
ORIGINAL RESEARCH
published: 01 May 2019

doi: 10.3389/fevo.2019.00148

Frontiers in Ecology and Evolution | www.frontiersin.org 1 May 2019 | Volume 7 | Article 148

Edited by:

Peter Convey,

British Antarctic Survey (BAS),

United Kingdom

Reviewed by:

Samraat Pawar,

Imperial College London,

United Kingdom

Diego Barneche,

University of Exeter, United Kingdom

*Correspondence:

Angel M. Segura

asegura@cure.edu.uy

Specialty section:

This article was submitted to

Biogeography and Macroecology,

a section of the journal

Frontiers in Ecology and Evolution

Received: 21 August 2018

Accepted: 16 April 2019

Published: 01 May 2019

Citation:

Segura AM and Perera G (2019) The

Metabolic Basis of Fat Tail

Distributions in Populations and

Community Fluctuations.

Front. Ecol. Evol. 7:148.

doi: 10.3389/fevo.2019.00148

The Metabolic Basis of Fat Tail
Distributions in Populations and
Community Fluctuations
Angel M. Segura 1* and Gonzalo Perera 1,2

1Modelización y Análisis de Recursos Naturales, Centro Universitario Regional Este, Universidad de la República, Rocha,

Uruguay, 2 Facultad de Ingenieria, Instituto de Matemática y Estadística Rafael Laguarda, Universidad de la República,

Montevideo, Uruguay

Unveiling the mechanisms that molds populations fluctuations is central for

understanding the dynamic of pest outbreaks, harmful algal blooms, or extinction risk.We

hypothesize that metabolic restriction to maximum population abundance shapes single

population and community fluctuations. Here, we derive a formal theoretical model linking

metabolic limits to maximum population abundance with the distribution of fluctuations

of single populations and communities. First, we show that the emergence of fat tails

in the distribution of single population fluctuations is caused by the metabolic effect on

maximum population abundance of periodic changes in resource supply or temperature.

Second, we show an explicit link between single population fluctuations and the Laplace

distribution of aggregated community fluctuations. Third, we derive a general relationship

between population variance and body mass (called variance-mass allometry; VMA).

This framework provides a theoretical mechanism to explain fat-tailed distributions of

population fluctuations. It also predicts a double exponential or Laplace distribution of

community fluctuations when the range of body size in the community is large. Finally,

it provides a generalization of the VMA model which is able to generate theoretical

predictions about patterns of variability among species lifestyles. This framework

provides specific theoretical predictions that can be benchmarked against alternative

competing models and empirical data, hence furthering our understanding about how

metabolism determines abundance fluctuations.

Keywords: metabolic theory, variancemass allometry, population fluctuations, natural variability, power laws, size

density distribution, energetic equivalence rule

INTRODUCTION

Deciphering the links between community structure and dynamics is a long-standing question
in ecology. Scaling theories are an appealing approach to unify community size structure and
population variability (Marquet et al., 2007; Cohen et al., 2012; Segura et al., 2017; Zaoli et al., 2017).
Fundamental principles driving energy and mass conversion by organisms constrain processes at
higher levels of biological organization and have therefore been useful to characterize community
structure and dynamics (Brown et al., 2004).

Four scaling functions are ubiquitous in ecology: (i) the scaling of metabolic rates (Bi) with
body mass (Mi); (Bi∞Mα

i ; generally 0.5< α < 2) (Damuth, 1981; Brown et al., 2004; DeLong
et al., 2010), (ii) the scaling of population density (Ni) with body mass (size-density relationship,
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SDR; Ni ∝ Mi
eSDR ; generally eSDR < 0) (Damuth, 1981; Agustí

et al., 1987; Blackburn and Gaston, 1997; White et al., 2007);
(iii) the Taylor’s scaling law, relating the average population
abundance (mean(N)) with population variance (var(Ni)) (TL;
var(Ni)∝ mean(Ni)eTL ; eTL∼1–2), and (iv) the scaling of
population variance (var(Ni)) with body-mass (variance mass
allometry, VMA; Var(Ni)∝ Mi

eVMA ; generally eVMA < 0)
(Marquet, 2005; Cohen et al., 2012). Multiple mechanisms have
been proposed to explain these scaling relationships, and how
they are interrelated (Zaoli et al., 2017), but the debate is far from
being settled.

The form of the SDR varies with spatial scale and with the
method of estimating population density (Blackburn and Gaston,
1997; White et al., 2007). At regional to global scales, the SDR
often yields an exponent of approximately −α, indicating that
populations of different size can flux similar amounts of energy
per unit area (Lawton, 1989), a phenomenon referred to as energy
equivalence (Damuth, 1981). By contrast, density estimates
obtained for all species present in local communities often
produce weak triangular or polygonal (i.e., constraint envelope)
relationships with exponents shallower than −α, indicating that
that larger-bodied species flux more energy (Marquet et al., 1995;
White et al., 2007; Barneche et al., 2016). Under the hypothesis
that only the abundance of dominant species are constrained by
resource availability (Barneche et al., 2016; Ghedini et al., 2018),
it is possible to derive some general predictions about population
and community dynamics (Figure 1).

Fluctuations in abundance of single populations from time t
to time t+1 can be expressed as:

ri = log

(

Nt+1
i

Nt
i

)

(1)

The distribution of fluctuations often show departures from the
expected log-normal to fat-tailed distributions, implying reduced
predictability for population outbreaks and extinctions (Halley
and Inchausti, 2002; Lan and Chandran, 2011; Segura et al., 2013;
Anderson et al., 2017a), but a mechanistic explanation for this
phenomenon is currently lacking. At the community level, the
aggregation of fluctuations of single populations across species
(ri) often follows a double exponential or Laplace distribution
(Figure 1) which is a power law when the exponential of
fluctuations (exp(ri)=Nt+1

i /Nt
i ) are evaluated (Keitt and Stanley,

1998; Allen et al., 2001; Marquet et al., 2007; Kalyuzhny et al.,
2014; Segura et al., 2017). If the distribution of ri values is
centered on zero, it implies that an increase in one species
is compensated by the decrease in another, consistent with
zero-sum dynamics, which has important consequences for
community dynamics (Marquet, 2005; Segura et al., 2017).
Differently, VMA is a scaling law relating population variability
with body size. Its scaling exponent has been theoretically
predicted by combining the TL scaling exponent (eTL∼ 2) and
the SDR exponent (eSDR∼ −0.75) giving an exponent eVMA ∼

eTL ∗ eSDR ∼−3/2 (Marquet, 2005; Cohen et al., 2012). The VMA
was succesfully evaluated using empirical data sets (Cohen et al.,
2012; Xu, 2016) but the TL has been questioned as a statistical

result of sampling from skewed distributions (Cohen and Xu,
2015). However, the ecological mechanisms generating skewed
distributions remains unclear. Finding an expression for the
VMA without invoking the Taylor’s law would help to advance
in the understanding of mechanisms behind populations and
community variability (Figure 1).

Here, under the hypothesis that metabolic requirements
constraint the maximum abundance of dominant species in
a local community (Agustí et al., 1987; Belgrano et al., 2002;
Brown et al., 2004; Barneche et al., 2016; Ghedini et al., 2018),
we provide a formal link between body size, the distributions
of population abundance, and population and community
fluctuations in abundance. These links will help to advance our
understanding of determinants of size structure, and population
and community variability in natural communities. Based on
the influence of body size, temperature, and resource flux on
the metabolic limit to maximum population abundance, we
derive a constraint envelope model that establishes: (i) a formal
link with single-population variability that generates a fat-tailed
distribution of fluctuations, (ii) an explicit relationship with
the Laplace distribution of community fluctuations, and (iii) a
general form of variance-mass allometry which, in a particular
case, includes the VMA previously proposed by Marquet (2005)
and Cohen et al. (2012).

THE METABOLIC RESTRICTION TO
MAXIMUM POPULATION ABUNDANCE

The model is based on fundamental principles of resource
network transport and enzyme kinetics and should therefore be
applicable to many ecological systems (Brown et al., 2004). The
basal metabolic rate (Bi) scale as a power law with body size
(Mi) and have a near-exponential dependence with temperature
(T in Kelvin)

Bi = b0exp

(

−E

kT

)

Mα
i (2)

where b0 is the size and temperature independent taxon specific
constant, exp() is the exponential function, E is the activation
energy (E ∼ 0.65 eV for heterotrophs and E ∼ 0.32 eV for
autotrophs) and k is the Boltzmann constant (8.62 × 10−5

eV K−1). Ideally, the scaling of field metabolic rate should
be used, however, field metabolic data are not yet available
for many groups (Nagy, 2005) and thus the scaling of basal
metabolic rate is assumed. The allometric scaling of metabolism
(α) showed variations among major evolutionary transitions
(∼0.75–2; DeLong et al., 2010), but for the remaining of the
article we will use the prototypical value found for metazoans (α
∼ 0.75). This choice does not modify the qualitative predictions
of the theoretical model, as long as the scaling of metabolism is
larger than that of the minimum population size (see below).

Total resource use (Rtot) in a local ecosystem (e.g., light or
nutrients in case of autotrophs) is equal to the sum of the
population-level rates of resource use per unit area or volume,
Ri, across S cohabiting species (Rtot =

∑s
i=1 Ri). Ri, in turn,
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FIGURE 1 | Examples of relevant macroscopic community patterns simulated following Equations 5,6, 7, and 10. (A) The scaling of population density with body size

(SDR) where maximum popupulation density (nmax; black dashed lines) scales as the inverse of the metabolic scaling (–α = −0.75) and its intercepts increase with

increasing resources supply from Rtot = 0.1 (dashed line) to Rtot = 3 (dotted line). Remaining parameters from Equation 5 are a = 1, T = 15◦C. Minimum population

abundance (gray dashed line) is assumed to have no relationship with body size (β = 0, b = 1 in Equation 6). Examples of possible temporal changes in the SDR

space of a small sized (log(M)= 5; upper triangles) and large-sized (log(M)=17; open diamond) species. (B) The variance mass allometry (VMA) showing a decrease in

population variance with body size (Equation 10; α = 0.75, β = 0, b = 1, a = 1, Rtot = 0.1, T = 15◦C, E = 0.65). The hypothetical positions of a small sized and a

large-sized species from (A) are shown for comparison. (C) The Laplace distribution of aggregated population fluctuations. The Laplace distribution is the resulting

distribution of aggregate temporal fluctuations of single populations (Equation 1). Simulated random normal variation (gray points) has been added to the equations.

is proportional to the product of metabolic rate (Bi) and the
population density per unit area or volume (Ni),

Ri = Ni Bi (3)

Our interest is in understanding the upper limit to population
density,max(Ni). We assume that a dominant species can use no
more than a fraction γ of Rtot. For simplicity, we further assume
that this fraction is a constant independent of body size (i.e., γ ∝

M0). Given these assumptions, we can combine Equations 2 and
3, and then substituting γRtot for Ri (Belgrano et al., 2002; Deng
et al., 2012) for maximum population density:

max (Ni) = γRtotb
−1
0 exp

(

E

kT

)

M−α
i (4)

and its logarithm:

nmax = log (max (Ni)) =

[

a+ log (Rtot) +
E

kT

]

− αlog (Mi) (5)

where a= log(γ b−1
0 ). As defined, nmax represents the upper limit

for population density on the natural logarithmic scale. Similarly,
we can define the equation for the lower population abundance
bound on the logarithmic scale nmin:

nmin = b− βlog (Mi) (6)

We will assume for simplicity that nmin is independent of
body size (β = 0), and of temperature and resources (i.e., b is

constant) (Pimm, 1991; Marquet and Taper, 1998). In the present
context nmin is interpreted as the lower bound a local population
can reach before getting locally extinct. For example, in the
case of phytoplankton with asexual reproduction, the minimum
abundance is one organism (thus exp(nmin) = 1). We recall that
this is not a metabolic scaling, and later we will discuss the
qualitative effects of a different scaling exponent (β > 0) on
specific predictions.

Equations 5 and 6 allow us to set the limits on local
population abundance of a species in an ecosystem given its
body size, resource supply rate and temperature (Figure 1;
Lawton, 1989). In the following sections, we will derive a
formal theoretical model relating the metabolic rate (Equations
2, 5, and 6) to the scope for single population fluctuations,
the emergence of fat tails and the distribution of aggregated
community fluctuations. The model predicts the potential limits
of fluctuations (conditional to body size) within the boundaries
imposed by metabolic restrictions, but it does not analyze the
specificmechanisms that generates the variability (e.g., predation,
environmental perturbations).

SINGLE POPULATION
ABUNDANCE DISTRIBUTION

Because reproduction is a multiplicative process, a reasonable
assumption for the distribution of abundances (Ni) through
time for a single species in a local community is that
it follows a Lognormal distribution (Halley and Inchausti,
2002). This implies that the logarithm of abundance follows a
normal distribution with a mean µ and standard deviation σ

(MacArthur, 1955; Halley and Inchausti, 2002). Defining nmax

Frontiers in Ecology and Evolution | www.frontiersin.org 3 May 2019 | Volume 7 | Article 148

https://www.frontiersin.org/journals/ecology-and-evolution
https://www.frontiersin.org
https://www.frontiersin.org/journals/ecology-and-evolution#articles


Segura and Perera Metabolic Limits to Fluctuations

FIGURE 2 | Body size dependence of population standard deviation (Equation

7) at different resource levels (Rtot = 3 upper curve and Rtot =0.1 lower

curve). Remaining parameters used to draw the curve are α = 0.75, β = 0, a

= 1, b = 0, T = 15◦C, E = 0.65.

and nmin (in Equations 5 and 6) as the expected 5th and 95th
quantiles of the size-dependent (i.e., conditional) distribution of
log abundances, the following formal relationship can be derived
using Equations 2–6:

µ =
nmax+nmin

2 =
a+log(Rtot)+

E
kT

+b

2 −
(α+β)

2 log (Mi)

σ2 = nmax−nmin
3.28 =

a+log(Rtot)+
E
kT

−b

3.28 −
(α−β)
3.28 log (Mi)

(7)

These equations predict that µ will be negatively related to body
size, consistent with empirical local size-abundance distributions
(Damuth, 1981; Agustí et al., 1987; Blackburn and Gaston, 1997;
Belgrano et al., 2002; White et al., 2007). If lower population
limit is independent of body size (β = 0), as observed in most
local size density relationships (Lawton, 1989; Blackburn and
Gaston, 1997), the predicted average slope would be the half of
the scaling exponent of metabolism (e.g., –α/2 ∼ −0.375) closer
to the observed average in local communities of animals (−0.25;
Blackburn and Gaston, 1997). In the particular case when there
is a strong scaling of lower population limit with body size (e.g.,
β ∼ α) (e.g., Silva and Downing, 1994), the equations recover the
energetic equivalence rule, as the predicted exponent of the SDR
is the opposite to the metabolic scaling exponent (eSDR ∼ –α)
(Brown et al., 2004; White et al., 2007; Deng et al., 2012).

A novel explicit prediction is the link between metabolic
constraints and the variance σ2 of log-population abundance
(Figure 2). Equation 7 predicts a decreasing function of σ2

with body size (unless the extreme case β = α), an inverse
relationship with temperature and a positive relationship with
the logarithm of resource supply. It provides the ecological
conditions to observe a linear (α = β) or a triangular (α > β)
relationship between log-size and log-abundance as has been
observed (Lawton, 1989; Marquet et al., 1995; Blackburn and

Gaston, 1997; White et al., 2007; Barneche et al., 2016). The
decrease in population variance might be related to longer
generation times in larger-sized organisms, which is closely
related to body size. Those equation combine the physiological
effect of themetabolic transport network (α, Mi) with the effect of
local ecosystem properties (temperature and resource supply; T
and Rtot) on population fluctuations. With the formal theoretical
predictions on the mean and standard deviation of population
abundance, it is possible to explore their role on populations and
community fluctuations.

EMERGENCE OF FAT TAILS IN SINGLE
POPULATION FLUCTUATIONS

The magnitudes of abundance fluctuations for a single
population can be characterized as the log of the ratio of
abundances, ri, for two successive time periods, t and t+1
(Equation 1) (Keitt and Stanley, 1998; Halley and Inchausti, 2002;
Segura et al., 2013). The ratio of two lognormal distributions is
itself a lognormal and in the long run, covariance of population
abundance between successive times is zero, thus, the mean (µri)
and variance (σ2ri) of the fluctuations (ri) are estimated as:

µri = µt+1 − µt

σ2ri = σ2t+1 + σ2t
(8)

If mean abundance in successive times are similar, the expected
mean of fluctuations µri is on average zero, but the variance
is the sum of the two variances (Equation 8), which amplifies
the effect of size, temperature and resources on it (from
Equation 7). The periodic changes in temperature or resources
which naturally occur in natural ecosystems will shift the
upper metabolic limit (nmax) and thus modify the scope for
fluctuations of each population (σ2ri in Equation 8 and Figure 1).
If the abundance of a single population is estimated over long
periods (relative to its generation time), the fluctuations for a
single species will follow a lognormal distribution with zero
mean, but time-varying variances. This can be described as
a mixture of lognormal distributions with different variances,
which is a mechanism able to generate fat tail distribution of
fluctuations (Halley and Inchausti, 2002; Segura et al., 2013;
Anderson et al., 2017a). This provides a plausible metabolic-
based explanations for the fat tails in the population fluctuations.
This explanation is complementary to previous explanations
based on environmentally-driven population crashes (Anderson
et al., 2017a), migration (Anderson et al., 2017b) antropogenic
disturbances (Quiroz-Martinez et al., 2012), or the long-range
propagation of interaction among species in a food web (Keitt
and Stanley, 1998; Allen et al., 2001). However, for a given
community in a particular ecosystem in a defined period of time,
present model allows to estimate quantitative predictions about
the mixture of normal distributions and the resulting “fat-tailed”
distribution for each species given their body size.

According to the present model, fat tails will be easily
detectable in small-sized highly-abundant species because of
their larger scope for fluctuations as opposed to large-sized
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species (Figure 1). If a short period of time is evaluated
or if resources or temperature present a temporal trend as
registered under antropogenic eutrophication or climate change,
asymmetric distributions of population fluctuations could result
as has been noted early (Halley and Inchausti, 2002; Segura
et al., 2013; Anderson et al., 2017a). Short datasets might
preclude detecting statistical differences between lognormal or
their fat-tailed counterparts. Moreover, the ability to detect
substantial differences would decrease with the size of the
organism as the scope for fluctuations (σ2ri) is reduced. The
patterns predicted by Equations 7 and 8 should be treated
as the extreme limits into where population dynamics could
act (Lawton, 1989). Finding deviations from the theoretically
predicted scope for fluctuations could provide interesting clues
about other ecological mechanisms reducing (e.g., predator-prey
coupling) or amplifying (e.g., fishing) population variability.

LINK WITH THE LAPLACE DISTRIBUTION
OF COMMUNITY FLUCTUATIONS

When the fluctuation (ri) of multiple populations whitin a
community spanning a large range in body sizes are aggregated,
the Laplace distribution is the expected outcome as has been
observed in empirical studies (Keitt and Stanley, 1998; Allen et al.,
2001; Kalyuzhny et al., 2014; Segura et al., 2017). The link of
single population fluctuations (Equation 8) to the community
level is straightforward. There is a proposition that states that
the aggregation of Lognormal distributions with mean zero
and stochastic variance which has an exponential distribution
generates a Laplace random variable (proposition 2.2.1 in Kotz
et al., 2001). Single population fluctuations are approximately
normal in the log space and its average is expected to be zero
(µrs = 0) and independent of body size (Equation 8) which
fullfills the former criteria. The variance of the fluctuations (σ2rs)
can be approximated as twice the variance of single population
fluctuation (Equation 8; σ2rs ∼ 2σ2) which is related to metabolic
rates and present a left skewed distribution with multiple shapes
(Figure 2). When β = 0, the variances (σ2) of populations
distributed uniformly in the log body-size space are power
laws with a scaling ∼ − α/3.28, and at the other end they
are independent of size (when α = β), and present an inverse
relationship with absolute temperature and an exponenetial
dependence on resource flux (Rtot). This distributions are
close to an average of zero and an exponential distribution
of the variances necessary to obtain a Laplace distribution of
community fluctuations (Kotz et al., 2001).

Deviations from Laplace are expected because the distribution
of variances (σ2) are not strictly exponential, but this patterns
have not been investigated yet (Kalyuzhny et al., 2014). Another
source of discrepancies from the expected Laplace could arise if
the fluctuations are estimated in a reduced period of time, where
aperiodic fluctuations in abiotic conditions caused by nutrient
pulses or systematic trends in temperature regimes modify the
variance structure of fluctuations (Equation 7). Overall, Laplace
distribution serves as a null model to test community fluctuations
in real ecosystems or to analyze deviations from theoretical

assumptions. This framework allows to generate theoretical
predictions on the specific effect of increasing temperature or
resource variability on population and community fluctuations.

A GENERAL MODEL FOR THE LINK
BETWEEN POPULATION VARIANCE AND
BODY SIZE

The variance-mass allometry has been defined theorethicaly by
combining SDR and TL (Marquet, 2005; Cohen et al., 2012) and
states that population variance (Var(N)) is a decreasing power
function of body mass (M) which was supported by empirical
tests (Cohen et al., 2012; Lagrue et al., 2015). However, the TL
has been critiziced in statistical and biological grounds (Cohen
and Xu, 2015). An alternative procedure to derive theoretical
predictions on the variance-mass relationship without relying on
fitting the Taylor’s law can be performed based on the metabolic
limits to density (Equations 5–8). The variance of population
abundance (Var(Ni)) is defined in terms of µ and σ (Equation
7) as follows:

Var (N) = e2µ+σ2
(

eσ
2
− 1

)

(9)

Substituting Equations 7 into Equation 9 and then rearranging
for M, we obtain an explicit relationship between organisms size
and population variance as follows:

Var (N) = M−1.6α−0.4β
+ e1.6c+0.4b

−M−1.3α−0.7β
+ e1.3c+0.7b (10)

This equation includes the effect of resources and temperature
into the term c=a+ log(Rtot) + E/kT. It is a combination of
two power laws that generates a steeper slope toward large-sized
organisms (Figure 3). In the special case in which the scaling of
maximum and minimum population abundance are the same (α
= β) the Equation 10 is reduced to:

Var (N) ∝ M−2α (11)

Equivalent to the variance-mass allometry (VMA) proposed
using a different derivation by Marquet (2005) and Cohen
et al. (2012). The exponent equal to minus twice the scaling
of metabolism (e.g., −0.75∗2 = −3/2) match exactly their
predicted theoretical value (Marquet, 2005; Cohen et al., 2012).
Moreover, results showed that the metabolic limit to maximum
population abundance generates a skewed distribution of species
abundances, a necessary condition to generate TL (Cohen and
Xu, 2015) but the model (Equation 11) does not depend on
fitting Taylor’s law to empirical data (Taylor, 1961). Therefore,
our present method provides an advantage to conduct empirical
tests, because contrary to TL, it does not require time series of
population abundances to estimate temporal mean and variance.

The explicit link with metabolic scaling presented in Equation
10 could help to explain why free-living, free-living infested,
and parasitic species exhibit different VMA relationships (Lagrue
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FIGURE 3 | General variance mass allometry (VMA) under different resource

supply concentrations (Rtot = 3 upper line and Rtot =0.1 lower line). The

special case when α = β is a straight line (dashed line) whose slope is twice

the opposite of the metabolic exponent eVMA = −2α.

et al., 2015). It is expected theoretically that both the intercept and
slope of metabolic scaling (b0 and α in Equation 2) differ between
parasites and free-living species with direct implications in the
VMA (Equation 10; Lagrue et al., 2015). Similarly, a fraction of
the metabolic power of free-living species infested with parasites
is not used to reproduce and increase population abundance, but
to feed parasites, diminishing their effective scope for fluctuations
with size as have been observed (Lagrue et al., 2015).

MODEL ASSUMPTIONS AND
ALTERNATIVE MODELS FOR THE SIZE
DEPENDENCE OF MAXIMUM
POPULATION ABUNDANCE (nmax)

There are three main assumptions required to derive specific
predictions on variability of population and community
fluctutations, namely: (i) there is a maximum to population
abundance determined by body size, and ecosystem properties
(T, Rtot), (ii) there is a lower bound to population abundance, and
(iii) the distribution of population abundances is lognormal.

An important assumption in our proposed model is the
existence of a metabolic determinant of maximum population
density. While this assumption has received empirical support
(Damuth, 1981; Belgrano et al., 2002; Deng et al., 2012)
it has also been questioned and alternative models for the
SDR have been suggested (e.g., Carbone and Gittleman, 2002;
DeLong and Vasseur, 2012; Pawar et al., 2012). How do
alternative SDR models fit into the framework propossed here?
A group of consumer-resource models whose parameters are
estimated based on scaling relationships provide quantitative
predictions on the shape of the SDR by finding the body-size

scaling of non-trivial steady-state consumer density (DeLong
and Vasseur, 2012; Pawar et al., 2012). These models assume
that the feeding processes (e.g., handling time, attack rate)
and not the internal metabolic transport network determine
the maximum population density of a consumer population.
For example, under a simplified Lotka-Volterra predator-prey
model, it was found that the SDR scaling exponent (eSDR) was
related tomaximumpopulation growth rate, attack rate efficiency
and predator-prey size scaling, with specific body size-scalings
exponents (ρ,δ,ω, respectively). A formal prediction of the body-
size density scaling relationship was constructed (eSDR = ρω −

δ) (DeLong and Vasseur, 2012). Temperature will affect the
normalization constant for each of these scaling rates, generating
potentially more complex responses than the near-exponential
response suggested in Equation 2. The quantitative predictions
of consumer-resource models about nmax and its effects on the
populations and communities fluctuations are able to be directly
incorporated into the present framework (e.g., in Equation 4) and
tested against empirical data. Any other quantitative model with
formal predictions on the distribution of the SDR (e.g., Irwin
et al., 2006; Pawar et al., 2012, among others) can be plugged
into Equation 4 to generate specific testable hypothesis about the
determinants of natural variability. However, the information on
scaling relationships of feeding proceses required is sometimes
not available and thus the metabolic approach here presented
might serve as a first aproximation.We advocate for the empirical
evaluation of alternative models on the determinants of SDR and
its effect in the variability of populations and the community.

The limit of the lower population abundance (Equation 5)
requires further exploration both in theoretical and empirical
grounds (Traill et al., 2007). There is evidence for some
groups suggesting that this pattern is flat (Marquet and
Taper, 1998; Traill et al., 2007), after accounting for trophic
group, temperature, species richness, and sampling area,
the size scaling of population abundance is negligible for
populations that are rare (Barneche et al., 2016). However,
negative scaling exponents have been found for mammals
(Silva and Downing, 1994) but the pattern is restricted to
particular groups (Nagy, 2005) and we lack a robust theoretical
framework to explain it (Lawton, 1989). As a first approximation
and without further information, we suggest assuming β is
independent of body size and temperature or resources. In
the absence of information on the scaling of b, the parameter
could be estimated by fitting a slope to the 5% quantile
of the size-abundance distribution for the community under
different resources or temperature regimes. More theoretical and
empirical evaluations on the scaling of minimum population
abundance is required to advance in the determinants of
population and community variability.

The distribution of single species abundances following a
Lognormal seems to be reasonable and have been proposed
as a simple and ecologically meaningfull distribution to model
population abundances (Halley and Inchausti, 2002). Present
results are not sensitive to departures from the Lognormal,
as long as the distribution of abundances be symetric in the
log-scale. Under any other symetric distribution, the constant
dividing standard deviation in Equation 7 will change, but will
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not qualitatively alter the results about the Laplace distribution.
It will however change the derivation of a VMA which is
based on the relationship between variance of the Lognormal
and µ and σ. However, the lognormal is a reasonable first
step and provides analytical results able to be tested with
empirical data.

FINAL REMARKS

Our model is an asymptotic time model that defines the
statistical boundaries for fluctuations in the long run and derive
predictions on the shape of the distribution of fluctuations
(conditional to body-size) at multiple ecological levels. Results
present quantitative predictions of the fluctuation of population
and community abundance with body size derived from the
metabolic limits to maximum population abundance. Larger
organisms are limited by metabolic constraints which defines
maximum population density and limit population fluctuations.
First, results showed how the metabolic constraints and the
fluctuation of resources and temperature are able to generate
fat tails in the fluctuation of single populations. Second,
we derive a model for whole community fluctuations able
to reproduce the observed double exponential or Laplace
distribution. We also derived a variance-mass allometry
independent from the fitting the Taylors’ law and that
recuperates the VMA previously proposed as a special case.
Our approach provides a general framework to mechanistically
link universal patterns observed in ecology, namely the
metabolic scaling, species density distribution, and the Variance
mass allometry.

Grounded on first principles our model provides a novel
quantitative link between size structure and variability, two
central tenets of ecological agenda. The universality of the
patterns suggests that explanations should be rooted on first
principles, and a great candidate is the scaling of the metabolic
activity (Gillooly et al., 2001; Brown et al., 2004; Savage
et al., 2004). An important aspect of our model framework
is that parameters values can be fully assigned independently
of size-variance data and have clear ecological interpretation.
While α represents the scaling of metabolic rate with size,
the relationship with temperature and resources is explicit.
Empirical test of present model and alternative formulations
for the maximum population abundance are required to
advance in the comprehension of the mechanisms determining
natural variability.
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