel, D., and Araujo, M. B. (2015).
Inferring biotic interactions from proxies. Trends Ecol. Evol. 30, 347–356.
doi: 10.1016/j.tree.2015.03.014

Pawlowski, J., Kelly-Quinn, M., Altermatt, F., Apothéloz-Perret-Gentil, L.,
Beja, P., Boggero, A., et al. (2018). The future of biotic indices in
the ecogenomic era: integrating (e)DNA metabarcoding in biological
assessment of aquatic ecosystems. Sci. Total Environ. 637, 1295–1310.
doi: 10.1016/j.scitotenv.2018.05.002

Pires, M. M., Marquitti, F. M., and Guimarães, P. R. Jr. (2017). The friendship
paradox in species-rich ecological networks: implications for conservation
and monitoring. Biol. Conserv. 209, 245–252. doi: 10.1016/j.biocon.2017.
02.026

Plummer, M. (2003). “JAGS: a program for analysis of Bayesian graphical models
using Gibbs sampling,” in Proceedings of the 3rd International Workshop

Distributed Statistical Computing (Vienna: Technische Universität Wien), 1–8.
Poff, N. L. (1997). Landscape filters and species traits: towards mechanistic

understanding and prediction in stream ecology. J. N. Am. Benthol. Soc. 16,
391–409. doi: 10.2307/1468026

Poisot, T., Baiser, B., Dunne, J. A., Kéfi, S., Massol, F., Mouquet, N., et al. (2016).
Mangal–making ecological network analysis simple. Ecography 39, 384–390.
doi: 10.1111/ecog.00976

Poisot, T., and Gravel, D. (2014). When is an ecological network complex?
Connectance drives degree distribution and emerging network properties. PeerJ
2:e251. doi: 10.7717/peerj.251

Porter, T. M., and Hajibabaei, M. (2018). Automated high throughput animal CO1
metabarcode classification. Sci. Rep. 8:4226. doi: 10.1038/s41598-018-22505-4

Post, D. M. (2002). Using stable isotopes to estimate trophic position:
models, methods, and assumptions. Ecol. 83, 703–718. doi: 10.1890/0012-
9658(2002)083[0703:USITET]2.0.CO;2

Quezada-Romegialli, C., Jackson, A. L., Hayden, B., Kahilainen, K. K.,
Lopes, C., and Harrod, C. (2018). tRophicPosition, an R package for the
Bayesian estimation of trophic position from consumer stableisotope

ratios. Methods Ecol. Evol. 9, 1592–1599. doi: 10.1111/2041-210X.
13009

R Core Team. (2013). R: A Language and Environment for Statistical Computing.
Vienna: R Foundation for Statistical Computing. Available online at: http://
www.R-project.org/

Rodell, M., Famiglietti, J. S., Wiese, D. N., Reager, J. T., Beaudoing, H. K., Landerer,
F. W., et al. (2018). Emerging trends in global freshwater availability. Nature
557, 651–659. doi: 10.1038/s41586-018-0123-1

Rognes, T., Flouri, T., Nichols, B., Quince, C., and Mahé, F. (2016).
VSEARCH: a versatile open source tool for metagenomics. PeerJ 4:e2584.
doi: 10.7717/peerj.2584

Salles, J. F., Poly, F., Schmid, B., and Roux, X. L. (2009). Community niche predicts
the functioning of denitrifying bacterial assemblages. Ecology 90, 3324–3332.
doi: 10.1890/09-0188.1

Schneider, F. D., Fichtmuller, D., Gossner, M. M., Güntsch, A., Jochum,M., König-
Ries, B., et al. (2019). Towards an ecological trait-data standard. Methods Ecol.

Evol. doi: 10.1111/2041-210X.13288. [Epub ahead of print].
Serrano, M. Á., Boguná, M., and Vespignani, A. (2009). Extracting the multiscale

backbone of complex weighted networks. Proc. Nat. Acad. Sci. U.S.A. 106,
6483–6488. doi: 10.1073/pnas.0808904106

Singer, G. A. C., Fahner, N. A., Barnes, J. G., McCarthy, A., and Hajibabaei, M.
(2019). Comprehensive biodiversity analysis via ultra-deep patterned flow cell
technology: a case study of eDNA metabarcoding seawater. Sci. Rep. 9:5991.
doi: 10.1038/s41598-019-42455-9

St. John, J. (2016). SeqPrep. Available online at: https://github.com/jstjohn/
SeqPrep/releases

Thomaz, S. M., Bini, L. M., and Bozelli, R. L. (2007). Floods increase similarity
among aquatic habitats in river-floodplain systems. Hydrobiologia 579, 1–13.
doi: 10.1007/s10750-006-0285-y

Thompson, R. M., Brose, U., Dunne, J. A., Hall, R. O. Jr., Hladyz, S., Kitching, R. L.,
et al. (2012). Food webs: reconciling the structure and function of biodiversity.
Trends Ecol. Evol. 27, 689–697. doi: 10.1016/j.tree.2012.08.005

Vázquez, D. P. (2005). Degree distribution in plant–animal mutualistic
networks: forbidden links or random interactions? Oikos 108, 421–426.
doi: 10.1111/j.0030-1299.2005.13619.x

Vissault, S., Gravel, D., and Poisot, T. (2019). Mangal: an open infrastructure
for ecological interactions. Biodivers. Info. Sci. Stand. 3:e37037.
doi: 10.3897/biss.3.37037

Williams, R. J. (2011). Biology, methodology or chance? The degree
distributions of bipartite ecological networks. PLoS ONE 6:e17645.
doi: 10.1371/journal.pone.0017645

Williams, R. J., and Martinez, N. D. (2004). Limits to trophic levels and
omnivory in complex food webs: theory and data. Am. Nat. 163, 458–468.
doi: 10.1086/381964

Winemiller, K. O. (1989). Must connectance decrease with species richness? Am.

Nat. 134, 960–968. doi: 10.1086/285024
Wirta, H. K., Hebert, P. D., Kaartinen, R., Prosser, S. W., Várkonyi, G.,

and Roslin, T. (2014). Complementary molecular information changes our
perception of food web structure. Proc. Nat. Acad. Sci. U.S.A. 111, 1885–1890.
doi: 10.1073/pnas.1316990111

Conflict of Interest:MA employed by company IPSNP Computing Inc.

The remaining authors declare that the research was conducted in the absence of
any commercial or financial relationships that could be construed as a potential
conflict of interest.

Copyright © 2019 Compson, Monk, Hayden, Bush, O’Malley, Hajibabaei, Porter,

Wright, Baker, Al Manir, Curry and Baird. This is an open-access article distributed

under the terms of the Creative Commons Attribution License (CC BY). The

use, distribution or reproduction in other forums is permitted, provided the

original author(s) and the copyright owner(s) are credited and that the original

publication in this journal is cited, in accordance with accepted academic practice.

No use, distribution or reproduction is permitted which does not comply with these

terms.

Frontiers in Ecology and Evolution | www.frontiersin.org 16 November 2019 | Volume 7 | Article 395

https://doi.org/10.1371/journal.pone.0192241
https://doi.org/10.1016/0022-5193(80)90288-X
https://doi.org/10.1016/j.soilbio.2015.05.027
https://doi.org/10.1038/nclimate3002
https://doi.org/10.1186/s13059-019-1649-8
https://doi.org/10.14806/ej.17.1.200
https://doi.org/10.1038/238413a0
https://doi.org/10.1038/446029a
https://doi.org/10.1034/j.1600-0706.2003.12098.x
https://dynamicecology.wordpress.com/2015/07/01/steering-the-trait-bandwagon/
https://dynamicecology.wordpress.com/2015/07/01/steering-the-trait-bandwagon/
https://doi.org/10.1016/j.tree.2015.03.014
https://doi.org/10.1016/j.scitotenv.2018.05.002
https://doi.org/10.1016/j.biocon.2017.02.026
https://doi.org/10.2307/1468026
https://doi.org/10.1111/ecog.00976
https://doi.org/10.7717/peerj.251
https://doi.org/10.1038/s41598-018-22505-4
https://doi.org/10.1890/0012-9658(2002)083[0703:USITET]2.0.CO;2
https://doi.org/10.1111/2041-210X.13009
http://www.R-project.org/
http://www.R-project.org/
https://doi.org/10.1038/s41586-018-0123-1
https://doi.org/10.7717/peerj.2584
https://doi.org/10.1890/09-0188.1
https://doi.org/10.1111/2041-210X.13288
https://doi.org/10.1073/pnas.0808904106
https://doi.org/10.1038/s41598-019-42455-9
https://github.com/jstjohn/SeqPrep/releases
https://github.com/jstjohn/SeqPrep/releases
https://doi.org/10.1007/s10750-006-0285-y
https://doi.org/10.1016/j.tree.2012.08.005
https://doi.org/10.1111/j.0030-1299.2005.13619.x
https://doi.org/10.3897/biss.3.37037
https://doi.org/10.1371/journal.pone.0017645
https://doi.org/10.1086/381964
https://doi.org/10.1086/285024
https://doi.org/10.1073/pnas.1316990111
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/ecology-and-evolution
https://www.frontiersin.org
https://www.frontiersin.org/journals/ecology-and-evolution#articles

	Network-Based Biomonitoring: Exploring Freshwater Food Webs With Stable Isotope Analysis and DNA Metabarcoding
	Introduction
	Materials and Methods
	Study Sites and Sample Collection
	Laboratory Processing
	Stable Isotope Analysis
	DNA Extraction and Sequencing
	Bioinformatic Methods
	Heuristic Food Web Construction
	Mixing Models for Trophic Position
	Bayesian Estimates of Isotopic Food Web Size
	Statistical Analyses

	Results
	Heuristic Food Webs
	Stable Isotope Analysis of Trophic Position and Community Niche Width
	The Relationship Between Estimated and Measured Trophic Position

	Discussion
	The Predictive and Discriminatory Power of Heuristic Food Webs
	Merging DNA Metabarcoding and Ecological Network Analysis
	Stable Isotope Analysis and DNA-Based Ecological Network Analysis: Complimentary Approaches
	Overcoming the Limitations of DNA-Based Heuristic Food Webs as a Rapid Bioassessment Tool

	Data Availability Statement
	Author Contributions
	Funding
	Acknowledgments
	Supplementary Material
	References


