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Compared to species richness, few studies have investigated the patterns and

relationship of phylogenetic and functional structures along elevational gradients. Here,

we used the general additive models to determine the trends of taxonomic diversity

(species richness, SR), phylogenetic and functional diversity (PD and FD), phylogenetic

structure net relatedness index (NRI), and functional structure net functional relatedness

index (NFRI) of seed plants along the elevational gradient in Mount Kenya, a tropical

mountain in Africa. Wemeasured growth form, fruit type, maximum height, andmaximum

leaf size of each species, calculated the phylogenetic signal of each trait, and tested the

Pearson correlation coefficients between NRI and NFRI of each trait. Our results showed

that SR, PD, and FD decreased gradually along the elevational gradient. NRI exhibited a

fluctuating pattern along the elevational gradient, while NFRI of the four functional traits

showed noticeably different patterns. We concluded that the relationship between the

phylogenetic and functional structures in different functional traits could be congruent

or mismatched along the elevational gradient. Compared with relatively conservative

categorical traits (e.g., growth form and fruit type), continuous traits (e.g., height and

leaf size) have a random or convergent evolutionary pattern. Therefore, they could be

more easily affected by the environment and possibly have higher phenotypic plasticity.

Keywords: tropical Africa, Mount Kenya, plant diversity, convergent, conservatism

INTRODUCTION

Understanding the causes of geographic variation in taxonomic diversity (species richness, SR),
phylogenetic diversity (PD), and functional diversity (FD) is one of the fundamental questions in
ecology. PD was first proposed by Faith (1992) as a measure of the length of evolutionary pathways
that connect a given set of taxa (Forest et al., 2007). The range of PD tends to increase with SR
because species usually differ from each other with respect to their position in the phylogenetic tree
(Sax et al., 2007; Kluge and Kessler, 2011). FD is a measure of the diversity of manifestations of
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ecological traits in a community, which is an important
determinant of ecosystem processes and usually embodies the
diversity of niches or the functions of a species (Tilman, 2001;
Petchey and Gaston, 2002; Petchey et al., 2004; Dehling et al.,
2014). FD is positively correlated with SR when the traits of
species are equally complementary (Petchey and Gaston, 2002,
2006; Devictor et al., 2010) and have similar predictive abilities of
PD to predict biodiversity effects, even though the two indices
are based on generally different information: ecophysiological
traits for FD and the time since evolutionary divergence for
PD (Flynn et al., 2011).

Studying the phylogenetic and functional composition of
species assemblages may provide insight into the influence of
different mechanisms that generate and maintain SR patterns
(Dehling et al., 2014). However, to understand the ecological
processes that drive species assembly, numerous researchers
have only investigated the phylogenetic structure, overlooking
the functional structure of assemblages (Graham et al., 2009;
Gómez et al., 2010; Sobral and Cianciaruso, 2016), for they
might expect that the phylogenetic structure is a good proxy
for functional structure (Cardillo et al., 2008; Graham et al.,
2009). This assumption depends on the phylogenetic signal of
ecological traits, which can change according to the taxonomic
and spatial scale (Losos, 2008; Krasnov et al., 2011). Therefore,
a comparison of the functional and phylogenetic structures
of species assemblages can provide a more comprehensive
insight into the mechanisms that influence species co-
occurrence (Cavender-Bares et al., 2009; Lavergne et al., 2010;
Meynard et al., 2011).

Two processes have significant effects on phylogenetic
relatedness and functional similarity of species assemblages,
i.e., environmental filtering and competitive interactions among
species (Webb et al., 2002; Pausas and Verdú, 2010; Cianciaruso
et al., 2012). On one hand, environmental stress acts as
a filter on lineages resulting in co-occurring species that
are more closely related than expected by chance, leading
to phylogenetic clustering (Cianciaruso et al., 2012), while
competitive interactions result in co-occurring species that are
less related than expected by chance, thus leading to phylogenetic
overdispersion (Kraft et al., 2007; Vamosi et al., 2009; Cianciaruso
et al., 2012). On the other hand, environmental filters could
also select species with similar functional traits, resulting in
assemblages that are functionally clustered (Pausas and Verdú,
2010; Sobral and Cianciaruso, 2016), whereas competition could
promote the coexistence of species with different functional
traits, resulting in assemblages that are functionally overdispersed
(Pavoine and Bonsall, 2011; Sobral and Cianciaruso, 2016).
Previous studies found incongruities between the phylogenetic
and functional structure of assemblages, i.e., the phylogenetic
structure was not a good surrogate for the functional structure
(Gómez et al., 2010; Cianciaruso et al., 2012; Sobral and
Cianciaruso, 2016). However, different functional traits could
show convergence, conservatism, or locate randomly on lineages.
It is expected that the functional structure of those traits
with strong phylogenetic signals would be consistent with the
phylogenetic structure, while the functional structure of those
random or convergent evolutionary traits would mismatch with
the phylogenetic structure (Webb et al., 2002; Kraft et al., 2007).

Although there are various studies comparing the functional
and phylogenetic structure of animal assemblages (Devictor
et al., 2010; Machac et al., 2011; Dehling et al., 2014; Sobral
and Cianciaruso, 2016; Che et al., 2018), as well as plant
assemblages (Kraft and Ackerly, 2010; Cianciaruso et al., 2012),
there are few reports on the trend and relationship between
the functional and phylogenetic structure of different traits
along the elevational gradient. Actually, elevational gradients
can suitably reflect competition and environmental filtering.
For example, low-altitude forests are more competitive, whereas
high-altitude forests have more environmental filtering because
of the harsh climate (Webb et al., 2002; Machac et al.,
2011; Li et al., 2013; Xu et al., 2017; Zhou et al., 2018).
Mountains are the ideal natural experimental areas for the study
of these variations along an elevational gradient because of
their great biodiversity, variety of climate types, and diverse
habitats (Körner, 2007; Dehling et al., 2014; Kluge et al., 2017).
Mount Kenya (5,199m a.s.l.) is the highest mountain in Kenya
and the second-highest in Africa, after Mount Kilimanjaro in
Tanzania (Speck, 1982). There are several vegetation bands
from its base to the summit, changing from forest zones,
bamboo thickets, and heath zone to afro-alpine vegetation
and nival zone (Coe, 1967; Niemelä and Pellikka, 2004;
Zhou et al., 2018).

Here, we divided Mount Kenya into 30, 100-m vertical
elevation bands from 2,000 to 5,000m a.s.l., and analyzed
the SR, PD, and FD as well as the relationship between
the functional and phylogenetic structure of seed plant
assemblages along its elevational gradient. We address
the following questions: (1) what are the patterns of
SR, PD, and FD of seed plants of Mount Kenya along
the elevational gradient? (2) How do the phylogenetic
structure and the functional structure of the different traits
of species assemblages vary along the elevational gradient?
and (3) is the relationship of functional and phylogenetic
structure congruent or mismatched among convergent or
conservatism traits?

MATERIALS AND METHODS

Study Area and Environmental Factors
Mount Kenya (0◦10′ S, 37◦20′ E) (Figure 1) straddles the equator
and is located in the central part of Kenya, ∼193 km North-
East of Nairobi and 480 km from the Kenyan coast. Although
the Lower Imenti Forest Reserves is the lowest region with an
altitude of around 1,200m a.s.l., located in the northeastern part
ofMount Kenya (Gathaara, 1999), most of this mountain is above
2,000m a.s.l. In addition, few plants survive near the glacier above
5,000m a.s.l. onMount Kenya (e.g., F.T.E.A. editors., 1952–2012;
Agnew, 2013). To examine the relationship between SR, PD,
and FD as well as the variation of phylogenetic and functional
structure along the elevational gradient of Mount Kenya, the
whole elevation ranges from 2,000 to 5,000m a.s.l. were divided
into 30, 100-m vertical elevation bands. We also obtained the
annual mean temperature (AMT) and annual mean precipitation
(AMP) of each elevation band using ArcGis 10.2.2 software
(http://www.arcgis.com) from the Worldclim database (http://
www.worldclim.org/) (Figure 2).
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FIGURE 1 | An elevation map of Mount Kenya showing 100-m vertical elevation bands. The black solid line shows the elevation of 2,000m a.s.l..

FIGURE 2 | The annual mean temperature (AMT) (A), and the annual mean precipitation (AMP) (B) change along the elevational gradient of Mount Kenya. All data

were downloaded from the Worldclim database (http://www.worldclim.org/).

Dataset
We firstly gathered the monographs, literatures, and field
guides as much as possible, including the Flora of Tropical
East Africa, Upland Kenya Wild Flowers and Ferns, Wild
Flowers of East Africa, and Kenya Trees Shrubs and Lianas
(F.T.E.A. editors., 1952–2012; Blundell, 1987; Beentje, 1994;
Agnew, 2013), which involed the plant diversity of Mount
Kenya, and get the primary checklist of seed plants of
this mountain. Then we checked specimens of East Africa
Herbarium (EA), as well as some other herbariums which
have specimens of plants from Mount Kenya. We also
download the data from the Global Biodiversity Information
Facility (GBIF, https://www.gbif.org/), by setting latitude and
longitude on the search map and checked each information
carefully to ensure each record was authentic and reliable.
Finally, we identified our own collections at Mount Kenya
from 2013 to 2018, which were stored at the Herbarium
of Wuhan Botanical Garden, Wuhan, China (HIB), and
more than half of total plants have been validated in the
field. In total, a checklist of 1,282 native seed plants of

Mount Kenya from 2,000 to 5,000m a.s.l. was compiled (see
Supplementary Material Appendix 1).

Four morphological traits, including two categorical traits,
growth form and fruit type, and two continuous traits, maximum
height and maximum leaf size, were used to calculate the
different functional indices. The data for the morphological traits
were obtained from our fieldwork, the literature, and herbarium
specimens (see Supplementary Material Appendix 2). The
growth form of each species was recorded as one of the five
main types: tree, shrub, liana, herbaceous climber, and herb
(Zhou et al., 2018). The fruit type of each species was recorded
as one of the following twelve categories: achene, berry, capsule,
caryopsis, drupe, follicle, legume, nut, samara, schizocarp,
silique, and utricle (Li et al., 2013). The maximum height of each
species reported in the flora are approximations, characterized
by rounding up to whole numbers. Three formulas were used to
approximate the value of maximum leaf size: length × breadth
× 2/3 for entire or dentate leaves, length × breadth × 1/2 for
shallow-lobed leaves, and length × breadth × 1/3 for deep-lobed
leaves (Cooper, 1960). Compound leaves (e.g., leaves of some
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species of Apiaceae, Araliaceae, and Fabaceae) were represented
by the largest leaflet, which was treated as a single leaf in our
analysis (McGlone et al., 2009). Prior to all the functional
analysis, the data of the maximum height and maximum leaf size
were log10-transformed (Swenson et al., 2012).

Phylogeny Construction
The online program Phylomatic Version 3 (http://
phylodiversity.net/phylomatic/) was used to construct a
phylogenetic super tree of all the seed plants present on
Mount Kenya onto a backbone phylogenetic hypothesis (see
Supplementary Material Appendix 3) (Webb and Donoghue,
2005). The backbone of the super tree was based on the
Angiosperm Phylogeny Group (APG) III topology (APG III.,
2009), and branch lengths in the phylogenetic tree were obtained
according to Zanne et al. (2014).

SR, PD, and FD
The elevation range of each species was estimated as the
difference between the maximum and minimum elevations, of
which the data were obtained from the literature, specimens, and
our own observations in the field. The number of species present
in each band was estimated by the interpolation method, i.e., a
species was defined as being present in every 100-m elevation
band between its upper and lower elevation limits (see Rahbek,
1997; Vetaas and Grytnes, 2002; Bhattarai and Grytnes, 2006).
The SR was defined as the total number of species found in each
100-m elevation band, which has been termed gamma diversity
(γ-diversity) (see Supplementary Material Appendix 1,
Lomolino, 2001; Bhattarai and Grytnes, 2006).

PD and FD of each elevation band were calculated using
the phylogenetic tree and trait dendrogram, respectively, (Wang
et al., 2013; Swenson, 2014). For FD, we first calculated a trait-
based Gower distance matrix (Gower, 1971), and then performed
a hierarchical clustering analysis to produce a trait dendrogram
(see Supplementary Material Appendix 4). PD and FD metrics
yielded the total branch length spanned by the phylogenetic
tree and trait dendrogram, linking all species in a band on the
regional pool (Faith, 1992; Wang et al., 2013). These analyses
were performed using the “picante” package (Kembel et al., 2010)
in R 3.3.3 software (R. Core Team, 2017).

Phylogenetic Signal for Functional Traits
The generalized least squares approach was used to test for
the phylogenetic signal of the two categorical traits, i.e., growth
form and fruit type (Garland and Ives, 2000). The phylogenetic
signal for a given categorical trait is considered significant if
the summarized branch length of all species with that trait
is shorter in the given tree than in 95% of the randomized
trees (Bauer et al., 2011). This test was performed using
the function “phylo.signal.disc” (written by Enrico L. Rezende,
Universitat Autònoma de Barcelona) in R 3.3.3 software (R.
Core Team, 2017). Additionally, Blomberg’s K-value was used
to quantify the strength of the phylogenetic conservatism in
the two continuous traits, i.e., maximum height and maximum
leaf size (Blomberg et al., 2003; Kembel et al., 2010). A K-
value equal to one corresponds to a Brownian motion process,

and a K-value closer to zero corresponds to a random or
a convergent pattern of evolution. A K-value >1 indicates
a strong phylogenetic signal and trait conservatism (Abellán
and Ribera, 2011). The calculation of Blomberg’s K was
performed using the “picante” package (Kembel et al., 2010) in
R 3.3.3 software (R. Core Team, 2017).

Phylogenetic and Functional Structure
The net relatedness index (NRI) was used to indicate the
phylogenetic structure of each band along the elevational
gradient, which was proposed by Webb et al. (2002) following
the algorithm: NRI = −1 × (MPobserved-MPrandomized) /
sdMPDrandomized, where MPD refers to the average phylogenetic
relatedness between all possible pairs of taxa in an assemblage,
MPDobserved is the observed MPD, MPDrandomized is the expected
MPD of the randomized assemblages, and sdMPDrandomized

is the standard deviation of the MPD. To obtain NRI, the
MPDobserved values within each elevation band were compared
against the values from 999 sets of randomized elevation
bands created with the independent swap algorithm, with
all species present along the elevational gradients as the
source pool (Dehling et al., 2014). The aggregation degree of
phylogenetic structure was positively correlated with NRI, and
positive values of the index indicated phylogenetic clustering,
whereas negative values indicated phylogenetic overdispersion or
evenness (Webb et al., 2002, 2008).

To estimate the functional similarity of species in assemblages
at each site relative to the functional similarity of randomly
constructed assemblages, the trait-based Gower distance matrix
of each functional trait was used to substitute for the
phylogenetic distance matrix (Klingbeil and Willig, 2016). The
net functional relatedness index (NFRI) is the mean pairwise
functional distance standardized against null-model expectation
as described above for the standardization of mean pairwise
phylogenetic distance (MPD) to NRI (Dehling et al., 2014;
Klingbeil and Willig, 2016). As the functional equivalent to
NRI, NFRI could also indicate the aggregation degree of the
functional structure of the species assemblage, and positive values
of the index indicated functional clustering, whereas negative
values indicated functional overdispersion or evenness. The
phylogenetic and functional structure analyses were performed
using the “picante” package (Kembel et al., 2010) in R 3.3.3
software (R. Core Team, 2017).

The Spatial Pattern of SR, PD, FD,
Phylogenetic, and Functional Structure
Along the Elevational Gradient
We used generalized additive models with a Gaussian function
of variance to determine the trends of SR, PD, FD, MPD,
NRI, and NFRI along the elevational gradient, instead of using
a linear correlation analysis. In this method, a cubic smooth
spline (Hastie and Tibshirani, 1990) was used to evaluate the
significance of a specific trend for species richness-elevation
relationships, as well as for phylogenetic or functional diversity-
elevation relationships. These analyses were carried out using
the “mgcv” package (Wood, 2001) in R 3.3.3 software (R.
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Core Team, 2017). To investigate the relationship between the
phylogenetic and functional structure among the elevation bands
and environmental factors, we computed the Pearson correlation
coefficient between elevation, AMT, AMP, NRI, and NFRI using
the “stats” package in R 3.3.3 software (R. Core Team, 2017).

RESULTS

SR, PD, and FD
SR decreases gradually with the increase of elevation of Mount
Kenya from 2,000 to 5,000m a.s.l. (Figure 3A). There are more
than 1,000 species at the lower elevation band, whereas there are
<100 species in each band above 4,300m a.s.l. Only 11 species
were found at ∼5,000m a.s.l. PD and FD showed similar results
to SR (Figures 3B,C).

Phylogenetic Signal for Functional Traits
Over the entire elevation range of Mount Kenya for the full
phylogenetic tree of all the seed plants, the two categorical traits,
growth form and fruit type, showed a significant phylogenetic
signal, in that the observed number of evolutionary transitions
was lower than the randomization of mean evolutionary
transitions (Figure 4). Moreover, the K-values of the two
continuous traits, maximum height and maximum leaf size,
were 0.181 (P < 0.001) and 0.059 (P < 0.001), respectively,
corresponding to a random or convergent pattern of evolution
for these two traits.

Spatial Congruence or Mismatch Between
Phylogenetic and Functional Structure
The MPD showed a slightly increasing then a steadily decreasing
pattern along the elevational gradient, with a mid-elevational
peak at 2,607m a.s.l. (Figure 5A). The NRI exhibited a
fluctuating pattern along the elevational gradient, which sharply
decreased, then gradually increased and finally progressively
decreased, with the lowest peak at 2,574m a.s.l. and the highest
peak at 3,556m a.s.l., indicating a phylogenetically random
structure in the range at the lower elevation bands (below 3,000m
a.s.l.) and a clustering structure at the higher elevation bands
(Figure 5B).

The NFRI of growth form, fruit type, and maximum height
showed similar patterns, namely, the obvious hump-shaped
patterns with the highest peak at 3,284m a.s.l., 3,373m a.s.l.,
and 2,705m a.s.l., respectively (Figures 6A,B,C). The NFRI
of maximum leaf size displayed positive values in the lower
altitude and negative values in the upper altitude (Figure 6D).
The Pearson correlation analysis showed a positive correlation
between NRI and NFRI of growth form (correlation = 0.219,
P > 0.05) and fruit type (correlation = 0.416, P < 0.05)
and a significant negative correlation between NRI and NFRI
of maximum height (correlation = −0.605, P < 0.05) and
maximum leaf size (correlation = −0.671, P < 0.05) (Table 1).
These results indicated that the relationship between the
phylogenetic and functional structure was inconsistent among
the different traits.

DISCUSSION

Mountains are usually more likely to display positively skewed
(hump-shaped) patterns, i.e., peak diversity below the elevational
midpoint, for they invariably exhibit greater elevational extent
and longer climatic gradients than other habitats, and this kind
of hump-shaped pattern is a well-known finding for many
tropical and subtropical mountains (e.g., Vetaas and Grytnes,
2002; Trigas et al., 2012; Li et al., 2015). The SR of Mount
Kenya is a hump-shaped pattern along the elevational gradient,
considering the plant diversity below 2,000m a.s.l. (unpublished
data). The interval of maximum SR is ∼2,000m a.s.l., which this
is consistent with other mountains with a high elevation such as
the Himalayas in Nepal (Grytnes and Vetaas, 2002), Alborz Mts.
in Iran (Mahdavi et al., 2013), and Dulong Valley Region, China
(Li et al., 2015). The PD and FD along the elevational gradient
have a pattern similar to that of SR. This is because species
usually differ from each other with respect to their position in the
phylogenetic tree (Sax et al., 2007; Kluge and Kessler, 2011) as
well as due to their functional traits (Petchey and Gaston, 2002;
Rosenfeld, 2002; Safi et al., 2011).

NRI showed a fluctuating pattern along the elevational
gradient, indicating that, in the flora of Mount Kenya, a
phylogenetically random structure could be found in the lower
elevation range, a phylogenetically over dispersed structure could
be found in the middle elevation ranges (2,300–2,900m a.s.l.),
even with the not significantly negative values of NRI, and
a clustering structure could be found in the upper elevation.
We believe that environmental filtering is the main driver of
plant community assembly in the upper elevation bands of
Mount Kenya. Generally, high elevation areas usually have lower
temperatures and species distributed in these areas are from few
lineages that have evolved the ability to tolerate this harsh climate
(Figure 2A, Table 1, McCain, 2007, 2009; Dehling et al., 2014;
Zhang et al., 2016).

Interestingly, NFRI of the four functional traits showed
obviously different patterns along the elevational gradient of
Mount Kenya. The two categorical traits showed overdispersion
or random functional assemblage structure in the lower
elevation bands and clustered assemblage structure in the higher
elevation bands (Figures 6A,B). This largely corresponded to
the pattern of functional assemblage structure of frugivorous
birds along the elevational gradient of the tropical Andes
(Dehling et al., 2014). In contrast, the two continuous traits
showed clustered assemblage structure in the lower elevation
bands and random or overdispersed structure in the upper
elevation ranges (Figures 6C,D). An increasing number of
studies have focused on the representativeness of PD for FD
(Cardillo et al., 2008; Cadotte et al., 2009, 2013; Flynn et al.,
2011; Guilhaumon et al., 2014), and phylogenetic structure
should indeed match the functional structure if functions are
conservative traits along an elevational gradient (Losos, 2008;
Wiens et al., 2010; Cachera and Le Loc’h, 2017). Compared
to a previous study on animals with similar patterns of NRI
and NFRI along the elevational gradient (Dehling et al., 2014),
our results showed a great mismatch between phylogenetic
and functional structure of the two continuous traits (Table 1).
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FIGURE 3 | Patterns of species richness (A), phylogenetic diversity (100 MY) (B), and functional diversity (C) of native seed plants along the elevational gradient of

Mount Kenya from 2,000 to 5,000m a.s.l.

FIGURE 4 | Results of the randomization test of the two categorical traits, growth form (A) and fruit type (B), along the phylogenetic tree of the total seed plants of

Mount Kenya from 2,000 to 5,000m a.s.l. The red arrows are the evolutionary transitions observed in functional traits and the bars indicate evolutionary transitions

randomized from minimum to maximum.

FIGURE 5 | The patterns of mean pairwise phylogenetic distance (MPD) (A) and net relatedness index (NRI) (B) along the elevational gradient of Mount Kenya from

2,000 to 5,000m a.s.l. Solid circles denote significant clustering or overdispersion compared to the randomizations.

These results are strongly consistent with previous studies that,
for a given regional pool, showed that species may respond
to environmental gradients in different ways, thus affecting

the spatial distribution of PD and FD and generating spatial
mismatch between the structure of phylogeny and function
(Losos, 2008; Prinzing et al., 2008; Devictor et al., 2010; Cachera
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FIGURE 6 | The patterns of net functional relatedness index (NFRI) for the four functional traits, growth form (A), fruit type (B), maximum height (C), and maximum leaf

size (D), along the elevational gradient of Mount Kenya from 2,000 to 5,000m a.s.l. Solid circles denote significant clustering or overdispersion compared to

the randomizations.

TABLE 1 | Results of the Pearson correlations analysis between phylogenetic structures (NRI) and functional structures (NFRI) of the four functional traits (growth form,

fruit type, maximum height, and maximum leaf size), as well as the annual mean temperature (AMT) and annual mean precipitation (AMP).

NFRI AMT AMP

T1 T2 T3 T4

NRI 0.219 0.416 −0.605 −0.671 −0.633 0.690

NFRI T1 Growth form 0.902 0.293 −0.766 –0.172 0.288

T2 Fruit type 0.291 −0.726 –0.075 0.206

T3 Maximum height 0.282 0.840 −0.786

T4 Maximum leaf size 0.660 −0.749

AMT −0.989

The bold numbers are significant with P-values < 0.05.

and Le Loc’h, 2017). Therefore, we believe that compared
with relatively conservative categorical traits (e.g., growth form
and fruit type), these continuous traits (e.g., height and leaf
size) have lower phylogenetic signal and different functional
patterns along the environmental gradient because the latter
are more easily affected by the environment as they have high
phenotypic plasticity (Moles et al., 2009; Peppe et al., 2010);
(Read et al., 2014).

Competition structured communities are in the low elevation
areas, while environmental stress acts as a filter on lineages
due to the lower temperatures and unstable climate in the
high elevation areas (Machac et al., 2011; Li et al., 2013). Our
results showed that both the NRI and NFRI of growth form,

fruit type, and maximum height had an obviously decreasing
trend in the alpine zones (Figures 6A,B,C). This may be because
the phylogenetic and functional clustering would be decreased,
with the tendency to be random with the decrease of spatial
size and SR of each elevational band along an elevation in the
alpine zones (Swenson et al., 2006, 2007; Yang et al., 2013). The
alpine plants adapted to the cold environment gradually with
increasing elevation, thus the filtering effect was too weak for the
phylogenetic and functional structure to cause further clustering
(Li et al., 2013). Surprisingly, the NFRI of maximum leaf size
showed a significant overdispersed structure at approximately
3,500m a.s.l. (Figure 6D). This is related to the emergence of
a large number of large-leaved plants in this region, such as
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giant senecios (Dendrosenecio sp.) and giant lobelias (Lobelia sp.)
(Coe, 1967; Hedberg, 1970). These giant species established in
the afro-alpine zones must be largely due to a number of pre-
adaptations, such as the megaphytic habit with unbranched or
sparsely branched stems and huge leaf rosettes present in both
genera. However, fewer shrubs are present at higher elevations
and forbs at these regions generally have smaller leaves (Venn
et al., 2014) because leaf size is very important for the leaf energy
and water balance with smaller leaves reducing boundary layer
resistance (Cornelissen et al., 2003; Yang et al., 2013). Tussock
grasses (Festuca sp.), sedges (Carex sp.), and other herbs just
a few centimeters tall, have developed many mechanisms and
structures to adapt to the harsh climate of the alpine zones such
as dense hairiness, compact growth, very small leaves, and a thick
cuticle (Niemelä and Pellikka, 2004). Therefore, the difference
between some functional traits (e.g., maximum leaf size) of
these plants will increase along the elevational gradient in the
alpine zones, possibly leading to the change of the functional
structure of the communities of these areas into random or even
overdispersal at high elevations.

CONCLUSION

In this study, for the first time, we addressed the patterns of
species richness, phylogenetic diversity, and functional diversity
of native seed plants growing along an elevational gradient on
Mount Kenya. In addition, we determined the phylogenetic
and functional structure of the different traits of species
assemblages along the elevational gradient. Overall, the species
richness, phylogenetic diversity, and functional diversity decrease
gradually along the elevational gradient, NRI exhibited a wavy
pattern along the elevational gradient, while NFRI of the
four functional traits showed noticeably different patterns. We
concluded that, the relationship of phylogenetic and functional
structure in different functional traits could be congruent
or mismatched along the elevational gradient. In addition,
continuous traits, such as height and leaf size, could have a
random or convergent evolutionary pattern, thus, these kinds
of traits may be more easily affected by the environment as
the elevation increases and have higher phenotypic plasticity.
This could well-reveal the maintenance mechanism of Afro-
alpine vegetation communities in the tropical East Africa,
with giant senecios and giant lobelias as dominant plants

(Coe, 1967; Hedberg, 1970). That is to say, while the phylogenetic
structure of species assemblages in high elevations is clustering,
the functional structure of some traits would be overdispersed.
Generally, large-scale quadrat surveys can better reflect the
spatial structure of plant communities (Peters et al., 2016;
Albrecht et al., 2018). However, in this study, we only use
empirical data on species distribution of Mount Kenya, instead
of analyzing by methods of sampling and investigating in field,
and this may lead to some deviation in the final results. In
future studies, we will conduct large-scale field surveys along the
elevational gradient of this mountain to verify some of the results
explained in this paper.
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