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Opsins are light-sensor proteins, each absorbing a specific wavelength of light. This,

in turn, drives a specific G protein-mediated phototransduction cascade, leading to a

photoreceptor cell response. Recent genome projects have revealed an unexpectedly

large number of opsin genes for vision and non-visual photoreception in various animals.

However, the significance of this multiplicity of opsins remains largely unknown, except

for that of cone visual opsins, which are diversified with respect to spectral sensitivity

to achieve vertebrate color vision. Here, an implication of multiplicity is discussed,

with focus on an ultraviolet-sensitive non-visual opsin—parapinopsin—that underlies

pineal wavelength discrimination in lower vertebrates. Parapinopsins are phylogenetically

close to vertebrate visual opsins, which have bleaching properties, but interestingly,

parapinopsins are bleach-resistant bistable pigments, which photo-convert to stable

photoproducts that revert to their original dark state by subsequent light absorption,

similar to invertebrate rhodopsins. The unique characteristics of parapinopsin as an

evolutionary intermediate between bistable and bleaching pigments provide insight into

the evolutionary transition between signaling molecules that interact with two types

of opsin-based pigments. Furthermore, the parapinopsin gene was duplicated in the

teleost lineage and the spectral sensitivities of the duplicated parapinopsins were

different from each other. On the basis of these results, together with the histochemical

findings of parapinopsin, a plausible link between the diversification of a non-visual opsin

parapinopsin and diverse pineal functions, wavelength discrimination, and melatonin

secretion, implying why multiple opsins exist in animals, is proposed.

Keywords: bistable pigment, pineal photoreception, signal transduction, G protein, arrestin, wavelength

discrimination, melatonin secretion, gene duplication

INTRODUCTION

Many animals utilize light information for vision and non-visual functions such as circadian
photoentrainment. In animal photoreception, opsin-based pigments, which are composed of a
protein moiety opsin and chromophore retinal, serve as light sensors to capture light and initiate
G protein-mediated phototransduction cascades in photoreceptor cells. Thousands of opsin genes
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have been identified in various animals and are phylogenetically
and functionally classified into eight groups that diversified
during early eumetazoan evolution (Terakita, 2005; Peirson
et al., 2009; Yau and Hardie, 2009; Lamb, 2013; Koyanagi
and Terakita, 2014). In addition, recent genome projects have
revealed an unexpectedly large number of opsin genes in various
animals, indicating that most animals have multiple opsins
(Davies et al., 2015). In visual systems, the biological significance
of this diversification is clear; multiple types of visual opsins
with different spectral sensitivities are responsible for color
vision and other visual functions (Nathans et al., 1986; Okano
et al., 1992; Nagata et al., 2012; Terakita and Nagata, 2014; see
also Figure 3A). However, the significance of the diversification
of non-visual opsins remains unclear, despite the importance
of understanding the molecular mechanism and evolution of
various non-visual photoreceptions. General characteristics and
diversities of the opsin family have been previously reviewed
(Terakita, 2005; Peirson et al., 2009; Yau and Hardie, 2009;
Lamb, 2013; Koyanagi and Terakita, 2014; Davies et al., 2015);
therefore, here we addressed this issue based on the molecular
properties of opsins by focusing on a pineal photopigment,
parapinopsin.

PARAPINOPSIN, A BISTABLE
ULTRAVIOLET-SENSITIVE PIGMENT FOR
THE PINEAL WAVELENGTH
DISCRIMINATION IN LOWER
VERTEBRATES

Lower vertebrates can discriminate wavelengths of light with
pineals and related organs independently of image-forming color
vision in the eyes (Dodt and Meissl, 1982). This so-called
pineal “color discrimination” is achieved through antagonism
primarily between ultraviolet (UV) and visible light reception,
which cause inhibitory and excitatory effects, respectively, on
neuronal firing of a specialized type of ganglion cell. Detection
of the ratio of UV to visible light in environmental light has
been observed in pineal organs of lamprey (Morita and Dodt,
1973) and some teleosts (Morita, 1966; Falcon and Meissl, 1981),
as well as in pineal-related organs of frogs (frontal organ; Dodt
and Heerd, 1962; Korf et al., 1981) and reptiles (parietal eye;
Jenison and Nolte, 1980). We demonstrated that parapinopsin,
which was first identified in catfish pineal and parapineal
organs (Blackshaw and Snyder, 1997), is the UV-sensitive
pigment underlying pineal UV reception in lamprey, through
spectroscopic, immunohistochemical, and electrophysiological
analyses (Koyanagi et al., 2004). Parapinopsins were also
identified from rainbow trout and clawed frog, in which the
pineal and related organs were reported to exhibit antagonistic
chromatic responses to UV and visible light (Morita, 1966; Korf
et al., 1981). In addition, parapinopsin expression was recently
reported in the pineal organ of a closely related species of rainbow
trout (Nakane et al., 2013). Thus, parapinopsin is considered to be
a commonmolecular basis for UV reception in pineal wavelength
discrimination. This idea is supported by the observation that
parapinopsin is expressed in photoreceptor cells of the iguana

parietal eye, where the ratio of UV to visible light is detected
(Wada et al., 2012).

Pineal UV-sensitive opsins, parapinopsins are
phylogenetically classified into the same group as vertebrate
visual opsins such as rhodopsins and cone visual opsins. It is
well known that vertebrate visual opsins are bleaching pigments;
the photoproduct releases its retinal chromophore over time
and bleaches. Interestingly, although parapinopsins are closely
related to vertebrate visual opsins, parapinopsins are bistable
pigments, which is common for invertebrate visual opsins;
the photoproduct is stable and reverts to the original dark
state by subsequent light absorption (Koyanagi et al., 2004).
Spectroscopic analysis of the photoproduct properties of varied
opsins revealed that the bistable property is common in animal
opsins and the bleaching property was acquired during the
course of vertebrate visual opsin evolution (Terakita et al.,
2004). Accordingly, parapinopsins could be an evolutionary
intermediate between bistable pigment and bleaching pigment,
providing an opportunity to study the detailed aspects of the
evolution of vertebrate visual signaling (Figure 1A).

TRANSITION OF SIGNALING MOLECULES
THAT INTERACT WITH OPSINS

In general, opsin-based pigments activate G proteins upon
light absorption to initiate phototransduction cascades and
the G protein-mediated signalings are terminated by binding
of arrestins. Therefore, it is of interest to compare signaling
molecules that couple to visual and non-visual opsins to
understand the evolution of visual signaling. In vertebrate visual
cells, light-absorbed visual opsin-based pigment interacts with a
G protein and an arrestin that are specialized for light sensing,
called visual G protein transducin (Gt) and visual arrestin,
which starts and shuts off G protein-mediated visual signaling,
respectively (Lamb, 2013; Figure 1A). However, a Gt-like visual
G protein or visual arrestin has not yet been identified in the
genomes of invertebrates, including ascidians (Nakagawa et al.,
2002; Yoshida et al., 2002), which are among the invertebrates
most closely related to vertebrates. These facts suggest that opsin-
Gt and opsin-visual arrestin interactions were established during
the course of vertebrate visual opsin evolution but questions
remain regarding the detailed timing of the establishment.

In the molecular phylogenetic tree of the opsin family,
one group (Figure 1A) is formed by vertebrate visual opsins
composed of rhodopsins (RH) and four types of cone
opsins, namely: middle-wavelength-sensitive (MWS) opsins,
short-wavelength-sensitive 1 (SWS1) opsins, short-wavelength-
sensitive 2 (SWS2) opsins, and long-wavelength-sensitive (LWS)
opsins, along with several non-visual opsins, pinopsins (P), VAL-
opsins (VAL), parapinopsins (PP), and parietopsins (PT). The
group is generally referred to as the Gt-coupled opsin group
because not only visual opsins (Lamb et al., 2016) but also
pinopsins (Nakamura et al., 1999; Matsushita et al., 2000; Su
et al., 2006) couple with Gt, and frog VAL-opsin has been
reported to activate Gt in vitro (Sato et al., 2011). In contrast,
parietopsin has been reported to couple with Go type G protein
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FIGURE 1 | Summary of the transition of pigment property and signal transduction molecules along with evolution of the vertebrate visual system.

(A) A schematic drawing of the phylogenetic relationship of subgroups of the Gt-coupled group with Opn3 group as an outgroup is shown on the left side. Pigment

property and molecular species of G protein alpha subunit and arrestin are indicated at the right side of each subgroup. Note that vertebrate Opn3 did not exhibit an

apparent bistable nature (Sugihara et al., 2016). This summary suggests the direction of their transition, from bistable to bleaching, from Go to Gt, and from β-arrestin

to visual arrestin. G protein couplings were determined by G protein activation of opsin-based pigment in vitro (*), opsin-G protein colocalization (**), or both (***). (B) A

schematic drawing of the detailed phylogeny in the parapinopsin subgroup. Parapinopsins are diversified in the teleost lineage via teleost-specific whole-genome

duplication (filled circle) (Koyanagi et al., 2015). See also Davies et al. (2015) for further information on other non-visual opsins.

in the lizard parietal eye (Su et al., 2006). In addition, it is
known that mosquito Opn3 and pufferfish TMT opsin in the
Opn3 group, which is the closest group to the Gt-coupled opsin
group, activate Gi and Go type G proteins but not Gt in vitro
(Koyanagi et al., 2013; Figure 1A). These observations, together
with the phylogeny that the parietopsin subgroup underwent
relatively earlier branching in the Gt-coupled opsin group,
suggest that the ancestral opsin in this group was not coupled
to Gt type G protein (Gt-“uncoupled” opsin; Figure 1A). We
recently investigated whether parapinopsins couple with Gt by
focusing on pufferfish, zebrafish, and lamprey pineal organs.
Biochemical analyses demonstrated that the lamprey and teleost
parapinopsins activated Gt in vitro in a light-dependent manner,
similar to vertebrate visual opsins (Kawano-Yamashita et al.,
2015). In the teleosts, which possess rod and cone types of Gt,
Gt1, and Gt2 (Lamb et al., 2016), parapinopsin was colocalized
with Gt2. In contrast, in the lamprey, which does not possess Gt2
gene (Muradov et al., 2008), parapinopsin was colocalized with
Gt1 type transducin, GtS, suggesting that lamprey parapinopsin

couples with GtS instead with Gt2 (Kawano-Yamashita et al.,
2015). Although there is a small difference in the Gt species, the
results showed that parapinopsins couple with Gt in lamprey and
teleost pineal organs. Taken together, opsin-Gt coupling could
have been established before the split between parapinopsins
and other opsins, including visual opsins (Figure 1A). Thus, the
emergence of opsin-Gt coupling predates that of the bleaching
pigment, suggesting no apparent correlation between the two
events and rather, biological significance of the coupling of
bistable pigment to Gt. A possible explanation for the significance
is that Gt-mediated signal transduction is required for light-
dependent hyperpolarization of photoreceptor cells because
parapinopsin-expressing photoreceptor cells in the lamprey
pineal organ exhibited hyperpolarization responses (Koyanagi
et al., 2004) similar to the bleaching pigment-containing visual
and non-visual cells in vertebrates. Interestingly, Gt activation by
parapinopsin is provoked and terminated by UV and subsequent
orange light irradiation, respectively, due to the bistable nature
of parapinopsin (Kawano-Yamashita et al., 2015). A possible
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contribution of this behavior in pineal wavelength discrimination
via Gt-mediated hyperpolarization of photoreceptor cells may
provide clues to understanding why a bistable pigment acquired
the ability to couple with Gt.

Investigation of arrestin as a negative regulator of
parapinopsin-Gt interaction also provided functional and
evolutionary clues. In the lamprey pineal organ, the fact that
cells expressing parapinopsin and rhodopsin are localized in
the dorsal and ventral regions of the pineal organ, respectively
(Koyanagi et al., 2004), enabled a comparison of the arrestins
that bind to parapinopsin and rhodopsin in the same organ.
Surprisingly, ß-arrestin, which is known to bind to activated
G protein-coupled receptors (GPCRs) other than opsin-based
pigments (Lohse et al., 1990), was localized to parapinopsin-
expressing cells (Kawano-Yamashita et al., 2011). The result
contrasts the localization of visual arrestin in rhodopsin-
expressing cells. In addition, the light-dependent translocation
of ß-arrestin to cell membranes in parapinopsin-expressing
cultured cells and to the outer segments of pineal parapinopsin-
expressing photoreceptor cells was observed, suggesting that
ß-arrestin binds to parapinopsin to arrest parapinopsin signaling
(Kawano-Yamashita et al., 2011; Figure 1A). Interestingly, under
light illumination, the granules containing parapinopsin and
ß-arrestin were observed in parapinopsin-expressing cell bodies
(Kawano-Yamashita et al., 2011). Because it is well known that
ß-arrestin mediates clathrin-mediated GPCR internalization
(Lohse et al., 1990; Ferguson et al., 1996; Goodman et al., 1996),
the results suggest that the granules were generated in a light-
dependent manner by ß-arrestin-mediated internalization of
parapinopsins from the outer segments. The ß-arrestin-mediated
internalization of parapinopsin enables to eliminate the stable
photoproduct and restoring cell conditions to the original dark
state. In contrast, vertebrate visual signaling does not require
the elimination of photoproducts via internalization because
vertebrate visual pigments convert to unstable photoproducts
that spontaneously decay by chromophore dissociation. Taken
together with the evolutionary scenario that the bleaching
pigment evolved from a bistable pigment, vertebrate visual
arrestin may have evolved from a “ß-like” arrestin by losing
its clathrin-binding domain and function as an internalization
mediator after emergence of the bleaching pigment.

BIOLOGICAL SIGNIFICANCE OF
NON-VISUAL OPSIN MULTIPLICITY

In the case of visual opsins, the diversification with respect
to spectral sensitivity is generally involved in the evolution
of color vision (e.g., the evolution of trichromatic vision in
the primate lineage, Figure 3A) but biological significance of
the multiplicity of opsins underlying non-visual photoreception
remains unclear. The parapinopsin-involving findings also allow
further discussion. We recently found another parapinopsin
gene, PP2, in the zebrafish and pufferfish genomes (Koyanagi
et al., 2015), in addition to orthologs of the catfish and
rainbow trout parapinopsins, PP1s, which have been previously
reported (Blackshaw and Snyder, 1997; Koyanagi et al., 2004).

A comprehensive survey of parapinopsin genes in vertebrate
genome databases revealed that the spotted gar possess only one
parapinopsin gene (Figure 1B). Since the spotted gar diverged
before the teleost-specific whole-genome duplication (Hoegg
et al., 2004; Crow et al., 2006), this suggests that the gene
duplication giving rise to PP1 and PP2 occurred via teleost-
specific whole-genome duplication (Taylor et al., 2003; Kuraku
and Meyer, 2009). Phylogenetic analyses of the Gt-coupled opsin
group, including parapinopsins, and synteny analysis of genomic
regions around parapinopsin gene(s) in teleosts, including the
spotted gar, supported this hypothesis (Koyanagi et al., 2015).

The molecular properties of two teleost parapinopsins
also allowed us to speculate the biological significance of
diversification of the parapinopsin gene. Zebrafish and pufferfish
PP1s and spotted gar parapinopsin had absorption maxima
at 360–370 nm in the UV region (Koyanagi et al., 2015),
indicating that they serve as UV-sensitive pigments, similar to
lamprey parapinopsin (Koyanagi et al., 2004; Figure 2A). In
contrast, zebrafish, pufferfish, and rainbow trout PP2s exhibited
absorption maxima in the visible light region, with peaks at
∼480, 460, and 460 nm, respectively, indicating that teleost
PP2 is a blue light-sensitive pigment (Koyanagi et al., 2015;
Figure 2B). Regardless of the absorption spectra in the dark
state, all of these teleost parapinopsins were bistable pigments,
like lamprey parapinopsin and unlike vertebrate visual pigments.
These findings demonstrate the diversification of vertebrate
bistable pigment with respect to spectral sensitivity (UV and
blue sensitivity). In addition, PP1 and PP2 exhibit mutually
exclusive expression in the pineal organs of zebrafish, pufferfish,
and rainbow trout (Koyanagi et al., 2015). The expression
profiles indicate that PP1- and PP2-expressing cells capture
light independently, which enables PP2 to be involved in
pineal functions apart from wavelength discrimination, which
is supported by UV-sensitive parapinopsins. PP1- and PP2-
expressing cells were characterized with the transgenic zebrafish
in which either PP1- or PP2-expressing cells were labeled
(Koyanagi et al., 2015). In the transgenic zebrafish, PP1-
expressing cells basically possessed neuronal processes, which is
consistent with their involvement in wavelength discrimination
(Figure 2C). However, PP2-expressing cells rarely possessed
neuronal processes, suggesting that PP2 is involved in non-
neural responses rather than in neural responses, including
wavelength discrimination (Figure 2D). Interestingly, further
histochemical investigations revealed that PP2-expressing cells
contain serotonin and aanat2, a key enzyme involved in
melatonin synthesis from serotonin, whereas PP1-expressing
cells did not contain either molecule (Figures 2E,F). These
findings suggest that blue-sensitive PP2 is involved in light-
regulation of melatonin secretion (Koyanagi et al., 2015).

The studies demonstrated that teleost PP1 is a UV-sensitive
pigment and its pineal expression is conserved in three kinds
of teleosts (Koyanagi et al., 2015), including rainbow trout,
which has been shown to have pineal wavelength discrimination
ability (Morita, 1966). Accordingly, these observations strongly
suggest that PP1 underlies UV reception for pineal wavelength
discrimination in teleosts. A series of findings including the
involvement of parapinopsins in UV reception in the lamprey
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FIGURE 2 | Functional difference between PP1 and PP2. The absorption spectra of zebrafish PP1 (A) and PP2 (B). Neuronal processes (arrowheads) were

observed in many GFP-labeled PP1-expressing cells (C), but rarely in RFP-labeled PP2-expressing cells (D) in the zebrafish pineal organ. Distribution of

serotonin-containing cells compared to that of PP1-expressing cells (E) and PP2-expressing cells (F) in the pineal organ of adult zebrafish. PP2-expressing cells

contain serotonin, a precursor of melatonin, whereas PP1-expressing cells do not. The scale bars represent 20 µm (C,D) and 50 µm (E,F). All data are derived from

Koyanagi et al. (2015).
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the primate lineage (Nathans et al., 1986; Nei et al., 1997). The diversification provided a red/green color discrimination ability. Note that these species also possess an

SWS1 pigment. (B) Diversification of non-visual opsin parapinopsin with respect to spectral sensitivity (UV/blue) in the teleost lineage via teleost-specific whole-genome

duplication. The diversification generated a new contribution of parapinopsin to light-regulation of melatonin secretion, in addition to wavelength discrimination.

pineal organ and iguana parietal eye (Koyanagi et al., 2004;
Wada et al., 2012), suggests that UV-sensitive parapinopsin is an
elemental molecule for wavelength discrimination involving UV-
reception in the pineal and related organs of non-mammalian
vertebrates. In contrast, PP2 is suggested to underlie a different
pineal function: light-regulated melatonin secretion. Because
parapinopsin of spotted gar, which diverged before teleost-
specific whole-genome duplication (Hoegg et al., 2004; Crow
et al., 2006), is a UV-sensitive pigment (Koyanagi et al., 2015)
as well as other vertebrate parapinopsins (Koyanagi et al.,
2004; Wada et al., 2012), blue-sensitive parapinopsin likely
evolved from a UV-sensitive parapinopsin (Koyanagi et al., 2015;
Figure 3B). Accordingly, the findings provide a clear example
of the functional differentiation among duplicated non-visual

opsins; UV-sensitive PP1 could have retained the original
function, and blue-sensitive PP2 acquired a novel functional role
via a neofunctionalization event (Figure 3B). The diversification
of non-visual opsins with respect to spectral sensitivity in the
teleost lineage shows good contrast to that of visual opsins, which
is involved in the evolution of color vision (Figure 3).

CONCLUSION

A series of findings on the bistable pigment parapinopsin has
improved our understanding of the evolution of both visual and
non-visual opsins, and partly revealed biological significance of
the multiplicity of opsins in animals. We emphasize here that
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parapinopsin is the first identified bistable pigment in vertebrates
(Koyanagi et al., 2004). After its discovery, many bistable
pigments, such as Opn4 or melanopsin, circadian photopigment
in mammals, Opn3, Opn5, and peropsin have been identified
in various vertebrates and invertebrates (Koyanagi et al., 2005,
2013; Mure et al., 2007; Terakita et al., 2008; Nagata et al., 2010;
Yamashita et al., 2010), suggesting that the bistable property is
common in animal opsins (Terakita et al., 2004). Mutational
analyses of bistable pigments, including parapinopsin, revealed
the displacement of the counterion, important amino acid
residue for visible light absorption of opsin-based pigment,
from Glu181 to Glu113 (bovine rhodopsin numbering system)
during the evolution of vertebrate visual pigments (Terakita
et al., 2000, 2004). Comparison of characteristics between a
bleaching pigment (bovine rhodopsin) with Glu113 counterion
and a bistable pigment (parapinopsin) with Glu181 counterion
revealed the correlation between the G protein activation ability
and the magnitude of light-induced conformational change. The
results suggested that counterion displacement resulted in higher
G protein activation ability, generated by larger light-induced
conformational change of the pigment (Tsukamoto et al., 2009).
In addition, counterion displacement could contribute to the
evolution of red-sensitive pigment because displacement from

Glu181 to Glu113 allows acquisition of His181, an essential
amino acid residue for red-sensitivity of the pigment through
chloride ion binding (Terakita et al., 2000, 2004). Despite the
wide distribution of the bistable nature in animal opsins and a
better understanding of the molecular properties of the bistable
pigment, its biological significance remains unclear. Studies
of the contributions of bistability in vivo, such as that of
parapinopsin in pineal wavelength discrimination, may provide
insight into the physiological importance of the bistable property.
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