
ORIGINAL RESEARCH
published: 28 April 2016

doi: 10.3389/fevo.2016.00047

Frontiers in Ecology and Evolution | www.frontiersin.org 1 April 2016 | Volume 4 | Article 47

Edited by:

Carla Mucignat,

University of Padova, Italy

Reviewed by:

Patricia Nagnan-Le Meillour,

Institut National de la Recherche

Agronomique, France

Dustin J. Penn,

Veterinary University Vienna, Austria

Roberto Ramoni,

University of Parma, Italy

*Correspondence:

Pavel Stopka

pstopka@natur.cuni.cz

Specialty section:

This article was submitted to

Chemical Ecology,

a section of the journal

Frontiers in Ecology and Evolution

Received: 26 February 2016

Accepted: 15 April 2016

Published: 28 April 2016

Citation:

Stopková R, Vinkler D, Kuntová B,

Šedo O, Albrecht T, Suchan J,
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Chemical communication is mediated by signal production and signal perception and in

house mice (Mus musculus), both processes involve lipocalin proteins (OBP,MUP, LCN)

that transport volatiles and protect them in tissues where they are produced. However,

potential roles of lacrimal, nasal, and salivary lipocalins are still not well known. We aimed

to determine the expression of the recently described family of odorant binding proteins

(Obp), along with major urinary proteins (Mup) across different tissues in wild mice (Mus

musculus) to assess the importance of these proteins based on their quantity in particular

expression sites. We performed qPCR analysis of selected Mup, Lcn, Obp genes, and

predicted Obp members to study their expression in selected tissues. We identified

new members of the mouse odorant binding protein gene family in two subspecies,

M. m. musculus and M. m. domesticus. We show that Mup4 and Mup5 from the

phylogenetically older group-A are co-expressed with Obps in orofacial tissues. We

also identified a sexually dimorphic pattern of female-biased Obp7 and male-biased

Mup4 expression in lacrimal glands. OBPs, MUPs, and LCNs are produced in parallel,

which may function to widen the spectrum of bound ligands, potentially including

the degradation products of olfactory signals and/or toxic compounds. Moreover, our

study demonstrates that several pheromone transporters from the lipocalin family are

co-expressed in the nasal and lacrimal tissues of mice with the newly detected OBPs

that further expand the already diverse mouse lipocalin family.

Keywords: lipocalin, odorant, chemical communication, Mus musculus, olfaction

BACKGROUND

John Maynard Smith and David Harper defined signal as “...any act or structure which alters the
behaviour of other organisms, which evolved because of that effect, and which is effective because
the receiver’s response has also evolved” (Maynard Smith and Harper, 2003). The house mouse
(Mus musculus) uses a system of volatile pheromones (Mucignat-Caretta et al., 2010) and their
transporters from the lipocalin protein family that together form a signal (Novotny et al., 1985).
Because volatiles degrade in water solutions (Kwak et al., 2013), their life span largely depends on
lipocalins that protect them (Hurst et al., 1998; Timm et al., 2001), and transport them in secretory
fluids (Flower, 1996) to an outside world. The signals have strong effects on the reproductive success
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of the signaler (Thonhauser et al., 2013) due to strong effects
on reproductive physiology of the receiver (Whitten et al., 1968;
Roberts et al., 2004; Stopka et al., 2007; Janotova and Stopka,
2011) through chemosensory receptors of the main olfactory and
vomeronasal organs (Moss et al., 1997; Luo and Katz, 2004).

Since the discovery of the structure and function of olfactory
receptors GPCRs—G-protein coupled receptors (Buck and Axel,
1991), research on chemical communication has concentrated
on signal reception by nasal and vomeronasal chemosensory
neuronal receptors, and on lipocalin transporters of pheromones.
Lipocalins generally function to sequester hydrophobic volatiles
and transport them in their eight-stranded beta barrel structure
(Timm et al., 2001; Sharrow et al., 2002). Volatiles specifically
bind to receptors of chemosensory neurons when released
(Tirindelli et al., 1998; Novotny, 2003). In mice, the functions
of lipocalin transporters are not well understood and most
studies focused on the major urinary proteins (MUPs), which
are expressed in the liver and transport volatile odor/organic
compounds (VOCs) to the urine (Shahan and Derman, 1984;
Shahan et al., 1987a,b; Stopková et al., 2007). MUPs have also
been reported to be expressed in several tissues other than the
liver (Shaw et al., 1983; Shahan et al., 1987a; Cavaggioni et al.,
1999; Utsumi et al., 1999; Karn and Laukaitis, 2011), though their
functions are not understood.

Mup genes have recently duplicated in rodents, and in
house mice they form a cluster of 21 coding genes (and a
similar number of pseudogenes), which can be divided into
two groups, the group-A (ancestral), containing Mup3, Mup4,
Mup5, Mup6, Mup20 (or “Darcin”), and Mup21 and the group-
B, consisting of 15 other Mups sharing almost 99% sequence
identity: Mup1, Mup2, Mup7-Mup19 (Logan et al., 2008; Mudge
et al., 2008), reviewed in Janotová and Stopka (2009), Stopková
et al. (2009), and Phelan et al. (2014). The level of urinary
MUP production is socially regulated in C57BL/6 laboratorymice
(Stopka et al., 2007) and wild living M. m. musculus (Janotova
and Stopka, 2011) and M. m. domesticus (Cunningham et al.,
2013) mice. Furthermore, male M. m. musculus up-regulated
urinary MUP production when caged with a female, but down-
regulated when caged with a male. Down-regulation of MUPs
was more pronounced in males that were defeated in a male–
male encounter (Janotova and Stopka, 2011). Furthermore, social
experience of parents can regulate MUP expression level in
subsequent generations through epigenetic effects (Nelson et al.,
2013).

Specific roles limited to a single urinary MUP were attributed
only to a major urinary protein MUP20 (or “Darcin”; a group-
A MUP) expressed in males, which attracts females and aids
spatial learning (Roberts et al., 2010, 2012). Remaining MUPs
were supposed to present an individual “barcode” signal due
to differences in urinary MUP profiles (Hurst et al., 2001).
However, a recent study with sufficient sample sizes shows that
MUP profiles of wild male house mice (M. m. musculus) are
not individually unique. They are not highly stable but instead
are dynamic over time with significant changes after puberty
and during adulthood (Thoß et al., 2015), thus challenging the
“barcode” hypothesis. Moreover, the variation in pheromone
affinities of the urinary MUP isoforms provides low support

for the proposal that heterogeneity in MUPs plays a role in
regulating profiles of available pheromones (Sharrow et al.,
2002).

Another group of lipocalins that is thought to be involved
in chemical communication, but less understood, is a cluster
of the odorant binding protein genes (Obp). Obp genes have
also undergone a series of duplications in mice, and they
occur in a cluster of six genes and two pseudogenes on the
X chromosome (Stopková et al., 2009, 2014, see Figure 1A).
Whilst the Mup genes are abundant only in house mice and rats
(Rattus norvegicus) and rarely found in other species of mammals
in multiple copies, Obp genes occur as a cluster in various
mammalian taxa, e.g., porcupines (Hystrix cristata) (Felicioli
et al., 1993), bank voles (Myodes glareolus) (Stopkova et al., 2010),
elephants (Lazar et al., 2002), cows (Bos taurus) (Bignetti et al.,
1985), boar (Sus scrofa) (Spinelli et al., 1998; Nagnan-Le Meillour
et al., 2014), and potentially also mole rats (Fukomys anselli,
F. kafuensis) (Hagemeyer et al., 2011). One OBP member (i.e.,
Aphrodisin) has been shown to be major pheromone transporter
in vaginal flushes of hamsters (Cricetus cricetus). Interestingly,
pigs have OBPs and SAL. SAL is the major salivary protein in pigs
with affinity to steroids and to 2-isobutyl-3-methoxypyrazine, it
is phylogenetically close to MUPs and is expressed by the male
submaxillary glands (Marchese et al., 1998). Moreover, three of
the six predicted OBP members described (Stopková et al., 2009,
2014) were also corroborated with MS techniques in the tear
and saliva proteomes of the laboratory mouse C57BL/6 (Karn
and Laukaitis, 2015), though the authors did not further specify
detected OBP variants. Therefore, one of the aims of our paper
was to detect potential expression sites of mRNAs coding OBPs
that were found in the mouse saliva.

Because mice typically begin social interactions by
investigating facial and mouth areas (Luo et al., 2003), we
may assume that tear and salivary lipocalins secrete chemical
signals, whilst nasal and vomeronasal lipocalins activate and/or
deactivate chemosensory GPCR receptors. In addition to their
function in chemical communication, some lipocalins also have
important roles in innate immune responses (Fluckinger et al.,
2004; Stopková et al., 2014). We have previously suggested
that chemical communication and immunity have been shaped
by similar evolutionary forces because the nasal cavity is
a place of pathogen recognition via lymphoid tissues and
signal perception via chemosensory neurons (Stopková et al.,
2009, 2014). Moreover, lipocalins may have as yet another
function. The “toxic waste hypothesis” states that various
lipocalins are involved in removing toxic waste from the body
(Stopková et al., 2009; Kwak et al., 2011) and that some of
the compounds might have been constituting a signal under
selection (Stopková et al., 2009). The toxic waste disposal role has
been experimentally demonstrated in a recent paper (Kwak et al.,
2016) where mice loaded with an industrial chemical, 2,4-di-tert-
butylphenol (DTBP) used MUPs for a consequent detoxification
(Kwak et al., 2016). To conclude, lipocalins are ubiquitous
proteins with diverse functions and multiple sites of their
expression.

In this study, we investigated potential differences in the
expression of selected lipocalins in two sub-species of the house
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FIGURE 1 | The mouse Obp cluster (A), and Phylogenetic analysis of novel OBPs by Maximum Likelihood method (B). Green arrows (A) indicate position

of coding genes mapped on C57BL/6 X-chromosome with specific codes from the mouse genome. Consecutive numbering in italics (Obp1 to Obp8) represents
alternative names for corroborated transcripts under this study in wild mice. This nomenclature also involves two pseudogenes (Obp3-p, Obp4-p) with positions

indicated by white arrows. Pseudogene Gm14753 is not involved in numbering because it is a processed retroelement similar to actin and not Obp.

mouse, Mus musculus musculus and M. m. domesticus. This
could be a starting point to determine how these proteins
evolve through speciation (Hiadlovska et al., 2013), and their
potential influence on sub-species recognition (Smadja and
Ganem, 2002, 2008) and aggression (Dureje et al., 2011).
These two sub-species have been previously found to vary
quantitatively in the abundance of male VOCs (Mucignat-
Caretta et al., 2010) and MUP expression between sexes
(Stopková et al., 2007) with differences in the beta-barrel
residues under selection (Karn and Laukaitis, 2012). Thus, we
have identified new members of the odorant binding protein
family and focused on the level and locations of expression of
soluble lipocalins. It is our hope that investigating lipocalins in
different tissues, and not only in the urine, will provide a better
understanding of this fascinating and complex family of carrier
proteins.

METHODS

Ethical Standards
All animal procedures were carried out in strict accordance
with the law of the Czech Republic paragraph 17 no. 246/1992
and the local ethics committee of the Faculty of Science of
Charles University in Prague specifically approved this study
in accordance with accreditation no. 27335/2013-17214 valid
through 2019. Animals were sacrificed by cervical dislocation.

Samples
The total of 12 individuals (i.e., six males and six females) was
studied in this experiment with six individual M m. domesticus
from Hattingen (51◦20′39.84′′N, 7◦12′06.38′′E) and Ruther
(51◦23′01.0′′N, 6◦57′48.9′′E) and six individualMus m. musculus
from Jičín (50◦28′18.802′′N, 15◦22′31.667′′E). Individual mice
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were kept for 6 weeks following capture in the accredited mouse
facility with food and water provided ad libitum and on a 12:12-
h light cycle with lights off at 1900 h. Samples for 2DE were
collected from the oral cavity with 100 µl of 0.9% saline water
repeatedly flushing in and out with a pipette. Samples were
immediately acetone precipitated and used in further steps.

When salivary samples were collected, all specimens were
sacrificed by cervical dislocation and tissue samples were
collected from each animal. Tissue samples were obtained
from preputial/clitorial glands, liver, lacrimal and Harderian
glands, submandibular (salivary) glands, olfactory epithelia,
vomeronasal organ, and Nasal-associated lymphoid tissue
(NALT). NALT is the paired lymphoid organ (Kiyono and
Fukuyama, 2004), and it was isolated from the upper mouse jaw
by peeling away the palate where NALT was localized bilaterally
on the posterior side.

2DE-Page Analysis
Two dimensional polyacrylamide electrophoresis (2DE)
was performed with IEF cell (Bio-rad R©) and Protean II
electrophoresis system. For the first dimension 12 µg of proteins
was applied to Bio-Rad 11 cm strips (pI: 3.9–5.1). Isoelectric
focusing was performed after passive rehydration at room
temperature and run at 50V for 9 h, 250V (rapid) for 15 min,
8000V (rapid) for 1 h, 8000/30,000 V/h, and finished at 500V
until further step. For the second- dimension separation—strips
were equilibrated for 10min in 45mM Tris base (pH 7.0)
containing 6 M urea, 1.6 SDS, 30% glycerol, and 130mM
dithiothreitol, and then re-equilibrated for 10 min in the
same buffer containing 135mM iodoacetamide in place of
dithiothreitol. The strips were then placed on Criterion (dodeca)
precast 12–20% gels along with unstained molecular standards
in a separate well. Second dimension gels were run at constant
current—50mA for 1 h, 100 mA for 1 h and 150mA for 1.5 h
at 10◦C. After electrophoresis, the gels were stained with the
Colloidal Coomassie G-250 stain (Bio-rad). All spots in the range
15–30 kDa were excised with a Bio-rad Spot Cutter.

MALDI-MS/MS Analysis
The most abundant protein spots were selected for the analysis
and excised from 2-DE gels from 12 individuals. Gel pieces
were destained by alternative washing steps using 50mM
ammonium bicarbonate and acetonitrile (i.e., provided in detail
inData Sheet 1). After destaining, the proteins in gel pieces were
incubated with trypsin (sequencing grade, Promega) at 37◦C
for 2 h. Digested peptides were extracted from gels using 50%
ACN solution with 5% formic acid. MALDI- MS/MS analyses
were performed on an Ultraflex III mass spectrometer (Bruker
Daltonik, Bremen, Germany). Peptide maps were acquired
inreflectron positive mode (25 kV acceleration voltage) with 800
laser shots. Peaks within 700–4000 Da mass range and minimum
S/N 10 were picked out for MS/MS analysis employing LID-LIFT
arrangement with 600 laser shots for each peptide.

CHCA was used as the matrix in combination with
AnchorChip target to enhance measurement sensitivity. Sample
(1 µl) was mixed with matrix solution on the target in a 2:1 ratio.
Known autoproteolytic products of trypsin were used for internal

calibration of digested peptides. In the absence of these products,
an external calibration procedure was employed, using a mixture
of seven peptide standards (Bruker Daltonik) covering the mass
range of 1000–3100 Da. The Flex Analysis 3.0 and MS Biotools
3.1 (Bruker Daltonik) software were used for data processing.

Data Processing
MASCOT 2.2 (MatrixScience, London, UK) search engine was
used for processing the MS/MS data under standard settings with
significance threshold p < 0.05. Database searches were done
against the NCBI protein database (Release 20101113) without
taxonomic restriction. Mass tolerances of peptide precursors
and MS/MS fragments were set to 60 ppm and 0.7 Da,
respectively. Trypsin specificity with possibility of semitryptic
cleavage, oxidation (M), carbamidomethylation (C) and pyro-
Glu (Q, N-term) as optional modifications and up to two enzyme
miscleavages were set for all searches. Protein identifications
based on one or more unique peptides with significant score
(under the settings—59 or higher) were accepted. See more
details inData Sheet 1.

Real-Time PCR Analysis
Immediately after resection, each tissue sample was placed into
Eppendorff tube with a mixture of 1ml of Trizol (TRIzol
Reagent–Invitrogen) and glass pellets, and homogenized using
a homogenizer (MM200–Retsch). RNA was isolated using
standard Trizol protocol and followed by cDNA synthesis using
First strand cDNA synthesis kit (Fermentas). RNA was assessed
from the ratio of the optical densities at 260 and 280 nm, and
the RNA integrity was assessed with 1% agarose gel containing
ethidium bromide. Onemicrogram of total RNA (DNase treated)
was used for the synthesis of single-stranded cDNA according to
a first-strand cDNA synthesis protocol (Fermentas UAB, Vilnius,
Lithuania) with RevertAidTMM-MulV Reverse Transcriptase and
oligo(dT)18 primer.

Real-time PCR was performed on a Light Cycler 480
(Roche Applied Sciences) using specific dual hydrolysation
probe method (Universal Probe–Roche Applied Sciences) with
the Probe Master kit (Roche) and protocol according to the
manufacturer’s instructions. Specific primers and their respective
probes were designed by Universal probe library software
(Roche) using our newly provided (i.e.,Obp) and NCBI reference
sequences. Intron-spanning assay and multiplex PCR condition
with reference gene (Gapdh) were selected. The resulting primers
and probes are provided in Table 1. Moreover, most group-B
Mups are almost 99% similar and it is difficult on the level
of transcript to find a probe that would differentiate between
different group-B Mups. Thus, most urinary Mups including
Mup2 is included in Figure 3 within the category MUP-B
(detected with universal group-BMup primers).

PCR amplification was performed with the following
conditions: initial denaturation at 95◦C for 10min,
followed by 40 cycles consisting of denaturation at 95◦C
for 10 s, annealing at 60◦C for 10 s where fluorescence
was acquired, and elongation at 72◦C for 5 s. Each
sample was measured in triplicate. The data used for
calculation are the means of Cq (i.e., cycle of quantitation
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TABLE 1 | Primers and probes used in Real-time qPCR analysis.

Gene Forward primer Reverse primer # UPL probe

Atp5b ggcacaatgcaggaaagg tcagcaggcacatagatagcc 77

Lcn11 agaacattgtggacctttctt ggagaagggtgggtcagc 29

Lcn4 aatgtaggaattcgtttgcag gagagtatggccccaaaagg 82

Mup-B gacctatccaatgccaatcg tggataggaagggatgatgg 47

Mup21 gggaaggaactttaatgtaga ccacaaaagctctcatgctg 110

Mup4 atggcctgagcctccagt gctgtatcgatcggaagagag 67

Mup5 gaatgaagaatggcctgagc caccccatgctgtatggaa 67

Obp1 gcgcaccctttacatagctg acgctctcaggtctccattc 39

Obp5 ggaccatggaaaactgttgc cagttctccacctctctctatcttg 146

Obp6 cctgtcctgagtaatgatcttct ctgattccacaagtcatgaggtt 18

Obp7 tcaagcaaaatggacaatgc tgccatcttcttgcttataccc 114

in Roche software) values of triplicate samples. The
variation in triplicate values never exceeded 0.5 Cq in our
samples.

The level of mRNA of the target gene (Obp etc.,) in each
sample was calculated relative to the reference gene (Gapdh)
amplified in the same well. A calibration curve was generated
for each pair of primers using 10-fold serial dilution of cDNA
to assess the value for PCR efficiency (E). In all cases E was not
lower than 0.9 (i.e., 90% efficiency of PCR reaction). E-values
were than used in the formula (The Efficiency sensitive model
Pfaffl, 2001) used for the calculation of relative expression (RE),
i.e., normalized mRNA abundance:

RE = (1+ Ereference)
Cpreference/(1+ Etarget)

Cptarget

Non-template and non-RT reactions were used as controls.
For the analysis of expression patterns via hierarchical
clustering we used R software. Our hierarchical clustering
utilized Euclidian distance metric on log2 transformed
data and complete linkage method. The mixed-model
approaches, ANOVA, t-test, Shapiro-Wilk’s normality test,
and Fligner-Killeen test for testing the homogeneity of
variances, were also computed and plotted in R (Venables
and Smith, 2009). Data for pI values were cross-checked
from multiple online resources (Ensembl Genome Browser—
www.ensembl.org/, NCBI) and with our recently obtained
sequences. Isoelectric point was calculated with ExPASy (http://
web.expasy.org/compute_pi/), whilst the index of hydropathy
(i.e., GRAVY index) was calculated with Gravy calculator
(www.gravy-calculator.de/). Sequence data are provided as
additional Data Sheet 2, data for calculation of pI and H are
provided inData Sheet 3.

Sanger Sequencing
Various primer sets were derived from predicted sequences of
the genome mouse C57BL/6 (Stopková et al., 2009, 2014) and
used to amplify Obp transcripts. Mixed samples from studied
orofacial tissues were used for transcript identification. Finally
we set up a pair of primers per transcript giving one clear
band in the expected area. These sequencing primers covered

the whole region from start to stop codon: Obp1- (F—CTC
TGAACTCCTTCGGAAGGA, R—AAAAGAATCAGTACC
ATGGTAGGA), Obp5—(F—CTGTAGAAAAGAAAGTCT
TGTACCA, R—CATTCAAAAAAGGAAGATCATGAGA),
Obp6—(F—AAGTCTTGTGCCATAATGGCAA, R—TCAAAA
AAAGGAATAACAGGTCGTA), Obp7—(F - TGAACATCT
CCAGAGGAGCAA, R—GGAAGAAGAGTTTATAGATTA
GGCAA). The products were double sequenced (downstream,
upstream) with 3130 Genetic Analyzer, Applied Biosystems
using either forward or reverse Obp primers and with 5 to 10
technical replicates per transcript. Sequences were analyzed
using the Sequence Scanner (Applied Biosystem) software
and compared to predicted and known sequences from public
database NCBI using BLAST. Novel sequences were deposited
in GeneBank with accession numbers provided in the results
section.

Phylogenetic Analysis of Obps by
Maximum Likelihood Method
The evolutionary history was inferred by using the Maximum
Likelihood method based on the JTT matrix-based model
(Jones et al., 1992). The tree with the highest log likelihood
(−1578.6730) is shown. The percentage of trees in which
the associated taxa clustered together is shown next to the
branches. Initial tree(s) for the heuristic search were obtained
automatically by applying Neighbor-Join and BioNJ algorithms
to a matrix of pairwise distances estimated using the Maximum
Composite Likelihood (MCL) approach, and then selecting
the topology with superior log likelihood value. The tree is
drawn to scale, with branch lengths measured in the number
of substitutions per site. The analysis involved 19 nucleotide
sequences. Codon positions included were 1st + 2nd + 3rd
+ Noncoding. All positions with less than 95% site coverage
were eliminated. That is, fewer than 5% alignment gaps, missing
data, and ambiguous bases were allowed at any position.
There were a total of 284 positions in the final dataset.
Evolutionary analyses were conducted in MEGA5 (Tamura et al.,
2011).

RESULTS

Saliva Contains Lipocalins
To detect the expression of lipocalins on the level of proteins,
we used the MALDI- MS/MS analyses for protein identification
in mouse saliva. In both subspecies, we have identified several
abundant lipocalins (Figure 2): OBP5 (Odorant binding protein
1a, gi|1835143), LCN11 (Lipocalin 11, gi|154689678), MUP5
(Major urinary protein 5 precursor, gi|113930708), and highly
similar group-B MUPs with the most likely identification
provided in Data Sheet 1. We have also identified a fragment
of a putative pheromone transporter VM (Vomeromodulin
precursor, gi|70909314) which is a 70 kDa glycoprotein expressed
in the posterior septal and vomeronasal glands but not in
the mucus of the main olfactory neuroepithelium (Khew-
Goodall et al., 1991). The presence of VM (and potentially
also OBP5) in the mouse saliva suggests that nasal and oral
cavities are functionally connected because proteins expressed
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by nasal/vomeronasal tissues are also found in the oral
cavity. We have also identified several proteins below 17 kDa
size including PIP [Prolactin Inducible Protein—also highly
abundant in saliva of the laboratory mouse (Blanchard et al.,
2015)], and several unspecified members of ABP (androgen
binding protein) family which were recently described in
detail in the tear and saliva proteomes of the genome
mouse C57BL/6 (Blanchard et al., 2015; Karn and Laukaitis,
2015).

mRNA Sequencing Corroborated Predicted
Obps
In contrast to MUPs, the family of OBPs is rather enigmatic
with respect to the expression of their predicted members.
In studying the poorly-described OBP1a protein found in
mouse saliva, we discovered that it is related to a gene cluster
that had been incompletely described (Stopková et al., 2014).
Therefore, we have sequenced all Obp predicted transcripts in
wild mice from pooled oro-facial tissues using primers generated
from C57BL/6 genomic data and provided specific product
names based on their chromosomal position (for MUPs see
Logan et al., 2008). All Obp transcripts were mapped on the
X chromosome of the laboratory mouse C57BL/6 and have
been given consecutive names Obp1-Obp8 (Figure 1A). We
have also included two pseudogenes (i.e., Obp3-p, Obp4-p;
classified by Ensembl as unprocessed pseudogenes without a
protein product) in our consecutive numbering of Obps as in
other rodent taxa these genes may be intact with ORF (i.e.,
not truncated) and expressed. Thus, we have provided unique
Obp sequences for feral M. m. domesticus (Obp1—KJ605385,
Obp2—KJ605386, Obp5—KJ605387, Obp6—KJ605388, and
Obp7—KJ605389), and M. m. musculus (Obp1—KJ605390,
Obp2—KJ605391, Obp5—KJ605392, Obp6—KJ605393,
and Obp7—KJ605394) and submitted them to GenBank
(NCBI).

Phylogenetic Analysis of Novel Obp
Sequences
All novel OBPs have a feature typical for the entireObp cluster - a
specific disulfide bond (Cys38–Cys42), which represents a strong
OBP-diagnostic motif CXXXC (Cys-Xaa-Xaa-Xaa-Cys; reviewed
in Stopková et al., 2009, 2014). We used our mRNA (i.e., CDS)
sequences along with those from C57BL/6 mice to generate
the Maximum Likelihood (MLM) tree (Figure 1B). The MLM
algorithm with 2000 permutations identified Prb (Probasin) as
the root (i.e., the outgroup to all OBPs). Thus, remaining Obps
form two sub-clusters that we decided to name as the group-A
and the group-BObps. Ancestral group-AObps includeObp1 and
Obp2 (bootstrap= 100). The later evolved group-B Obps include
Obp5, Obp6, Obp7, and Obp8 (bootstrap = 99). The group-B
Obp sequences perfectly match those predicted transcripts that
we extracted from the laboratory mouse genome (Figure 1A).
However, newly described Obp1 and Obp2 from M. m. musculus
cluster together (bootstrap = 90) and seem to be divergent from
M. m. domesticus and C57BL/6 (see Data Sheet 2 for Multiple
sequence alignment).

The strong CXXXC motif present in all OBP proteins
(including Probasin) is represented by CNDDC in OBP1 and
OBP2, CDEGC in OBP7 and OBP8, CEKEC in OBP5 and OBP6.
Obp3-p pseudogene (if expressed) would belong to the group-A
cluster whilst Obp4-p would belong to the group-B, Figure 1B.
Novel Obp (transcript) sequences along with the Mup sequences
downloaded from NCBI were translated and further used for the
calculation of hydropathy and pI properties. We also measured
the expression of these newly identified genes in numerous
tissues.

Hierarchical Clustering Revealed
Differential mRNA Expression Across
Tissues
We assessed expression of lipocalins in eight tissues using qRT-
PCR. We were primarily interested in the location of expression
of the newly described OBPs. So we designed primers for all OBPs
and for other lipocalins from the list of identified proteins and
the VNO-specific LCN4. In the next step, we used hierarchical
clustering in R software as a graphical method to show
relationships among expression levels of different genes across
tissues. Primarily, we focused on the detection of similarities
among expression levels in different tissues and averaged across
individuals of the two subspecies to cluster particular tissues on
the basis of their similar pattern (Figures 3A,B).

Hierarchical clustering separated selected tissues according
to their pattern of expression into two groups depicted on
(upper) X axis in Figure 3. Interestingly, in M. m. domesticus
- olfactory epithelia (OE), lacrimal gland (LG), and nasal-
associated lymphoid tissue (NLT) have clustered together in both
subspecies (see Figures 3A,B), whilst vomeronasal organ (VNO)
and other secretory tissues including liver, Harderian gland,
submandibular gland, and preputial gland were located on the
other branch inM.m. domesticus (Figure 3A). InM.m. musculus
VNO clustered together with OE, LG, and NLT (Figure 3B), thus
suggesting higher VNO activity in this subspecies. This difference
is shown in Figure 3C where the M. m. domesticus matrix is
subtracted from that of M. m. musculus. The average matrix in
Figure 3D is a representative matrix with individuals averaged
over the two subspecies.

Sexually Dimorphic Mups in the Liver, and
Lacrimal Mup4 and Obp7
Mean value of log2 expression levels from the whole data set
and standard deviation was 0.759 ± 1.154. Therefore, we opted
for a two-fold (∼2 sd) filtering procedure to obtain data with
elevated sexual dimorphisms. To our surprise and probably due
to the limited sample size, we have detected only three sexually
dimorphic genes: the male-biased group-B Mups (i.e., a group
of highly similar genes amplified with the primers provided in
Table 1) in the liver, and unique male-biased lacrimal group-A
Mup4, and female-biased lacrimal Obp7.Only these three groups
were further tested.

To control for pseudoreplication of the expression data (i.e.,
three measurements taken from each individual with the total
of 36 measurements) we used a mixed-effect model approach
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FIGURE 2 | Proteomic search for acidic proteins with hydrophobic beta barrel. Proteomic 2DE analysis on narrow range strips (pI 3.9–5.1) revealed that

mouse saliva from a male (M. m. domesticus) contains proteins depicted in the figure including OBP5 (MMD11 spot in A1 file), group-A MUP5 (spots: MMD15,

MMD17), group-B MUP2 (spots: MMD12-14), unspecified ABPs (spots: MMD18) and prolactin-inducible protein, PIP (spot MMD16). In most gels (i.e., from males and

females) we also identified VM (vomeromodulin), LCN11 (lipocalin11). See additional file A1 for a MS report (i.e., section Mus musculus domesticus—male).

FIGURE 3 | Graphical representation of the qPCR expression pattern. Group-A Mups are co-expressed with Obps and Lcns in sensory tissues and exo-orbital

lacrimal glands, whilst the later evolved group-B Mups are an outgroup for their specific expression and excretory functions by the liver. Blue-framed are the

significantly sexually dimorphic genes (i.e., male-biased group-B Mups in the liver, male-biased group-A Mup4 in lacrimal glands, and female-biased Obp7 in lacrimal

glands). Abbreviations: L, Liver; SMG, submandibular gland; PG, preputial gland; HG, Harderian gland; LG, lacrimal gland; VNO, vomeronasal organ; NLT, NALT /

nasal-associated lymphoid tissue; OE, olfactory epithelia; F, females; M, males; Highly expressed genes (∼12 fold) are dark red whilst low expression genes are in pale

yellow. Heat-maps are provided for each sub-species, (A) M. m. domesticus, (B) M. m. musculus, for the distance between them (C) and their average (D).
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(nlme package) assuming normal distribution of the dependent
variable, with individuals as random grouping variable (i.e.,
12 clusters), and sex, gene, and species as fixed effects. Based
on the minimum adequate model (Crawley, 2007) the level of
detected sexual dimorphism was highly significant 1df = 9, L-
Ratio = 102.1, p < 0.0001. Post-hoc comparison with Tukey
HSD further revealed how each gene contributed to significant
sexual dimorphism: Mus m. musculus—Mup-B (p = 0.002),
Mup4 (p = 0.0002), Obp7 (p = 0.09 ns); Mus m. domesticus—
Mup-B (p = 0.009), Mup4 (p = 0.008), Obp7 (p = 0.005). The
data and details of the model are provided in Data Sheets 2, 3.
Additionally, we did not detect any significant sex-differences
in the expression of lipocalins between M. m. musculus and
M. m. domesticus.

Biochemical Properties of Co-Expressed
OBPs and MUPs
Our bioinformatics analysis revealed that OBPs and MUPs have
different predicted isoelectric points with MUPs being more
acidic than OBPs (2-tailed t-test, p = 0.0009; Figure 4), which
differentially affects their solubility at different pH. Data are
provided inData Sheet 4.

Instead of looking at particular residues, we searched for a
more general parameter that along with the structure directly
affects lipocalin-binding properties. As a proxy, we calculated
the grand average of hydropathy (i.e., GRAVY values, Xiong
et al., 2009) which is defined as the sum of hydropathy values
of all amino acids divided by the protein length. The values are
negative for all individual members of MUPs and OBPs, however,
the spectra of predicted hydrophobicities in OBPs and MUPs
are non-overlapping (ANOVA, F = 54.59, p < 0.0001; Fligner-
Killeen test of homogeneity of variances (chi-squared = 3.474,
df = 1, p-value= 0.06234).

Furthermore, we have separated the group of MUPs based
on previous studies (Logan et al., 2008; Mudge et al., 2008) into
the ancestral group-A genes and the later duplicated group-B
genes. Statistically significant differences in their mean values
are graphically represented in Figure 4 by non-overlapping
confidence intervals. Furthermore, the group-B MUPs evolved
hydropathic properties that are intermediate between the group-
A MUPs and OBPs.

DISCUSSION

This study attempts to extend the current knowledge on genes
for olfactory signals in feral mice by measuring selected mRNA
expression across tissues, thus, revealing which other glands
and tissues may be involved in chemical communication. We
have corroborated that the group-BMup transcripts show sexual
dimorphisms in the liver in both subspecies (Stopková et al.,
2007) whereby males excrete higher levels ofMups than females.
The most interesting result of the current study is a sexually
dimorphic pattern of the highly expressed ancestral group-A
Mup4 and the female-biased Obp7 in lacrimal glands. Tears
containing MUP4 and OBP7 are presumably spread onto the fur
during a course of facial self-grooming, thus contributing to body

odor with hydrophobic ligands that these proteins may transport.
NasalMUP4, however, was suggested to play roles in sequestering
pheromones and possibly transporting them to their receptors
(Sharrow et al., 2002).

The exocrine roles of lacrimal lipocalins are supported
by observations that facial areas elicited strong neuronal
activity response in the accessory olfactory bulb (Luo et al.,
2003). Similarly Obp5, Obp6, Obp7 are also highly expressed
in lacrimal glands (Obp5 and Obp7 originally annotated
in inbred C57BL/6 as Obp1a and Obp1b). Recently, OBP
proteins have been identified in tears of the laboratory mouse
C57BL/6 (Karn and Laukaitis, 2015). In this study, Obp
transcripts seem to be co-expressed in combination with
other lipocalins (e.g., nasal and lacrimal Obp5, Obp7, Mup4,
and Lcn11). OBP proteins (OBP5 and OBP7) were also
predicted to form hetero-dimers (Pes et al., 1992) which may
explain why Obp5 and Obp7 expression levels cluster together
(Figure 3). Additionally, lacrimal expression of Obp7 is female
biased and thus, may have female specific roles in chemical
communication.

Evaluation of mRNA distribution across tissues also
revealed that some lipocalin genes are expressed in just
one tissue. Similarly to the group-B Mup genes that are
mostly expressed in the liver, Obp6 is expressed only in
lacrimal glands, and Lcn4 is expressed almost exclusively
in the vomeronasal organ where LCN4 protein is covering
the vomeronasal sensory epithelium to enable primary
reception of pheromones (Miyawaki et al., 1994). It is
therefore likely, that LCN4 together with Vomeromodulin
(Khew-Goodall et al., 1991) and MUP4 (Sharrow et al.,
2002) participate in the process of pheromone access and
detection by VNO. Following the process of pheromone
detection, some of these proteins (LCN3, LCN4, VM,
OBPs) are presumably transported to the oral cavity
where they are often detected in saliva of C57BL/6 mice
(Blanchard et al., 2015; Karn and Laukaitis, 2015) but, as we
found in this study, their mRNAs are produced elsewhere
(i.e., mainly VNO).

Obp and Mup (or Lcn) genes are co-expressed in particular
tissues probably because their proteins have non-overlapping
ligand-binding properties (Cavaggioni et al., 1990) with MUPs
having higher and OBPs lower number of hydrophobic residues.
This has been originally reported for two OBPs in inbred
mice (Cavaggioni et al., 1987; Pes et al., 1992; Pelosi, 1994)
and extended for newly detected OBPs in feral mice in this
study. Therefore, we also suggest that co-expressed lipocalins
may have complementary functions where MUPs may transport
more hydrophobic volatiles to and from the vicinity of
olfactory receptors whilst OBPs may transport less hydrophobic
ligands or may play roles in the deactivation of partially
degraded non-specific (i.e., less hydrophobic = hydroxylated
or oxidized) volatiles after the signal transduction (Strotmann
and Breer, 2011). Our analysis plots in Figure 4 support
such dual functionality. MUPs and OBPs have different pI
and therefore may be active under different pH. We have
already suggested that this difference in pI may imply that
MUPs and OBPs have differential activities during cyclic (de-)
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FIGURE 4 | Bioinformatic analysis of hydropathy properties of MUPs and OBPs. Group-A MUPs, and OBPs have non-overlapping hydropathy properties.

Interestingly, excretory group-B MUPs adopted a position between more hydropathic group-A MUPs (i.e., with more hydrophobic beta barrel) and less hydrophobic

OBPs (A). Furthermore, MUPs have lower pI than OBPs (B).

acidification of nasal mucosa during ventilation (Stopková et al.,
2014) similarly as in the study by Cichy et al. (2015) who
provided evidence that extracellular pH regulates excitability of
vomeronasal sensory neurons. Also, the acidification balance
is maintained by Carbonic anhydrase IV (CA IV) which is
secreted by salivary, lacrimal, and nasal glands (Kimoto et al.,
2004).

The importance of MUPs and OBPs for general olfaction has
previously been reported by Sharrow et al. (2002) who analyzed
binding properties of nasal Mup4, and by Utsumi et al. (1999)
who provided evidence that the expression of nasal Mup (i.e.,
most likely Mup5) and Obp genes is high. Furthermore, many
species do not have multiple copies of Mup genes and thus
MUP products—a major component of chemical signaling and
olfaction in mice and rats—but express functional OBPs. This
has been shown in many mammals (Singer and Macrides, 1990;
Stopkova et al., 2010; Hagemeyer et al., 2011; Nagnan-LeMeillour
et al., 2014) and it is our hope that potentially diverse functions—
i.e., including the detoxification roles (Stopková et al., 2009; Kwak
et al., 2011, 2016)—of these proteins will be further resolved.

CONCLUSIONS

We have studied the expression of known and newly described
mRNAs coding for nasal, lacrimal, salivary and urinary lipocalins
that are characteristic for their unusually high quantities and
the capacity to bind pheromones in their beta barrel. Many of
these proteins were individually reported in previous studies
by various authors. However, we have provided evidence that
some proteins found in saliva are produced by multiple tissues
with the normalized expression levels being as high or higher as
those described for the urinary group-B Mup genes in the liver.
For the first time, we have described a novel cluster of odorant
binding proteins in feral mice and shown that some of them
are differentially expressed in tissues or are sexually dimorphic.

Some lipocalins (OBP, MUP, LCN) are co-expressed probably
to widen the spectrum of potential ligands that these proteins
may sequester and transport. Such expression pattern is almost
identical in the two studied subspecies of the house mouse with
the exception of VNO, which shows higher lipocalin expression
inM. m. musculusmales. Moreover, further study with sufficient
sample sizes could further reveal the level of variation between
different individuals and species.
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