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• Invasive pathogens that cause stem cankers and wilts of trees, and insects that bore

into bark and wood have proven extremely destructive to the world’s forests and

particularly difficult to manage once established

• Such pests are especially devastating when evolutionarily naïve host trees lack

adequate natural defenses

• Modern tree improvement programs are increasingly capable of restoring such

defenses and providing trees for planting that are capable of withstanding alien insects

and pathogens

• Careful target selection, early implementation and sustained support of these

programs are important for their success

• We provide a simplified framework to guide responses to invasive insects and

pathogens and rapidly identify promising pests to target for development of host

resistance.
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INTRODUCTION

Invasions by non-native phytophagous insects and phytopathogens (henceforth, non-native
PIPs) have inflicted dramatic economic and ecological damage on forest ecosystems worldwide
(Figures 1a,b) (e.g., Lovett et al., 2016). Many such PIPs, including most pathogens as well as
adelgids, bark-, and wood-boring insects, are embedded in plant tissues, resulting in intimate
associations with their hosts that hinder early detection and eradication (Figures 1c–f). This is
particularly true for pathogens and insects that lack long-distance pheromones that could otherwise
be used in detection and monitoring (Liebhold et al., 2016). Indeed, many such non-native PIPs are
discovered only once eradication or containment are no longer feasible. These intimately associated
non-native PIPs are often lethal to trees because they damage critical host tissues in non-adapted
hosts that lack adequate defenses (Mattson et al., 1988) (Figures 1g,h). In many cases, effective
strategies for management and impact mitigation of such non-native PIPs remain elusive despite
intense concerted efforts.
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The iconic cases of chestnut blight, caused by the introduced
fungus Cryphonectria parasitica (Anagnostakis, 1987), and
more recently emerald ash borer (Agrilus planipennis, EAB)
(Herms and McCullough, 2014) exemplify such devastating
non-native PIPs in North America, while red turpentine beetle
(Dendroctonus valens) (Yan et al., 2005) and pine wood nematode
(Bursaphelenchus xylophilus) (Fielding and Evans, 1996) are
examples that have invaded Eurasian forests. Additionally,
outbreaks of native and/or exotic PIPs in plantations comprised
of exotic tree species present major challenges to commercial
forestry (Wingfield et al., 2015).

We argue that when integrated into an ecologically-informed
proactive management response framework, modern programs
to develop host resistance can enable long-term management of
non-native PIP invasions and the conservation of affected tree
species and forest ecosystems. Recent reviews have described
the promise of harnessing naturally occurring host resistance
of affected tree populations (e.g., Telford et al., 2015) and
the process of resistance development through selection and
breeding (e.g., Sniezko and Koch, 2017). Others have described
successful programs against non-native invasive forest PIPs
(Sniezko, 2006), and outlined scientific and technological
advances that make discovery and development of host resistance
increasingly feasible (Boshier and Buggs, 2015; Woodcock et al.,
2017). In this context, we seek to provide a more robust

framework for early identification of candidate non-native PIP-

host systems for resistance development. We maintain that
prospects for host resistance are most promising when:

• The invading non-native PIP appears to be controlled

primarily by bottom-up regulation via host defenses in its
native region;

• There are substantial differences in host resistance and/or

tolerance between trees in the introduced vs. native regions;
• There are practical methods for deploying resistant genotypes

across the host species range;
• Stakeholders are committed to preserving or restoring long-

term cultural, ecological, and/or economic values unique to

the affected tree species or forest ecosystem.

Conceptual Framework for Management
Response
Host resistance development is part of a larger response
to forest pest invasions. Such invasions progress through
introduction, establishment, spread, and population outbreak
stages (Blackburn et al., 2011). However, for non-native PIPs
discovered after they have established and spread within naïve
forest ecosystems, constraints to population outbreaks are critical
for minimizing tree mortality and ecosystem impacts.

In general, herbivore populations are constrained by
top-down forces exerted by natural enemies (predators,
parasitoids, pathogens), bottom-up forces exerted by quantity
and quality of food, and general forces associated with abiotic
factors. Two complementary hypotheses that explain population
outbreaks of invading herbivores following release from biotic
resistance are the enemy-free space hypothesis in which invader
populations are weakly regulated by natural enemies (Jeffries and

Lawton, 1984), and the defense-free space hypothesis in which
population growth and spread of the invader is facilitated by
low resistance of evolutionarily naïve host plants (Gandhi and
Herms, 2010). Along with other factors, like spread potential
(Gonthier and Garbelotto, 2013) and host connectivity (Prospero
and Cleary, 2017), the degree to which each hypothesis explains
the population dynamics of an invading organism can inform
how to best manage that invasion once populations become
established.

Ideally, agencies and policy-makers attempt to use evidence-
based decision processes to respond rapidly to high-impact non-
native PIPs. Actual implementation is fraught with difficulties,
however, in part because the urgency and need for emergency
responses can lead to relatively ad hoc reactions, whereas a firmer
framework could improve responses to the long-term challenge.
This response framework, summarized in Figure 2, can be
applied on an international level, and most elements can be
scaled down to management of individual forests. The proposed
framework aims to simplify and unify previous frameworks
(Dodd et al., 2005; Keane et al., 2012; Dix et al., 2013; Jacobs et al.,
2013; Nelson et al., 2014; Millar and Stephenson, 2015; Sniezko
and Koch, 2017; Woodcock et al., 2017).

The proposed framework begins with the establishment of a
non-native PIP (Figure 2, box 1), i.e., when eradication efforts are
predicted or concluded to be unsuccessful, at which point three
research goals are pursued. The first is to determine the value of
products and services under threat (Figure 2, box 2A) so that
a proportionate response can be implemented and stakeholders
identified. Valuations include timber, recreation, ecosystem
services, biodiversity, cultural significance, and contribution to
ecosystem resilience (Ellison et al., 2005; Ferguson, 2006; Freer-
Smith and Webber, 2017).

The second research goal is to characterize PIP ecology in
its native and introduced ranges (van Kleunen et al., 2010)
(Figure 2, box 2B). Little is known about many PIPs in their
native range, where they often are much less damaging and
therefore little studied (GAO, 2006). Key knowledge gaps at
this stage that will guide management decisions include PIP
life history and behavior, dispersal mechanisms, taxonomic host
range, symbionts, generalist and specialist natural enemies, and
patterns of host connectivity, damage and mortality over time
and space (Dodd et al., 2005; Gonthier and Garbelotto, 2013;
Prospero and Cleary, 2017; Woodcock et al., 2017). Specifically,
it is important to determine the degrees to which PIP population
dynamics, and resulting tree damage and mortality in native and
introduced ecosystems, are associated with bottom-up factors
(tree genetics, ontogeny, drought stress) and top-down factors
(natural enemy population dynamics and behavior).

The third research goal is to identify available impact
mitigation approaches, and to assess their feasibility and likely
effectiveness in preserving the value of the threatened host. Forest
healthmanagers employ combinations of two disturbance impact
mitigation approaches (Millar and Stephenson, 2015): ecosystem
maintenance and ecosystem transition (Figure 2, box 2CI, II).

Ecosystem maintenance is a short-term strategy intended
to temporarily strengthen barriers to non-native PIP spread,
suppress non-native PIP populations below outbreak/epidemic
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FIGURE 1 | Examples of landscape-, tree-, and tissue-scale presentations of tree-killing non-native phytophagous insects and phytopathogens. Landscape-scale

tree mortality resulting from (a) emerald ash borer and (b) white pine blister rust. Problematic hidden nature of infestations, such as (c) small adult beetle emergence

holes and (d) non-descript canopy thinning seen in early emerald ash borer infestation, or (e) small lesions and (f) branch flagging seen in early white pine blister rust

disease development. (g,h) Damage to critical vascular tissues or meristems leads to rapid decline and death of trees without adequate defenses. Image credits: (a)

Bill McNee, Wisconsin Dept of Natural Resources, Bugwood.org. (b) Dave Powell, USDA Forest Service (retired), Bugwood.org. (e) USDA Forest Service – Ogden,

Bugwood.org. (f) Chris Schnepf, University of Idaho, Bugwood.org. (g) Eric R. Day, Virginia Polytechnic Institute and State University, Bugwood.org. (h) Frantisek

Soukup, Bugwood.org.

levels, and preserve populations of healthy trees, thereby delaying
(but not preventing) costs associated with tree death and with
transitions to a new forest community. Such an approach
may employ chemical or biological pesticides, pheromone-
based mating disruption or trap-out, removal of infested
hosts (sanitation), augmentative/ non-persistent introductions
of competitors or natural enemies, and/or silvicultural practices
intended to enhance existing host defenses and tolerances and/or
inhibit non-native PIP growth or spread (Figure 2, box 2CI).

An ecosystem transition approach seeks to facilitate
conversion of the forest ecosystem to one that is less prone
to non-native PIP outbreaks, and/or restore cultural, ecological
and/or economic value lost to the invasion. These approaches
revolve around identifying, developing, and deploying resistant
populations of the affected host tree species and/ or establishing
self-sustaining populations of antagonists or natural enemies

of non-native invasive PIPs (classical biocontrol). (Figure 2,
box 2CII). Additionally, forest ecosystems may be restored
with alternative non-host species, though at the expense of
any unique cultural or ecological values of the original affected
species.

Assessments of host tree value and invasion ecology provide
the basis for predicting the effectiveness, feasibility, and
integration of proposed mitigation approaches (Figure 2, box
3). Effectiveness is measured as the ability to reduce invasion
impact by preventing, delaying, or restoring diverse values lost
to tree damage or mortality. For example, restoration using
resistant trees can preserve biodiversity and/or restore cultural
value or ecosystem resilience associated with a species or
population, but is generally not effective in preventing costs
associated with tree mortality, such as removal or lost timber
yield.
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FIGURE 2 | Contextualizing host resistance development within the generalized response framework for established, non-native forest phytophagous insects and

phytopathogens (non-native PIPs). (1) Once a non-native PIP is identified as established in a forest ecosystem, research responses (2) must assess cultural,

economic, and ecological value of hosts in various settings (2A), characterize the invasion ecology in native and introduced ranges to assess impact risk (2B), and

outline available short- and long-term impact mitigation approaches (2C). (3) Likely costs and benefits of various approaches are estimated with available data, and (4)

goals are set within limits of current response capacity for the forest ecosystem under consideration. Response goals are periodically revised through the framework

(5), with reevaluation of invasion progression (5A) and the development of new mitigation strategies or technologies (5B). Bolded boxes identify key steps in identifying

good non-native PIP candidates for host resistance development: non-native PIPs threaten substantial long-term ecological and economic value; non-native PIPs are

intimately associated with hosts and damage critical tissues resulting in rapid tree mortality; capacity for restoration using improved resistant germplasm exists or can

be developed; mechanisms exist to reevaluate responses as invasion progresses and technologies develop.

Feasibility represents the capacity required to implement
effective mitigation, including time, labor, capital, expertise, and
political will. For instance, resistant tree restoration requires both
available resistant germplasm andmechanisms for deployment in
affected ecosystems (Jacobs et al., 2013). Integration of mitigation
tactics can improve effectiveness and/or feasibility (Suckling
et al., 2012). An example is the SLow Ash Mortality (SLAM)
pilot program for EAB, which integrates multiple maintenance
tactics to reduce and delay costs associated with EAB-induced
ash mortality in urban and natural forests (McCullough and
Mercader, 2012). As a transition approach, deployment of
resistance could increase the probability of establishing or
enhancing self-sustaining populations of natural enemies of non-
native invasive PIPs (classical biological control) (Price et al.,
1980; Barbosa et al., 2009).

Public and private stakeholders should be engaged to select
approaches within the available response capacity for a given
forest, and those approaches should be prioritized using criteria
of effectiveness, feasibility and integration (Figure 2, box 4).
A balance is required between maintenance and transition
approaches that reflects the short- and long-term value of
the affected tree species and forest. For urban or plantation
forests, this may require primarily a maintenance approach that
preserves existing trees and delays costs associated with their
mortality. However, in natural forests, especially those in which

foundational or keystone tree species are directly affected by the
invasion (e.g., high elevation white pines affected by white pine
blister rust in the Rocky Mountains) the importance of long-
term resilience of the forest ecosystem may more strongly favor
an ecosystem transition approach (Schoettle and Sniezko, 2007).
The research and goal-setting process should be repeated as new
information is gathered while the invasion progresses (Figure 2,
box 5A), and/or as newmitigation tools and technologies become
available (Figure 2, box 5B). In addition to advocating for
periodic re-evaluation as an invasion progresses, in the following
section we identify early invasion characteristics that may help
determine when host resistance development and deployment
should be pursued.

DECISION MAKING WITH LIMITED
INFORMATION

Non-native PIP Traits That Constrain
Mitigation Approaches
Features of non-native PIP biology and invasion ecology
may help predict the effectiveness of ecosystem transition
approaches. By limiting outbreaks and reducing tree mortality,
classical biological control has been an effective ecosystem
transition response against approximately 13 phytophagous
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insects in native US forests and a partial success against fourmore
(Van Driesche et al., 2010; MacQuarrie et al., 2016). There are
additional examples worldwide. However, these successes have
come primarily against foliage-feeding insects, which are outside
the focus of this paper. In contrast, there are fewer examples of
effective biological control against bark- and wood-boring insects
(Fielding and Evans, 1997; Slippers et al., 2015), and canker-
and wilt-inducing pathogens (Milgroom and Cortesi, 2004). In
an extensive review, the success rate of introduced parasitoids
of agricultural and forest insect pests was twice as high against
leaf-feeding Lepidoptera and Coleoptera as against wood-borers
and root-feeders, although ecosystem and pest taxonomy exerted
strong interacting effects (Gross et al., 2005). Specialist natural
enemies are preferred for biological control due to their limited
non-target impacts on other organisms (MacQuarrie et al., 2016),
and these specialists often exert negative density-dependent
effects on PIP populations (Elkinton, 2008). However, population
responses of specialist natural enemies to their prey usually
exhibit time lags. When density dependent effects of natural
enemies are delayed and/or their population increase is slow, they
may not regulate tree-killing non-native PIPs effectively or slow
tree mortality during outbreaks, especially when host resistance
or tolerance to the invader is low.

EAB provides a good example of this phenomenon: biological
control agents will likely be insufficient to allow North American
ashes to persist as dominant tree species without improved
tree resistance (Liu et al., 2003; Herms and McCullough, 2014).
Woodpeckers and native and introduced parasitoids have caused
some EAB larval mortality in late stages of EAB infestation
(Duan et al., 2014; Jennings et al., 2015), and additionally
parasitoids may promote survival of ash saplings following
outbreak (Margulies et al., 2017), but the long-term impacts on
ash populations are still unknown (Duan et al., 2017). Despite
the presence of a full complement of coevolved natural enemies
in Asia, EAB has caused high mortality of North American ash
species planted there (Yang et al., 2010; Duan et al., 2015). EAB
population models predict that both increased rates of parasitism
by natural enemies and higher levels of host resistance are
required to maintain EAB populations at equilibrium levels low
enough to support reproducing populations of North American
ash species (Duan et al., 2015). As a further example, biological
control of Sirex noctilio by entomopathogenic nematodes is
especially successful when integrated with silvicultural practices
(Slippers et al., 2015) that may improve innate host resistance
(Dodds et al., 2007). Therefore, biological control may act
synergistically with effective tree defenses to prevent or reduce
mortality caused by tree-killing non-native PIPs (Price et al.,
1980; Duan et al., 2015). Biological control is best applied to
systems in which the hosts can at least partially resist or tolerate
non-native PIP attack, especially if negative density-dependent
responses of natural enemies are slow relative to how long it takes
the non-native PIP to kill trees.

Non-native PIP Traits Associated With
Outbreaks in Defense-Free Space
As introduced above, decisions about how to manage an
established invasive forest non-native PIP population can be

guided by the enemy-free space (Jeffries and Lawton, 1984)
and/or the defense-free space (Gandhi and Herms, 2010)
hypotheses. These two hypotheses describe a continuum of top-
down and bottom-up biotic forces that constrain the population
growth of heterotrophic organisms (Figure 3A). Mattson et al.
(1988) associated certain plant defense syndromes, and thus
importance of top-down or bottom-up factors, with key host and
herbivorous insect traits. We propose an extension of these same
concepts to phytopathogens (Figure 3B).

At one end of the host/PIP interaction spectrum, plants
tolerate PIP damage while environmental factors or natural
enemies reduce PIP populations and associated damage
(Figure 3A). Under this scenario, non-native PIP outbreaks may
occur in naïve forest ecosystems if effective natural enemies are
not present, i.e., in enemy-free space. At the other end of the
continuum, plant defense traits constrain the population growth
of the PIP, thereby limiting damage (Figure 3A). When non-
native PIPs that have evolved under these constraints become
established in a naïve forest ecosystem, outbreaks may occur
in the absence of host defenses sufficient to reduce populations
below damaging levels, i.e., in defense-free space. Plant defense
traits –such as expression of specific recognition and signaling
proteins, or expression and activation of biosynthetic enzymes
for toxin production or cell wall strengthening– can incur fitness
costs of varying magnitude. Therefore, a corresponding fitness
benefit –such as reduced herbivory or resource depletion–
must be present for the traits to persist in a host population
(Herms and Mattson, 1992; Heil, 2002). Thus, the consequences
of herbivory or infection, including fitness cost or resulting
mortality rate, is the first useful criterion for estimating the
likelihood that host resistance traits are present in a coevolved
plant-insect or plant-microbe interaction.

If defense traits are important in regulating a coevolved
interaction, then restoring them will be important for effective
management of invasions in defense-free space (Figure 3B). A
number of PIP traits can influence consequences of host damage,
but the type of host tissue affected is among the most important
(Mattson et al., 1988) (Figure 3B). Foliage feeders and foliar
blights are usually among the least damaging, as defoliation
can be tolerated relatively easily, especially by deciduous plants
(Krause and Raffa, 1996). Next most impactful are PIPs that affect
branches or peripheral roots, either through nutrient removal or
tissue destruction, as in the case of root rots. The most damaging
PIPs affect the main stem and/or main roots, which can lead
to rapid tree decline and death. Particularly damaging pests are
those that interfere with the potential for recovery by damaging
meristematic tissue (e.g., buds, root tips, or vascular cambium) at
critical junctures in the tree developmental cycle or, in the case of
insects, by vectoring or facilitating infection by phytopathogens
or egesting toxins. Bark- and wood-boring insects, as well as
vascular wilt- or canker-inducing pathogens, are among the most
damaging classes of invasive non-native PIPs, evidenced by their
ability to rapidly kill host trees with ineffective defenses.

The intimacy of the association between host and PIP
is another criterion useful for predicting impact (Figure 3B).
Intimacy of the interaction may be less precise, but can
be estimated as the proportion of the PIP lifecycle during
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FIGURE 3 | Effective plant defense strategies and associated phytophagous insect and phytopathogen (PIP) traits. (A) Plant defense strategies and corresponding

non-native PIP population influences and invasion mechanisms vary along a continuum. (B) Features of the PIP-host interaction, intimacy and damage, are associated

with the strategy/influence/mechanism continuum, and with feeding guild, symptomology, phenology, and host tissue. Increasing shading indicates the likely

importance of host resistance development in managing invasions of defense-free space. The pests emphasized in this review, i.e., phloem- and wood-borers and

cankers and vascular wilts, occupy the darkest shaded, upper right region. Synthesized and adapted from Mattson et al. (1988).

which the PIP is in direct contact with living host tissue, the
amount and nature of PIP tissues in direct contact with the
host, and the extent to which plant losses extend beyond the
point of actual nutrient transfer between host and parasite
(e.g., some galls represent highly intimate but relatively benign
associations) (Mattson et al., 1988). For example, some less
intimately associated PIPs may interact with host tissues for a
large portion of their life cycle but only via feeding structures,
be they mouth-parts of leaf chewing insects, or appressoria
and haustoria of powdery mildew fungi. In more intimate
associations, such as those involving bark and wood-boring
insects as well as vascular wilt- or canker-inducing pathogens,
PIPs may be entirely surrounded by living host tissue for a large
portion of their life cycles, thus extending the opportunity to
exchange specific molecular information (effectors, phytoalexins,

etc.) that may be integrated into signaling, defense, and counter-
defense responses. These intimate and damaging associations are
well explained by the defense-free space hypothesis. Therefore,
development and deployment of host resistance is likely to be
highly beneficial.

ACTIONABLE RECOMMENDATIONS AND
CONCLUSIONS

Non-native phytophagous insects and phytopathogens in
defense-free space continue to devastate the world’s forests.
Reestablishment of bottom-up regulation of these non-
native PIPs through development and deployment of host
resistance is essential to preserving the long-term value
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of healthy forests. Timely and accelerated study of PIP
and host ecology in the native and introduced ranges
as soon as an invasive non-native PIP is recognized can
help determine when defense-free space is the primary
driver behind damage, and thereby prioritize interventions
accordingly. Such rapid response is increasingly feasible
with modern tree improvement programs (Boshier and
Buggs, 2015; Sniezko and Koch, 2017). However, to achieve
genetically diverse, resilient tree populations requires
substantial investment in programs aimed at developing
host resistance as soon as eradication of lethal non-
native PIPs invading defense-free space is determined
to be impossible. In addition to protecting trees directly,
resistance may also improve the efficacy of biological control
as part of an integrated response to invasive forest insects
(Price et al., 1980; Duan et al., 2015).

Knowledge gaps include challenges associated with the
integration of improved germplasm into naturally regenerating
forest ecosystems that are managed by diverse stakeholders.
Thus, resistance development programs should be carefully
linked to restoration research and planning to ensure that
improved germplasm is matched ecologically and silviculturally
to management objectives (Jacobs et al., 2013; Sniezko and
Koch, 2017; Woodcock et al., 2017). There is also a need to
incorporate emerging understanding of associational (Plath et al.,
2012) and landscape (Haas et al., 2015) resistance into restoration
strategies.

Experience has shown that relying on short-term emergency
funding for research and development reduces the prospects
for effective, long-term, ecosystem protection from non-native
PIPs invading defense-free space. The few historical examples of
successful operational deployment of trees resistant to such non-
native PIPs have benefitted from long-term support necessary for
program continuity (Sniezko, 2006). The prospects of integrating
host resistance into responses against future invasive insect pests
and pathogens will be increased where an established system is in
place to:

• Proactively adopt or amend a clearly defined response
framework to minimize ad hoc responses;

• Rapidly facilitate research to fill knowledge gaps in invasive
non-native PIP-host tree ecology with the objective of
informing the management response framework;

• Apply a long-term capacity of expertise, infrastructure, and
public engagement to enable rapid and sustained resistance
discovery and development when such a response is deemed
valuable;

• Prioritize early integration of management responses,
including biological control, host resistance development,
and ecosystem restoration, to maximize compatibility and
efficiency.

The above capabilities will be more effective where infrastructure
is supported on a sustained and global scale, including
field sites and biosafety level facilities staffed with tree
geneticists and breeders collaborating with pathologists and
entomologists. Success requires early and sustained support
of host resistance programs through feasibility assessment,

trait discovery, development, and sustainable deployment.
Significantly greater commitment and resolve from government
agencies and the public than presently available are essential
(Boshier and Buggs, 2015; Nelson and Koch, 2017; Sniezko and
Koch, 2017; Woodcock et al., 2017).
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