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Mapping the distribution of seabirds at sea is fundamental to understanding their

ecology and making informed decisions on their conservation. Until recently, estimates of

at-sea distributions were generally derived from boat-based visual surveys. Increasingly

however, seabird tracking is seen as an alternative but each has potential biases. To

compare distributions from the two methods, we carried out simultaneous boat-based

surveys and GPS tracking in the Minch, western Scotland, in June 2015. Over 8 days,

boat transect surveys covered 950 km, within a study area of ∼6,700 km2 centered on

the Shiant Islands, one of the main breeding centers of razorbills, and guillemots in the

UK. Simultaneously, we GPS-tracked chick-rearing guillemots (n = 17) and razorbills

(n = 31) from the Shiants. We modeled counts per unit area from boat surveys as

smooth functions of latitude and longitude, mapping estimated densities. We then used

kernel density estimation to map the utilization distributions of the GPS tracked birds.

These two distribution estimates corresponded well for razorbills but were lower for

guillemots. Both methods revealed areas of high use around the focal colony, but over

the wider region, differences emerged that were likely attributable to the influences

of neighboring colonies and the presence of non-breeding birds. The magnitude of

differences was linked to the relative sizes of these populations, being larger in guillemots.

Whilst boat surveys were necessarily restricted to the hours of daylight, GPS data

were obtained equally during day and night. For guillemots, there was little effect of

calculating separate night and day distributions from GPS records, but for razorbills

the daytime distribution matched boat-based distributions better. When GPS-based

distribution estimates were restricted to the exact times when boat surveys were carried

out, similarity with boat survey distributions decreased, probably due to reduced sample

sizes. Our results support the use of tracking data for defining seabird distributions

around tracked birds’ home colonies, but only when nearby colonies are neither large

nor numerous. Distributions of animals around isolated colonies can be determined using

GPS loggers but that of animals around aggregated colonies is best suited to at-sea

surveys or multi-colony tracking.
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INTRODUCTION

Since the 1990s, new technology has allowed researchers to
track the movements of seabirds using bird-borne devices that
are sufficiently small and cost-effective to provide statistically
robust sample sizes for a range of species (Burger and Shaffer,
2008). Tags deployed on breeding birds most frequently use the
Global Positioning System (GPS) to obtain high frequency, high
precision records of locations. In the UK, several seabird species
have been tracked, with data now collected on hundreds of
individuals from tens of colonies (e.g., Harris et al., 2012; Chivers
et al., 2013; Robertson et al., 2014; Dean et al., 2015; Soanes et al.,
2016).

GPS tracking has a number of attractive features: The cost
per tag is relatively low; data are recorded in all light and
weather conditions; and, increasingly, automatic data retrieval
is possible, making recapture unnecessary. As birds are usually
caught on land, tracking data are obtained from birds known to
have been attending specific colonies, and thus can be used to
identify important areas for focal colonies (e.g., Chivers et al.,
2013; Redfern and Bevan, 2014). Moreover, the distributions of
birds of known sex, age or breeding status can be estimated
separately (e.g., Phillips et al., 2004; Cleasby et al., 2015; Grecian
et al., 2018). However, usually only a small number of birds
can be tracked from each colony, and constraints on battery
life or the opportunities to re-catch birds, mean that tags are
often only deployed for days or weeks. As such, the resulting
data may not represent overall colony-level distributions well
(Soanes et al., 2013). Further, because it is most practicable
to catch and recapture birds on the nest, the birds tracked
are usually breeding individuals, so non-breeding individuals
are generally poorly represented or entirely absent in tracking
samples. Finally, tracking indicates presence in an area, but
not absence, potentially limiting interpretation of distribution
estimates derived using this method.

Prior to the advent of tracking, the most widely used method
for determining distributions of seabirds at sea was through
visual surveys, conducted either from boats (Tasker et al., 1984;
Stone et al., 1995; Camphuysen et al., 2004; Gjerdrum et al., 2012)
or aircraft (Wildfowl and Wetlands Trust Consulting, 2009).
These surveys generally use a combination of distance and plot
sampling techniques conducted from linear transects (Ronconi
and Burger, 2009; Thomas et al., 2010; Miller et al., 2013).
Latterly, digital still and video cameras have also been deployed
on aircraft to capture survey data (Buckland et al., 2012). At-
sea surveys have several potential advantages over tracking: They
establish not only the presence but also absence of birds; sample
sizes (number of individuals) aremuch larger; all birds, regardless
of species, size, breeding status or colony of origin can be
recorded. However, at-sea surveys typically cover relatively small
areas, or if larger areas are covered, there may be considerable
time lags between coverage of different sub areas. Hence, fine-
scale variation in distribution may be poorly resolved. It is largely
impractical to link birds seen at sea to their breeding colony of
origin, and inmany species, it may be impossible to determine the
sex, breeding status or age of birds. Finally, at-sea surveys cannot
be conducted at night and may be impractical in high winds and
sea states.

Due to the differing strengths and weaknesses of the two
methods, distributions derived from both have sometimes been
combined to inform seabird conservation management (e.g.,
Louzao et al., 2009). However, as yet, there has been no
direct comparison of the distribution estimates produced by
the contemporaneous use of the two methods. Assessment
of the comparability of the two approaches is critical to the
interpretation of differences in seabird distribution over time, or
in different areas, when data have been collected using different
methods. Such an examination is considered important given
the increasing need to understand the distributions of seabirds
at sea, and the growth of satellite tracking. Here, we report the
findings of such a comparison.We undertook boat-based surveys
of common guillemots Uria aalge (hereafter, guillemots) and
razorbills Alca torda in the Minch, western Scotland, in June
2015. At the same time, we GPS-tracked breeding individuals of
these species from one of their principal colonies in the area,
the Shiant Islands (hereafter, the Shiants). These species are
appropriate models for our study because they are abundant in
the study area, of high conservation concern and large enough
to track using low cost GPS tags. Using density surface modeling
(at-sea data) and kernel density analysis (tracking data) we then
estimated the distribution of birds and addressed the following
questions: (i) How similar are the distributions estimated using
the two methods? (ii) How does this vary if tracking-based
distributions are restricted to night or daytime data, or data from
periods of weather too poor for boat survey? (iii) What are the
potential causes of discrepancies between distributions derived
from the two methods?

METHODS

Study Area
The waters of the North Minch in West Scotland host seabird
breeding colonies of national importance (Mitchell et al., 2004)
(Figure 1). The last national census (known as “Seabird 2000”),
where attempts were made to count all colonies, was in 1998–
2002 (Mitchell et al., 2004). However, the two main colonies
in the region have been counted more recently (and more
frequently). These are the Shiants (57.90◦N, 6.36◦W), situated in
the south west of the area, holding an estimated 9,100 guillemot
individuals and 8,000 razorbill individuals in 2015, and Handa
Island (58.38◦N, 5.19◦W), in the north east of the Minch,
holding ∼54,700 guillemots and 5,000 razorbills in 2014 (http://
archive.jncc.gov.uk/smp/searchCounts.aspx). Small numbers of
guillemots and razorbills breed elsewhere in the North Minch,
mainly along the north-west coast of Skye, the largest being at
Rubha Hunish (57.42◦N, 6.21◦W) close to the northern tip of
the Trotternish Peninsula (http://jncc.defra.gov.uk/page-4460)
where 5,100 guillemots and 350 razorbills were counted in 1998–
2002 (http://jncc.defra.gov.uk/page-4460).

Data Collection
Tracking Data
Razorbills and guillemots breeding on the Shiants were tracked
using an adapted version of the open-source Mataki tag platform
(http://mataki.org/) manufactured by debug innovations,
Cambridge, with additional programming and construction
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FIGURE 1 | (A) Location of the study area (red box) in the British Isles, size of Guillemot (B) and Razorbill (C) colonies in and around the study area [estimated number

of individuals, from the Seabird Monitoring Programme Database www.jncc.gov.uk/smp (Mitchell et al., 2004). During the study, these species were GPS-tracked from

a colony on the Shiants (blue square). At the same time, a boat-based survey was undertaken throughout the study area as shown in Figure 3. The location of Handa

Island is indicated by a blue triangle.

FIGURE 2 | Duration of time for which tags were active, for (A) guillemot and (B) razorbill; bins represent half days.

also required. Unlike archival GPS tags, they do not need to
be recovered to retrieve data, which is wirelessly transmitted
periodically to base stations. Birds tending eggs or small chicks

were caught on the nest using a wire noose or by hand, and tags
were attached to back feathers using waterproof Tesa R© tape. Tag
mass was 19 g, equivalent to <3.2% body weight of razorbills
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and <2.3% body weight of guillemots. Between the 7th and
23rd of June (Figure 2), tags were deployed on 20 guillemots
and 39 razorbills. Prior to deployment, the battery performance
on the Mataki tag was not well-known. Hence, three different
temporal tracking resolutions were used in the field: One fix
every 100 s (analyses based upon 2 guillemots, 7 razorbills), 200 s
(10 guillemots, 18 razorbills), or 600 s (6 guillemots, 8 razorbills).

At-Sea Survey Data
Boat-based surveys using the standard European Seabirds At Sea
(ESAS) methodology (Camphuysen et al., 2004) were carried
out throughout the Minch (an area of c. 6,700 km2) on 8 days
between 9 and 24 June 2015. In brief, the survey was carried
out by experienced, ESAS-qualified, seabird surveyors (EW, DS,
and SP). The observer searched for all birds flying or sitting
on the water within 300m of one side of the transect line,
while a second person recorded sightings. One surveyor generally
observed for an entire transect, except on very long transects,
resulting in a median shift of 56min (range 12–177min). The
side of the transect line surveyed was chosen on a transect-by-
transect basis to cater for environmental effects (glare, etc.) on
detectability. Birds were recorded in 1-min bins, corresponding
to a mean distance of 250m (±21m SD) traveled. Birds first
detected on the water were recorded in one of four distance bands
running parallel to the boat’s track: A 0–50m, B 50–100m, C
100–200m, and D 200–300m from the track line. Birds in flight
were not recorded in distance bands as their detectability varies
little within the 300m transect. However, a “snapshot” method
was used to account for the flux of birds through the transect
(Tasker et al., 1984). Birds in flight were recorded as being in the
transect if they were within a 300 × 300m box at a given time

interval, with an audible countdown timer being used to prepare
the observer to undertake the snapshot instantaneously to reduce
bias associated with a protracted snapshot (Gaston et al., 1987).
The interval was set according to the boat’s speed such that
it occurred with every 300m of transect covered. Transects
were primarily aligned north-south and east-west (Figure 3). In
addition, sea state, wind direction and strength, precipitation,
and visibility were recorded at regular intervals. Surveys were
only undertaken in sea states≤ 4.

Data Analysis
Tracking Data
To achieve a common temporal resolution across birds, all
tracks were first rediscretised to a 600-second interval using
linear interpolation in the “adehabitatLT” R package (Calenge,
2006). Locations were projected in Lambert azimuthal equal area
projection. Locations within 500m of each bird’s nest and all
location records falling on land were removed. Kernel density
estimation (Worton, 1989), implemented in the “adehabitatHR”
R package (Calenge, 2006) with a bivariate Gaussian kernel was
then used to determine the utilization distributions (UDs) of
the tracked birds. Grid resolution was set to 2 × 2 km and the
smoothing parameter h was selected using the ad hoc method
(least-squares cross-validation was trialed but failed to converge).
The degree to which the sample of birds tracked represented the
wider colony was tested using the procedures of Lascelles et al.
(2016). Razorbills were better represented than were guillemots,
but both datasets were sufficiently representative.

In order to examine whether potential discrepancies between
distributions were due to boat surveys being restricted to hours
of daylight and calm sea states, UDs were produced using subsets

FIGURE 3 | Transects carried out on at-sea surveys. Each color represents a different day of the survey. Gray dotted line encompasses the area over which indices of

similarity between at-sea and tracking based distributions were calculated.
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of tracking data. These comprised (1) all data, (2) daytime data,
(3) night-time data, and (4) tracking data recorded at the same
time as the boat survey was being conducted (i.e., in daylight
and weather conditions suitable for visual survey—hereafter
contemporary data).

At-Sea Survey Data
Transects were divided into segments of length corresponding to
1min of survey time. Density (counts/unit area in each segment)
was then modeled as a function of a 2-dimensional spatial spline.
Methods followed Bradbury et al. (2014), with the exception that
distance correction and density surface modeling were carried
out in two separate steps as described by Miller et al. (2013). The
detectability of birds on the water decreases with distance so the
first stage was to apply a factor to correct for the proportion of
birds not detected in the 300m transect. Following Kober et al.
(2010), the corrected abundance x was calculated for each species
using Equation 1:

x =
(nA+ nB) × 3

(nA+ nB+ nC + nD)
, (1)

where nA, nB, nC, and nD are the total counts in each distance
band. The numerator is multiplied by 3 (the ratio of total area of
bands A+B+C+D to total area of bands A+B) (Pollock et al.,
2000). This assumes that detection within 100m of the boat
is perfect. As in Kober et al. (2010), correction factors were
calculated separately for sea states 0 (very calm) and 1–3 (ripples
to wavelets, small whitecaps); unlike in Kober et al. (2010), no
calculations were made for sea states 4–5, as very little survey
effort was carried out above sea state 3. Correction factors are
presented in Table 1. Abundances of birds on the water were
multiplied by the appropriate correction factor, and then added
to counts of birds in flight (assumed to have perfect detection) to
give a total abundance in each transect segment (Figure 4).

In the second step, spatial variations in distance-corrected
abundances were modeled using generalized additive mixed
models (GAMMs) fitted in the “mgcv” R package (Wood, 2003,
2011, 2017). A negative binomial error structure and log link
function were specified. “Transect” and “hour-within-transect”
were treated as random effects in an attempt to model spatial
and temporal clustering of observations (Zuur et al., 2014). An
offset of log(segment length) was also included to account for
slight variation in the distances traveled eachminute (Miller et al.,
2013). The fixed effect in each GAMM. The fixed effect in each
GAMM were coordinates (eastings and northings), which were
combined into a 2-dimensional and continuous variable. The
maximum basis dimension (k) for the spline was selected by
fitting a range of k values and examining resultingmodels’ Akaike
Information Criterion (AIC) values; the final value selected

TABLE 1 | Correction factors applied to counts of seabirds detected on the water

within a 300m wide transect during the at-sea survey.

Guillemot Razorbill

Sea state 0 1.646 2.017

Sea state 1-3 1.991 2.132

was 150, which represented the point at which adding further
complexity provided no further AIC improvements. After model
fitting, density was predicted on the same 2 km grid used for
UD estimation. Grid cells containing land were excluded from
predictions. Hereafter, we assume that the mean proportion
of time that birds use a location within the study area is
approximately proportional to density predicted from the at-sea
survey data. Hereafter, we therefore refer these grids, normalized
to sum to one, as UDs. Although there are potential theoretical
objections to this interpretation, we assume it here pragmatically,
as it allows similarity between the density estimates made using
the two methods to be calculated using well-established metrics
(Sansom et al., 2018).

Spatial autocorrelation was present in model residuals for
both species. However, when an exponential spatial correlation
structure was added (using the “gamm” function, and penalized
quasi likelihood), for guillemots there was no significant
difference in predicted densities. For razorbills, the model did
not converge. It was therefore considered impractical to further
reduce residual spatial autocorrelation.

Comparing Estimated Distributions
To compare the distribution of birds estimated using tracking
data and at-sea survey data, density grids were clipped to a focal
area. First, this was defined by the minimum convex polygon
(MCP) encompassing the at-sea surveys (Figure 3). The most
north-easterly transects occurred within 20 km of the major
guillemot and razorbill colony onHanda Island (Figure 1), which
could strongly influence seabird distributions in the region.
Therefore, a second focal area was considered, defined by a
circle centered on the Shiants with a 50 km radius, approximately
representing 1.1 x the maximum foraging range of each species
observed in our study. Results using the 50 km radius area were
nearly identical to those using theMCP area and are not therefore
discussed further.

Densities outside the focal area were set to NA and density
values within the focal area were then normalized to sum to
unity once more. The similarity and overlap of different UDs
(nominally, UD1 and UD2 in the descriptions below) were then
calculated using indices described by Fieberg and Kochanny
(2005). First, the 95 and 50% core areas (CAs) were calculated,
i.e., the areas in which 95 and 50% usage is expected to occur,
and plotted where these overlapped between UD1 and UD2.

The area of overlap between core areas of UD1 and UD2 was
then expressed both as a percentage of the area of UD1, and
as a percentage of the area of UD2. Secondly, the Spearman
correlation coefficient (ρ) between the ranks of probability
densities in UD1 and UD2 was calculated (White and Garrott,
1990). Equal values within UDs were assigned the mean of the
rank of those values. Whilst this measure may be limited in
identifying overlap of UDs (Fieberg and Kochanny, 2005), it is
a simple and widely understood measure of similarity. Positive
correlation coefficients indicate that UDs are similar, whilst
negative correlation coefficients indicate that higher densities
in one UD are matched by lower densities in the other. ρ was
calculated across the entire focal area.
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FIGURE 4 | Raw abundances from at-sea surveys, after distance correction.

Finally, two metrics were calculated, which it has been
demonstrated give more reliable estimates of UD overlap
(Fieberg and Kochanny, 2005). The utilization distribution
overlap index (UDOI) is calculated following Equation 2:

UDOI = A1,2

∫ ∞

−∞

∫ ∞

−∞

UD1

(

x, y
)

× UD2

(

x, y
)

dx dy (2)

where, A1,2 indicates the area of overlap between UD1 and UD2,
whilst UD1(x,y) indicates the value of UD1 at location (x,y). This
index shows the amount of overlap relative to two UDs that
use the same space and are uniformly distributed: UDs with
perfect overlap and uniform probability distributions have UDOI
= 1, whereas completely non-overlapping UDs have UDOI = 0.
Overlapping UDs with non-uniform yet coincident probability
distributions have UDOI > 1. This metric therefore indicates
when two UDs show a high concentration of probability in the
same area.

The second overlap metric used was Bhattacharyya’s Affinity
(BA), which is calculated following Equation 3 (Fieberg and
Kochanny, 2005):

BA =

∫ ∞

−∞

∫ ∞

−∞

√

UD1

(

x, y
)

×

√

UD2

(

x, y
)

dx dy (3)

BA is 0 for two non-overlapping UDs, and 1 for identical UDs.
This metric indicates overall similarity of UDs. Both UDOI and
BA were calculated for the entire focal area.

RESULTS

Tracking Data
Two guillemot tags and six razorbill tags returned no data so
were excluded from further analyses, leaving sample sizes of 18
guillemots and 33 razorbills. Tags recorded data for between
6 h and 9.25 days (Figure 2). Mean duration was 105 h (SD ±

61 h) for guillemots and 78 h (SD ± 42 h) for razorbills. The
last data were collected for both species on the 27th of June.
Rediscretisation and data trimming resulted in 5,246 and 5,769
locations for guillemots and razorbills, respectively. Daytime
UDs were estimated using tracking data from 17 guillemots
and 31 razorbills (3,229 and 3,500 locations, respectively);

night-time UDs from 16 guillemots and 30 razorbills (2,017
and 2,269 locations, respectively); and contemporaneous UDs
from 15 guillemots and 24 razorbills (734 and 1,090 locations,
respectively). The smoothing parameter h was 2.2 km for
guillemots and 2.7 km for razorbills. The raw tracks for both
species are shown in Figure 5.

At-Sea Survey Data
The sea state during boat-based surveys was generally low (0 for
9% of the survey, 1 for 23%, 2 for 39%, 3 for 23%, and 4 for 6%)
and 950 km of transect was surveyed. In total, 2,338 guillemots
(859 in flight, 1,479 on water) and 776 razorbills (453 in flight,
323 on water) were detected (1 and 5% of guillemots/razorbills
in flight and on the water respectively, could not be assigned to
species and were excluded from the analysis).

Tracking Distributions vs. At-Sea Survey
Distributions
Guillemot
Tracking data indicated that the highest guillemot density
occurred immediately to the north of the Shiants; lower guillemot
densities were spread relatively evenly around the islands
(Figure 6A). Guillemot density estimated from boat surveys was
spread more evenly and over a larger area, with the highest
densities around and to the north of the Shiants, to the north
and north-east extremes of the survey area, and off the north-east
coast of Skye (Figure 6B).

The more even density surfaces from the boat survey meant
that core areas (CAs) were much larger, leading to high overlap
as a proportion of tracking CAs, but low overlap as a proportion
of boat survey CAs (Table 2). Both survey methods found the
south-west corner of the survey area to be outside the 95%
CA, and the south-west and east regions of the survey area to
be outside the 50% CA (Figure 7A). However, whilst tracking
CAs were mostly contained within the larger boat survey CAs,
tracking CAs were confined to the areas around the Shiants; more
distant areas included in boat survey CAs were not included
in the tracking CAs (Figure 7A). Similarity indices indicated
moderate similarity between UDs estimated from the two data
sources (Table 2). Correlation coefficients and BA indicated that
boat surveys and GPS producedmoderately similar distributions,
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FIGURE 5 | GPS tracks of (A) Guillemot and (B) Razorbill individuals. Each color represents a different individual.

FIGURE 6 | Guillemot (A,B) and Razorbill (C,D) utilization distributions from boat surveys compared with concurrent GPS tracks. Darker reds indicate higher

probability densities. Thick, dashed line indicates extent of 95% home range; thin, dotted line indicates extent of 50% home range.

and UDOI was >1, indicating reasonably good concordance in
probability densities.

Razorbill
For razorbills, the highest densities also occurred primarily to
the north of the Shiants (Figures 6C,D). GPS and boat survey

distributions indicated an approximate north-west to south-east
spread of high density, with this most pronounced in boat survey
data, where the 50% CA extended as far as Skye. The pronounced
high abundances in the north observed in guillemot distributions
were less evident in razorbills, although a likely effect of the
colony on Handa in the north-east was again observed. Both
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TABLE 2 | Overlap and similarity between seabird utilization distributions (UDs) estimated using data from at-sea surveys and GPS tracking.

Species Data used to estimate: % overlapa between: ρ UDOI BA

UD1 UD2 95% CAs 50% CAs

Guillemot At-sea GPS, all 30, 96 14, 100 0.59 1.22 0.66

At-sea GPS, day 25, 98 11, 100 0.59 1.26 0.62

At-sea GPS, night 31, 94 16, 100 0.57 1.10 0.66

GPS, day GPS, night 85, 66 58, 42 0.96 4.40 0.88

At-sea GPS, contempb 12, 100 8, 100 0.58 0.62 0.49

GPS, all GPS, contemp. 38, 100 57, 93 0.71 2.95 0.87

Razorbill At-sea GPS, all 41, 100 32, 87 0.65 2.43 0.82

At-sea GPS, day 35, 100 22, 100 0.67 3.02 0.80

At-sea GPS, night 42, 98 23, 42 0.61 1.49 0.76

GPS, day GPS, night 88, 71 66, 27 0.95 3.10 0.86

At-sea GPS, contemp. 18, 99 19, 100 0.65 2.14 0.73

GPS, all GPS, contemp. 43, 97 53, 100 0.84 3.78 0.88

aThe percentage of the core area (CA) of UD1 that overlaps with the core area of UD2 and vice versa.
bTracking data collected contemporaneously with bouts of at-sea survey (i.e., in

daylight and low sea states). ρ, Spearman rank correlation coefficient; UDOI, the Utilization Distribution Overlap Index; BA, the Bhattacharyya Affinity.

FIGURE 7 | Overlap between guillemot (A) and razorbill (B) core areas (CAs) derived from boat surveys compared with GPS tracking. In both maps, gray indicates

areas outside of the CA in both data sources, and green indicates areas inside the CA in both data sources; blue and yellow indicate areas in the CA in one data

source but not the other.

GPS and boat survey distributions indicated a low-density area
immediately east of the Shiants and low densities in the north.

Core area comparisons were again influenced by the more
even, larger distributions derived from boat survey data, with

GPS CAs mostly contained within boat survey CAs. However,
although boat survey CAs were larger, there was higher spatial
concordance with tracking CAs (Table 2), and there appeared
to be better concordance visually (Figure 7B). The 95% CAs
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extended in all directions away from the Shiants, but the tracking
derived CA did not extend as far as that derived from the at-
sea survey (Figure 7B). The 50% CAs matched well around the
Shiants, but the tracking CA did not extend to Skye. Overlap
metrics indicated better concordance between the distribution
estimates made using tracking and at-sea survey datasets than
for guillemots (Table 2). Correlations were again only moderate,
but BA > 0.8 and UDOI > 2.4 indicated high similarity between
the UDs. The high UDOI statistics are likely to reflect the good
matching of high densities found to the north of the Shiants.

Effects of Day/Night on Distribution
Similarity
Guillemot
Daytime and night-time distributions were generally similar
for guillemots (Figures 8A,B). Both distributions showed the
greatest density to occur to the north of the Shiants, but this was
more pronounced at night, whilst in daytime the high-density
area extended slightly south of the islands. The 95% core area
extended over a larger area at night, but both time periods showed
the CA to extend in all directions from the islands. Both daytime
and night-time core areas were substantially smaller than those
derived from at-sea surveys. Consequently, the tracking derived
CAs were almost completely contained within the at-sea survey
CAs. However, higher proportional overlap was seen with the
night-time GPS data (Table 2). The daytime and night-time
CAs were very similar, with high overlap and similar spatial
distributions (Figure 9). Congruence between at-sea survey and
tracking derived UDs was similar, regardless of whether daytime
or night-time data were used to derive the latter. All overlap
and similarity indices were broadly similar for daytime and
night-time data, with neither proving better across all metrics.

Razorbill
Razorbills showed slightly greater differences between daytime
and night-time distributions than guillemots (Figures 8C,D,
Table 2). In daytime, the distribution was centered on the
Shiants, whilst at night-time, the distribution extended much
further to the north. Although the 95% tracking CA extended
to Skye at daytime, it extended further in all directions at night-
time. Further, the 50% tracking CA extended to a second center
at night-time, to the south-west of the Shiants. Tracking vs.
at sea survey core area overlap was slightly greater at night-
time (Table 2; Figure 10). However, the extension of the 50%
tracking CA at night-time to the north-east and south-west of
the Shiants was not reflected in the at-sea survey CA. This was
the only instance of the tracking data identifying a core area
outside that detected indicated by the at-sea data. Perhaps due
to the better matching of the 50% CAs derived from at-sea and
tracking data, overlap metrics were typically higher when the
daytime tracking data were used (Table 2). In particular, UDOI
was substantially higher in daytime, suggesting that areas of high
density matched well with those identified in boat surveys. BA
and correlation values were broadly similar, however, suggesting
that both daytime and night-time showed broadly the same
patterns overall.

Effects of Temporal Matching on
Distribution Similarity
For both species, the tracking UDs derived from data recorded
only during bouts of at-sea survey were much smaller than
their equivalents derived from the entire tracking data set,
presumably due to the smaller number of locations in the
former (Figure 11). For guillemots, the highest density was
again to the north of the Shiants, but the 95% CA extended
north and south of the islands, and was unlike that derived
from any other data source. For razorbills, higher densities were
centered around the Shiants, with less of the northward bias seen
when using the full dataset. For both species, the smaller CAs
identified from the subset of tracking data meant that overlap
was smaller than when the whole dataset was used (Table 2;
Figures 12, 13) and similarity between the tracking and at-sea
survey derived UDs was generally lower than when the full
tracking data set was used to estimate distributions, although
some metrics produced similar values to those seen with the full
dataset (Table 2).

DISCUSSION

Similarity Between Different Data Sources
The degree of similarity between seabird distributions derived
from boat surveys and GPS tracking differed between the two
species: it was moderate for guillemots but somewhat stronger
for razorbills. For both species, similarity was greatest close to
the Shiants, with boat surveys and GPS tracking both indicating
higher densities just to the north of the islands. This was evident
for razorbills in particular, for which the two methods showed
remarkably good concordance in the location of the 50% core
area. However, GPS tracking did not identify areas of high
density further away from the islands which were indicated by
the boat surveys, particularly in the north of the survey area. For
razorbills, moderately high densities near to Skye were suggested
from GPS tracking, whereas the boat survey showed this pattern
more strongly. However, both data sources agreed well as to
locations of low densities, with guillemots in particular present at
low densities in the south-west of the survey area and, to a lesser
extent, in the east.

When GPS data were sub-sampled to produce daytime and
night-time distributions separately, the effect differed slightly
between the two species. For guillemots, there was high similarity
between day and night, and therefore with the overall GPS
distribution. However, for razorbills, day and night distributions
differed slightly, with the daytime distribution generally showing
a better match to the boat survey distribution.

Boat surveys can only be carried out in daylight and when
weather conditions permit, whereas GPS tags record locations in
all light and weather conditions. It was anticipated that restricting
GPS records to contemporary periods in which boat surveys had
been carried out would improve the match to boat survey data.
However, the sub-sampled GPS dataset was substantially smaller
than when the full dataset was used, so although some similarity
metrics indicated similar performance to the full dataset, there
appeared to be a somewhat poorer match in general. Indeed, due

Frontiers in Ecology and Evolution | www.frontiersin.org 9 September 2019 | Volume 7 | Article 333

https://www.frontiersin.org/journals/ecology-and-evolution
https://www.frontiersin.org
https://www.frontiersin.org/journals/ecology-and-evolution#articles


Carroll et al. Seabird Tracking and Transect Survey

FIGURE 8 | Guillemot (A,B) and Razorbill (C,D) utilization distributions from daytime and night-time subsets of GPS data. Darker reds indicate higher probability

densities. Thick, dashed line indicates extent of 95% home range; thin, dotted line indicates extent of 50% home range.

to the reduced dataset, sample size effects could account for the
poorer match.

Potential Reasons for Differences
Limitations of Single-Colony Tracking
One of the most likely causes of differences in distribution
from the two data sources was that birds were only tracked
from the Shiants, whereas birds observed on boat surveys could
originate from other colonies within the study area. Handa
Island, lying to the north-east of the study area, supports the
largest colonies of guillemots and razorbills in the UK (Mitchell
et al., 2004), and is likely to account for the high densities
observed in the north of the boat survey area. Indeed, Poisson-
kriged distributions from data collected over several decades
presented by Kober et al. (2010) also show high densities to
occur in the areas identified by boat surveys, suggesting that they
are not artifacts of our sampling or analysis. Thus, one major
difference in the datasets is that tracking birds from the Shiants
cannot indicate the distribution of birds originating from Handa
Island. This will likely have been a greater issue for guillemots
since Handa supports six times more guillemots than razorbills.
This may explain the greater correspondence between GPS tracks
and boat survey results for razorbill. The wider distribution of
birds, particularly guillemots, closer to Skye detected during boat
surveys probably reflected the colonies around Rubha Hunish

off the northern tip of Skye. In order to accurately identify
wider distributions in a region using GPS tracking, it would be
necessary to track birds frommultiple major colonies, to produce
a predictive model to estimate likely distribution of birds from all
colonies in the region (e.g., Wakefield et al., 2017).

Data Resolution and Sampling Effort
Boat survey methodology could also have contributed to
differences. The temporal and spatial resolution of survey
transects can influence the resolution of the resulting
distributions (Camphuysen et al., 2004). Coarser resolutions
might allow larger areas to be surveyed, but will limit the ability
to identify fine-scale distribution patterns. Conversely, the
high accuracy, frequent records obtained from GPS tracking
enable finely-resolved distributions to be estimated. Some
of the differences found here may result from the difference
in resolution of the input data; for example, this could be
responsible for differences in the shape of 95% CAs to the
north of the Shiants. Further, boat survey findings are highly
sensitive to temporal variation in abundances within days and
seasons (Camphuysen et al., 2004). This is perhaps most strongly
illustrated by the presence of a flock on a transect, which would
cause a very high abundance to be recorded, but which may not
be present if the transect were repeated, even a short time later.
Repeat sampling of transects (Camphuysen et al., 2004) or use
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FIGURE 9 | Overlap between guillemot core areas (CAs) derived from boat surveys, GPS tracking in daytime and GPS tracking at night-time. In all maps, gray

indicates areas outside of the CA in both data sources, and green indicates areas inside the CA in both data sources; blue and yellow indicate areas in the CA in one

data source but not the other. (A) Boat surveys vs. GPS, daytime only. (B) Boat surveys vs. GPS, night-time only. (C) GPS, daytime only vs. GPS, night-time only.

of data from multiple surveys (e.g., Kober et al., 2010; Bradbury
et al., 2014) would reduce the influence of short term temporal
fluctuations in abundance, but with inevitable increase in survey
costs per unit area.

A further consideration of sampling effort is the colony-
level representativeness of the sample of birds tracked. The 31
razorbills and 17 guillemots included in kernel density estimates
represent a tiny fraction of their respective populations on
the Shiants (c. 0.4% of razorbills and 0.1% of guillemots). It
may therefore also be the case that for guillemots, where the
proportion and absolute number of birds tracked was smaller,
resulting distributions were less representative of the colony

as a whole. Indeed, the number of birds, and the number
of trips carried out by each bird, influences resulting home
range estimates (Soanes et al., 2013), so sample size effects
may contribute to the differences in distributions between data
sources (see sensitivity analysis in Carroll et al., 2017).

Sampling Constraints
Differences in the time of day and sea states when sampling
is conducted is also an important consideration. GPS tracking
typically occurs continuously once the tag is attached, thus
sampling locations in all light and weather conditions.
Conversely, boat surveys can only take place in the daytime

Frontiers in Ecology and Evolution | www.frontiersin.org 11 September 2019 | Volume 7 | Article 333

https://www.frontiersin.org/journals/ecology-and-evolution
https://www.frontiersin.org
https://www.frontiersin.org/journals/ecology-and-evolution#articles


Carroll et al. Seabird Tracking and Transect Survey

FIGURE 10 | Overlap between razorbill core areas (CAs) derived from boat surveys, GPS tracking in daytime and GPS tracking at night-time. In all maps, gray

indicates areas outside of the CA in both data sources, and green indicates areas inside the CA in both data sources; blue and yellow indicate areas in the CA in one

data source but not the other. (A) Boat surveys vs. GPS, daytime only. (B) Boat surveys vs. GPS, night-time only. (C) GPS, daytime only vs. GPS, night-time only.

and in good weather and consequently represent distributions
during these conditions. However, in this study sub-setting
GPS datasets to be contemporary with boat survey data did
not consistently result in greater similarity of distributions.
The potential improvement in similarity may be offset to
some degree by the counteracting effect of reduction in the
sample size of GPS records, leading to sparser distributions
and a poorer representation of the colony distribution. For
guillemots, there was little difference between night and day
GPS distributions, and sub-setting to contemporary locations
did not improve the similarity to boat surveys. The similarity

between day and night GPS distributions, and the similar
match of both to boat survey data suggests that there may
therefore be little bias associated with conducting boat surveys
during daylight on estimated guillemot distributions. On
the other hand, for razorbills, night-time and daytime GPS
distributions showed greater differences, and the daytime
GPS distribution showed greater similarity (measured by
UDOI) with boat surveys, as expected. Further sub-setting
of GPS data to contemporary locations decreased the
similarity with boat survey data, likely to due to reduced
sample size.
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FIGURE 11 | Guillemot (A) and Razorbill (B) utilization distributions from GPS data collected only during times when boat surveys were being carried out. Darker reds

indicate higher probability densities. Thick, dashed line indicates extent of 95% home range; thin, dotted line indicates extent of 50% home range.

FIGURE 12 | Overlap between guillemot core areas (CAs) derived from boat surveys, GPS tracking during boat survey periods only and all GPS tracking data. In all

maps, gray indicates areas outside of the CA in both data sources, and green indicates areas inside the CA in both data sources; blue and yellow indicate areas in the

CA in one data source but not the other. (A) Boat survey vs. GPS, survey periods only. (B) GPS, all records vs. GPS, survey periods only.

Biases in at Sea Survey Data
Surveying birds from boats can result in multiple sources of
error in density estimates (Gaston et al., 1987; Hyrenbach, 2001;
Ronconi and Burger, 2009). Due to the study design and the
conditions under which the data were collected, the errors should
have been uniformly distributed throughout the study area and
therefore should not have introduced systematic bias in the

boat-based UD estimates. For example, while the ability to detect
birdsmay have differed among observers andweather conditions,
observer effort was spread evenly throughout the survey area and
weather conditions were good throughout the survey. Hence, we
think it unlikely that systematic biases in at-sea data collection
could have accounted for the observed differences in the at-sea
and tracking based UDs.
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FIGURE 13 | Overlap between razorbill core areas (CAs) derived from boat surveys, GPS tracking during boat survey periods only and all GPS tracking data. In all

maps, gray indicates areas outside of the CA in both data sources, and green indicates areas inside the CA in both data sources; blue and yellow indicate areas in the

CA in one data source but not the other. (A) Boat surveys vs. GPS, survey periods only. (B) GPS, all records vs. GPS, survey periods only.

Breeding and Behavioral Status of Sampled

Individuals
It is also important to consider the breeding status, and hence
time budget and central place foraging constraints, of the
individuals sampled. Due to practical limitations in approaching
and capturing birds, GPS tracking is most frequently carried
out on breeding individuals. Conversely, boat surveys sample
all birds at sea, regardless of breeding status. If breeders, non-
breeders and failed breeders share the same habitat preferences,
there may be little impact of sampling bias in breeding status
on resulting distributions. However, there may be important
differences in the distributions of breeding and non-breeding
individuals. Notably, non-breeders do not need to return to the
colony to fulfill nest-attendance functions so can travel further
(e.g., Votier et al., 2011). Breeding adults and immatures may
also have dietary differences (Campioni et al., 2016) leading to
them foraging in different areas (e.g., Fayet et al., 2015). The
overall impact of this on estimated distributions depends on
the proportion of the total population comprising non-breeders:
fewer non-breeders would make distributions from boat surveys
and GPS tracking appear more similar. It has been estimated that
there are around 0.74-0.75 non-breeding immatures per adult
at guillemot and razorbill breeding colonies (Furness, 2015).
However, breeding age adults may skip breeding in some years:

on the Isle of May, 5-10% of guillemots around the colony each
year did not breed (Harris and Wanless, 1995), and the rate of
skipping breeding can vary (e.g., Reed et al., 2015). Therefore,
the presence of immatures and non-breeding adults in the at-sea
population sampled by boat surveys could lead to differences with
GPS-derived distributions; developing our understanding of the
distributions on non-breeders at sea will be an important step in
addressing this issue.

Breeding stage can also influence the distribution of seabirds
at sea, due to difference in the constraints on nest attendance
operating during incubation, brood-guard and post-guard
periods (e.g., Wakefield et al., 2011; Dean et al., 2015). When
selecting individuals for tag deployment, no attempt was made
to target birds at a particular breeding stage and it is likely that
the breeding stage of the tracked individuals reflected that of the
colony as a whole. Hence the breeding stage of the birds observed
from contemporaneous boat surveys is likely to be similar to that
of the tracked sample.

In our study, we did not attempt to discriminate differences
in the distribution of birds in different behavioral states. Whilst
away from the colony on foraging trips, guillemots and razorbills
rearing small chicks tracked in the North Sea spent 28.8± 9.5 and
17.5 ± 10.6% (mean ± sd) of their time, respectively underwater
(Thaxter et al., 2010). Dive times average 46.4 ± 27.4 and 50.4
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± 7.4 s for guillemots during long and short dives, respectively
and 23.1± 14.9 s for razorbills, which made only short dives. The
average boat speed in our survey was 14 ± 3 km/h, so guillemots
and razorbills would have been out of sight during dives for on
average the time it took to traverse ∼190 and 90m of transect,
respectively. This effect could have been further exacerbated if
auks dived to escape the approaching survey vessel, although it
is our experience that common guillemots and razorbills only
respond in this way when the vessel is very close and they are
likely to have already been detected. Nonetheless, it is likely
that up to around 29% of guillemots and 18% of razorbills
would not have been detected during the boat survey, leading
to a concomitant underestimate of density (Buckland et al.,
2015). This would have biased the boat based UDs lower in
foraging areas, causing a systematic bias if foraging behavior was
distributed non-uniformly. Although GPS loggers do not record
locations while birds are diving, the interpolation schemewe used
to fill gaps in the GPS data would have greatly reduced any similar
bias in the tracking-based UDs. Hence, the spatial bias in the
boat-based but not tracking-based UDs could partially explain
why the latter suggested higher bird densities close to the Shiants
than the former (Figure 4), i.e., breeding birds could have been
diving intensively in an annulus around the colony Ashmole’s
halo (Gaston et al., 2007) and therefore missed more frequently
than for example, non-breeders foraging less intensively at a
greater distance.

Data Types and Analytical Approaches
Tracking individuals over time, and counting the abundance of
birds along transects at sea, represent two very different types
of data. The analytical processes required to estimate densities
from such data are extremely different, and rely on different
assumptions. Differences in the distributions resulting from the
two methods may therefore be due, in part, to differences in
the data types and the differences in the ways in which they
are processed. Furthermore, there is no standard approach to
converting raw survey data into a continuous density surface.
Accordingly, variousmethods have been used, and the differences
between these methods could contribute to perceived differences
in resulting distributions. Such effects were noted by Bradbury
et al. (2014) “The Poisson kriging method used by Kober et al.
gave more scattered discreet [sic areas of higher density whereas
the DSM of this study generally gave wider smooths over areas.”
Analytical differences could be particularly acute in the present
study, where GPS distributions reflect the raw data, whereas
boat survey distributions were modeled. One consequence of
this is that zero values occur rarely in modeled boat survey
distributions, whereas they occur across large areas in GPS
distributions; this alone may influence overlap metric scores.
Had it been possible to replicate the Poisson kriging method of
Kober et al. (2010), the patchier densities may have matched GPS
distributions better. Other analytical considerations will also have
influenced resulting distributions. The form of spatial smooth
used in GAMMs can affect outputs; a large maximum basis
dimension was selected based on AIC, thus allowing a relatively
complex distribution to be modeled, but similar studies have
used simpler splines (e.g., Winiarski et al., 2013) or different
forms of splines (e.g., Bradbury et al., 2014). In GPS distributions,

the smoothing parameter used in kernel density estimation
influences the size and shape of resulting core areas, with the rule-
of-thumb method producing larger, smoother kernels than least-
squares cross-validation or the plug-in method (Walter et al.,
2011).

There are a number of analytic approaches that could
further help in a comparison of distributions generated from
tracking with those from boat surveys in this region. It would
be beneficial to explicitly examine the sensitivity of KDEs
derived from GPS data. The first step would be to restrict
the number of birds and data points included, to explicitly
consider sample size effects. This would be used to examine two
questions: first, whether the larger sample of birds is likely to be
responsible for the better matching of razorbill than guillemot
distributions, and second, whether reduced sample sizes caused
poorer matching in the comparisons with contemporary GPS
and boat survey data. The second step would be to examine the
methods used for producing KDEs, trialing plug-in estimators
for the smoothing parameter and trialing Brownian bridge
movement models. Although these different methods should
not produce substantially different results, understanding the
degree to which these assumptions affect distributions would
be informative.

After understanding KDE sensitivity, it would be beneficial to
model GPS data rather than simply estimating kernel densities
from the raw data. Since boat survey data were modeled as a
function of spatial location, using a similar approach for GPS
data would allow closer matching of methods. However, this is
not straightforward: different modeling approaches are available,
with Wakefield et al. (2017) using a Poisson point-process
method using only presence data, and other analyses (Wakefield
et al., 2012; Wilson et al., 2014; Cleasby et al., 2015) using a “case-
control” approach whereby observed presences are matched by
“pseudo-absences.” Each method brings with it complexities
and assumptions, so could introduce further analytical reasons
for observed differences. However, modeling GPS data, which
would likely provide smoother core area estimates, would allow
examination of the degree to which differences are driven by
analytical method.

Once a predictive model structure for GPS data has been
established, it would be possible to introduce habitat predictor
variables to both GPS and boat survey models. Distributions
may be better modeled by considering the habitat variables that
determine which areas the birds use (see Wakefield et al., 2017).
This approach should also allow predictions to be made beyond
the Shiants for GPS data. On the other hand, inclusion of habitat
variables could also introduce artifacts as distributions become
related to spatially-variable predictors.

CONCLUSIONS

Similarities in core-areas of animals from the focal colony
were obtained, but suspected influences of neighboring colonies
and non-breeders are apparent in differences between methods.
The magnitude of differences is linked to the relative sizes of
these populations—being larger in common guillemots where
neighboring colonies were considerably larger than the focal
colonies. These results support the use of GPS loggers for
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defining distributions of species in certain regions, but only when
neighboring colonies are neither large nor widespread. Therefore,
these results support the use of a flexible approach tailored to
the needs of the study. Distributions of animals around isolated
colonies could be achieved using GPS loggers but that of animals
around aggregated colonies is best suited to at-sea surveys or
multi-colony tracking.
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