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The stability of the surrounding rock in the goaf of the mine is poor, which can
easily cause collapse disasters in the mining area. This paper used orthogonal
experiments and multi factor optimization methods to study the optimal mixing
ratio of similar materials for limestone surrounding rock in a goaf of a certain
iron mine in Yunnan, and introduced a new material combination (quartz,
cement, gypsum, barite, and glycerol), and utilized orthogonal experiments
alongsidemachine learning techniques for predictive analysis. Systematic testing
of similar material samples with 25 different mixing ratios yielded extensive data
on various physical and mechanical parameters, which were then utilized to
reveal the complex interactions among various influencing factors.The cement-
gypsum-ratio significantly influenced the uniaxial compressive strength and
elasticmodulus, while the barite content influenced the density, and the glycerol
content impacted the internal friction angle. Furthermore, this study proposed
a novel machine learning-based prediction model that utilizes a PSO-BP neural
network to regress and predict experimental data. Compared with traditional
BP neural network, the results show that the PSO-BP model has a higher
prediction correlation coefficient R2 than the traditional BP model, while the
root mean square error (RMSE) and mean absolute error (MAE) are lower than
the traditional BP model, indicating that the PSO-BP model has better and
more stable prediction performance.So PSO-BP neural network model can
more accurately predict the optimal mixing ratio for similar materials. The
effectiveness of this mixing ratio was verified through practical engineering case
studies. This study provides new theoretical foundations and technical support
for the stability analysis of surrounding rock in goafs, demonstrating significant
engineering application value.
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1 Introduction

Thesimilaritymodel tests involves constructing laboratory-scale
physical models based on similarity theory to replicate natural or
engineering phenomena. This method is generally used to simulate
the stress and deformation of rock and soil masses, as well as
to evaluate and predict their properties and behaviors in actual
engineering applications (Zhang and Li, 2005). There have been
numerous research achievements in indoor rock mechanics tests
both domestically and internationally (Li K. S. et al., 2023; Cao et al.,
2024; Gao et al., 2023; Li X. et al., 2023; Liu et al., 2023; Liu et al.,
2024). They have been widely applied in the research of excavation-
induced deformation and failure of surrounding rocks in goafs, as
well as the associated disasters (Mandal and Singh, 2009; Fraldi and
Guarracino, 2009).

In recent years, the study of similar materials has become
a prominent topic. Numerous scholars have conducted extensive
research on the development and application of similar materials
(Sun, 2020; Wang, 2022; Zhang et al., 2020; Zhang C. L. et al.,
2021; Lü et al., 2021). Li et al. (2021) used the Yudushan Tunnel,
a major transportation support project for the 2022 Beijing Winter
Olympics, as a case study to address the construction challenges
posed by tunneling beneath the goaf using the point column
method (The point column method refers to the establishment of
point columns in the mining area during underground mining
to maintain the stability of the roof and surrounding rock. These
pillars not only ensure the safety of the mining site, but also
play an important role in improving the ore recovery rate of the
mining site). They independently developed a similarity model
test system and then combined it with a discrete-continuous
coupling analysis to investigate the surrounding rock fracturing.
Their research also explored the mechanical mechanism underlying
the evolution of surrounding rock failure. Zhan et al. (Zhan et al.,
2023) selected river sand, barite, gypsum, and cement of different
strength grades as raw materials to prepare ultra-high strength
similar materials (with strengths exceeding 10 MPa) suitable for
large-scale similarity model tests. A total of 25 mixing ratios were
designed using four orthogonal experimental factors: aggregate-to-
binder ratio, cement-to-gypsum ratio, barite content, and cement
strength grade. Numerous similar material samples were prepared
according to experimental requirements, and corresponding rock
mechanics tests were conducted to obtain the basic physical
and mechanical parameters of similar materials with different
proportions. Liu et al. (2017) conducted a similar model test to
analyze the deformation and failure patterns of surrounding rock
in the goaf of steeply inclined ore bodies. Their findings revealed
that, as the experiment progressed, the displacement difference
between the surrounding rocks on either sides of the goaf gradually
increased, disrupting the stress balance. The temporal variation
of displacement could be categorized into three stages: dramatic
increase, gradual increase, and another dramatic increase, with
the gradual increase stage having the longest duration. The upper
surrounding rock subsided towards the goaf, while the lower
surrounding rock experienced vertical downward subsidence. The
displacement exhibited a decreasing trend in horizontal layers from
top to bottom. These results provide valuable insights for effective
mining of steeply inclined hard rock ore bodies. Xu et al. (2022)
proposed a new type of similar material, which uses gypsum as the

bonding agent, engine oil as the regulating material, and fine iron
powder, putty powder, and quartz sand as aggregates.

Neural network regression prediction has emerged as an
important prediction method. For example, to address the
environmental concerns, Yu et al. (2021) employed a combination
of on-site testing, drilling observation, numerical simulation to
analyze damage zone and mining-induced pressure in surrounding
rock across different sections of the goaf at Luling Coal Mine.
Hu et al. (2018) analyzed the factors influencing the stability of
stratified ore bodies using the BP neural network and systematically
reviewed typical case studies on the stability assessment of goafs.
Additionally, they identified three key factors affecting the stability
of goafs, including rock compressive strength, exposed mining
area, and mining span, by referencing several mining design
examples. Yang and Zeng (2022) developed a GA-BP neural
network model to predict surface subsidence in goaf areas. They
independently tested the BP and GA-BP neural network models
using MATLAB software to validate the predictive performance
of the GA-BP model. Pei et al. (2021) proposed an improved
GA-BP model to evaluate the risk levels for complex goafs. This
model employed a principal component analysis to reduce the nine
evaluation indicators into four key components, which serve as
inputs for the BP neural network. The evaluation results included
risk levels and their associated probabilities. Genetic algorithms
optimized the network parameters, and the improved GA-BPmodel
yielded results aligned with actual conditions. Based on the key
indicators, including mining duration, settlement trend, depth-
to-thickness ratio, structural complexity, overlying rock strength,
relative position, and “activation” factors, Ding and Wang (2009)
categorized the goaf stability into four levels. They also applied a
BP neural network model to predict and evaluate the stability of
goafs.The accurate results offer significant guidance for engineering
feasibility assessments and project planning. Fernandez et al. (2023)
used discontinuity index and machine learning techniques to study
the identification of rock mass structure in drilling monitoring
technology for underground mining. Shi et al. (2015) classified
microseismic waves using CNN’s transfer learning model.

Although previous studies have achieved certain results
in the proportioning of similar materials, there are still some
shortcomings: 1) Limitations of proportioning methods: Previous
studies relied more on empirical proportioning or simple
experiments, lacking systematic experimental design and multi
factor optimization, resulting in inaccurate and unreliable
proportioning results. 2) Single material selection: Many studies
have limited the selection of similar materials, failing to fully utilize
the advantages of new material combinations and limiting the
improvement of similar material properties. 3) Lack of predictive
models: Previous studies lacked machine learning based predictive
models, which could not efficiently process and analyze large
amounts of experimental data, limiting the efficiency and accuracy
of optimizing similar material ratios. The above shortcomings have
had a significant impact on current research, specifically reflected
in the following aspects: 1) Insufficient experimental design leads to
inaccurate results: due to the lack of systematic experimental design,
previous research on proportioning results often had significant
errors and uncertainties, making it difficult to meet the needs
of practical engineering. 2) Material performance limitations: A
single material selection restricts the performance improvement of
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similar materials, making it impossible to accurately simulate the
mechanical behavior of real rock masses under certain specific
working conditions. 3) Limited predictive ability: The lack of
machine learning based predictive models makes it difficult for
researchers to quickly and accurately find the optimal mix ratio
when faced with a large amount of experimental data, which affects
research efficiency and progress.

This paper used orthogonal experiments and multi factor
optimization methods to study the optimal mixing ratio of similar
materials for limestone surrounding rock in a goaf of a certain
iron mine in Yunnan, and introduced a new material combination
(quartz, cement, gypsum, barite, and glycerol), and utilized
orthogonal experiments alongside machine learning techniques for
predictive analysis. Systematic testing of similar material samples
with 25 different mixing ratios yielded extensive data on various
physical and mechanical parameters, which were then utilized to
reveal the complex interactions among various influencing factors.

2 Similar simulation test

2.1 Similarity relationship

The design of similar materials for surrounding rock in goafs
requires deriving similarity ratios based on similarity theory. The
prototype and model must adhere to similarity in size, physical
and mechanical parameters, and loads. By determining similarity
constants, prototype properties can be deduced from the test results,
which allows for the establishment of the similarity relationships for
surrounding rock in goafs.

Based on the three similarity theorems, this study determined
similarity constants by comprehensively considering the goaf
dimensions, physical andmechanical parameters, and applied loads.
Geometric similarity is defined as the ratio of prototype size Lp to
model size Lm, which is defined as Equation 1:

SL =
LP
Lm

(1)

This study adopted a geometric similarity ratio of SL = 100.
The similarity ratios between prototype and model materials
were derived using the dimensional analysis and Buckingham
π theorem. Key physical quantities considered include density,
uniaxial compressive strength, elastic modulus, Poisson’s ratio,
cohesion, and internal friction angle. Notably, the compressive
strength similarity constant equals the product of the density and
similarity constants. The specific similarity constants for various
physical quantities are provided in Table 1.

2.2 Selection of similar materials

The selection of similar materials is guided by the need for
the model to closely replicate the mechanical properties of the
simulated surrounding rock while ensuring stable mechanical
behavior. Additionally, these materials should be readily available,
efficient to mold, simple to produce, cost-effective, safe, and
environmentally friendly. Identifying suitable similar materials is

critical for experimental success. Quartz is an abundant and cost-
effective mineral characterized by its high hardness, making it
suitable for large-scale modeling applications. Barite, primarily
composed of barium sulfate, possesses a significantly higher density
than quartz, enabling precise adjustments to the density of the
similar materials by varying the barite content. Its chemical stability
ensures that it does not react adversely with other materials, thereby
maintaining the stability of the similar materials over time. Cement,
a widely used binding agent, effectively bonds with aggregates to
form a composite material with adequate strength.The cement ratio
can be adjusted to modify the uniaxial compressive strength and
elastic modulus of the similar materials, aligning their properties
with those of actual rock formations. Although gypsum exhibits
lower strength compared to cement, it sets more rapidly and
possesses a degree of plasticity during the setting phase, which
enhances the simulation of surrounding rock deformation. By
adjusting the proportions of cement and gypsum, the mechanical
properties of the similar materials can be optimized to meet the
specific requirements of various experimental scenarios. Glycerin,
utilized as a liquid additive, significantly influences the internal
friction angle of the similarmaterials. Its incorporation improves the
flowability of the mixture, facilitating a more uniform blend during
mixing and shaping while minimizing the formation of bubbles
and voids. Moreover, glycerin slows the setting process of cement
and gypsum, facilitating handling and forming while guaranteeing
the quality of the samples. Therefore, this study selected quartz
(40 mesh) and barite (200 mesh) as aggregates, Portland cement
(grade 32.5) and gypsum (1500 mesh) as binding materials, and
water and glycerin as modifiers. The main characteristics and
parameters of the selected similar materials are detailed in Table 2.

3 Orthogonal experimental design

Orthogonal experimental design is a statistical approach that
aids researchers in identifying and selecting factors affecting
experimental results.This approach enables researchers tomaximize
information acquisition by carefully selecting appropriate levels for
experimental factors while conducting a limited number of trials.
In orthogonal experimental design, factors are typically categorized
into various levels, and experiments are executed according to
the predefined orthogonal table. This design allows researchers to
identify the primary influencing factors and the interactions among
them. The benefits of orthogonal design include a reduction in the
number of trials, as well as improvements in experimental efficiency
and accuracy.

This article proposes the following orthogonal design scheme
based on references (Lü et al., 2021; Zhan et al., 2023; Xu et al., 2022)
and combined with its own practical situation.

This research examined the changes in the strength of similar
materials by controlling the aggregate-to-binder and cement-to-
gypsum ratios. The density of similar materials can be modified
according to the density differences between quartz and baryte.
The addition of glycerol can change the viscosity and density of
the experimental solution, which in turn influences the material’s
elastic modulus. In solution containing glycerol, the interaction
between the particles or test materials and glycerol may affect the
measured internal friction angle (Dong et al., 2023). Consequently,
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TABLE 1 Similarity relationship and constants for various physical quantities of materials.

Physical quantity Similar relationship Similarity constant

Geometric dimensions (L) SL 100

Density (ρ) Sρ 1.21

Uniaxial compressive strength (σ) Sσ = SLSρ 121

Elastic modulus (E) SE = SLSρ 121

Poisson’s ratio (μ) Sμ 1

Cohesion (c) SC = SLSρ 121

Internal friction angle (φ) Sf 1

TABLE 2 Main characteristics and parameters of the selected similar
materials.

Materials Main
characteristics

Main components

Quartz White SiO2 mass fraction: 99.6%

Barite Gray and white alternating BaSO4 mass fraction: >95%

portland cement Grey black powder Silicon dioxide, slag, etc

Gypsum white Calcium sulfate

Glycerol Clear, viscous liquid,
odorless, volatile

C3H4O2 content: >99%

this study employed four factors in the orthogonal design: aggregate-
to-binder ratio (mass of aggregate/mass of binder), cement-to-
gypsum ratio (mass of cement/mass of gypsum), barite content
(mass of barite/mass of aggregate), and glycerol content (mass
of glycerol/total mass of mixture), with each factor having five
levels. The orthogonal design levels for the similar materials are
presented in Table 3.The experiment followed a six-factor, five-level
orthogonal design scheme, L25 (56). The mixing ratios for similar
materials are detailed in Table 4.

Furthermore, variations in water content also affect material
strength. In general, higher water content leads to lower material
strength. Experience suggests that setting the water mass to 1/7 of
thematerial mass allows for easier drying and reduces the likelihood
of residual creep deformation in the samples.

4 Experimental procedure

4.1 Sample preparation

Samples used for the experiment were prepared based on the
mixing ratios listed in Table 4. Molds of various sizes were prepared
for sample production. To replicate the mechanical properties of
surrounding rock in goafs, 25 sets of mix-ratio experiments were

designed by varying the proportions of the test materials, and
each set was analyzed in sequence. For each mixing ratio, three
cylindrical samples with a diameter of 50 mm and a height of
100 mm, as well as three cubic samples with dimensions of 50 mm
× 50 mm × 50 mm (or cylindrical samples with a diameter of
50 mm and a height of 50 mm) were prepared. These samples
underwent uniaxial compression and shear tests. Figure 1 outlines
the sample preparation process, while the completed samples are
presented in Figure 2.

This experiment usedmanual tamping to prepare the specimens.
The procedures and precautions are as follows:

(1) Record the temperature and humidity of the experimental
environment.

(2) Calculate the quantities of materials by mass according to the
mixing ratios specified in Tables 3, 4. The materials for three
specimens should be weighed simultaneously, ensuring that
the mixture for each batch originates from the same mixing
container. The weighing accuracy for quartz and barite should
be ±0.5%, while that for cement, gypsum, water and glycerol
should be ±0.2%.

(3) Add all weighed raw materials to the mixing container.
The specific sequence for feeding and mixing is as follows:
aggregate → binder → dry mixing → glycerin and water → wet
mixing. Both dry and wet mixing should ensure thorough
blending of all materials, with an ideal mixing time of at least
2 min to achieve uniformity.

(4) Apply lubricant to the inner wall of the mold to facilitate easier
demolding.

(5) Position the mold on a flat and stable working platform to
ensure that its base is flat and secure.

(6) Slowly add the prepared uniform wet material into the mold
and use a tamping rod to tamp it. This process ensures the
even distribution of materials and the expulsion of air, thereby
preventing cavities or voids. It is essential to avoid excessive
vibration to prevent the formation of voids and delamination
within the specimen. Tamping should be conducted uniformly
from the edge toward the center in a spiral motion. When
tamping the bottom layer of concrete, the tamping rod should
reach the bottom of the mold. For the upper layer, the rod
should penetrate the upper layer and be inserted into the lower
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TABLE 3 Orthogonal design level.

Level Aggregate-to-binder ratio Cement-to-gypsum ratio Barite content (%) Glycerol content (%)

1 1:1 1:1 0 0

2 2:1 2:1 10 2

3 3:1 3:1 20 4

4 4:1 4:1 30 6

5 5:1 5:1 40 8

layer by 20 mm–30 mm.Throughout the tamping process, the
tamping rod must remain vertical. After tamping, a trowel
should be used to insert and withdraw along the inner wall of
the mold several times. Once the tamping is completed, gently
tap around themold using a rubber hammer or woodenmallet
until all voids created by the tamping rod disappear. Finally,
use a trowel to level the top surface of the mold. The height
difference between the specimen surface and the mold edge
should not exceed 0.5 mm.

(7) After 14 h, demold the specimens that have set. Label the
demolded specimen and initiate proper curing by placing them
in a controlled indoor environment at a temperature of 20°C
± 5°C and a relative humidity greater than 50% for 28 days.
During this period, avoid any vibrations and impacts. The
surface of the specimens can be lightly sprayed with water to
prevent premature drying.

(8) Conduct necessary quality checks on the demolded specimens,
including assessments of mass, appearance, dimensions, and
strength. Additionally, calculate the density based on the mass
and dimensions of the specimens.

4.2 Uniaxial compression and shear tests of
similar material samples

4.2.1 Uniaxial compression test
The uniaxial compression test (Figure 3) was conducted using

a HCT206E microcomputer-controlled oil-electric hybrid pressure
testing machine to measure the maximum load that each sample
could endure at the point of failure. The compressive strength of the
sample was calculated using Equation 2.

R =
Pmax

0.25πd2
(2)

where R is the compressive strength of the sample, MPa; Pmax is
the maximum load at failure, N; D is the diameter of the circular
sample, mm.

The deformation and compression tests were conducted
simultaneously. By attaching an extensometer to the testing
machine, the compressive strength, elastic modulus, and Poisson’s
ratio of the samples were measured. In the deformation test,
axial stress was applied to the sample, while the extensometer
captured the transverse and longitudinal strains.The elasticmodulus

was calculated using Equation 3, while the Poisson’s ratio was
determined using Equation 4.

E =
σc
εy

(3)

μ =
εx
εy

(4)

where E is the elastic modulus, MPa; μ is Poisson’s ratio; σc is
the uniaxial compressive strength, MPa; εx is the transverse strain
corresponding to σc; εy is the axial strain corresponding to σc.

4.2.2 Shear test
The shear test, also known as the variable angle shear test

(Figure 4) as employed to determine the cohesion c and internal
friction angle φ of the sample. The sample was positioned at the
center of the shear mold. The upper and lower halves of the fixture
were aligned vertically to ensure that the centerlines of the mold
and the specimen were aligned. Subsequently, the assembly was
placed into testing machine, while ensuring that the top and bottom
surfaces of the shear mold were maintained horizontal. During the
shear test, normal and shear stresses were applied to the sample.
The shear stress was parallel to the shear direction, while the
normal stress was perpendicular to the shear direction. Both stresses
were derived from the maximum load Pmax applied by the testing
machine to the shear mold. These stresses can be calculated using
Equations 5, 6.

σα =
Pmax

F
cos α (5)

τα =
Pmax

F
sin α (6)

where Pmax is the failure load, N; F is the cross-sectional area of the
sample, mm2; α is the angle of the shear mold, °; σα and τα are the
normal and shear stresses, respectively, MPa.

The angles of the mold were set at 45°, 50°, and 55°, respectively.
The data obtained were analyzed using a linear regression formula,
as detailed in Equation 7, and a strength curve was generated. In
this curve, the intercept corresponds to the cohesion, and the slope
reflects the internal friction angle.

τ = σ tan φ+ c (7)

where φ is the internal friction angle, °; c is the cohesion, MPa.
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TABLE 4 Mixing ratio design.

Test number Aggregate-to-binder
ratio

Cement-to-gypsum ratio Barite content (%) Glycerol content (%)

1 1:1 1:1 0 0

2 1:1 2:1 10 2

3 1:1 3:1 20 4

4 1:1 4:1 30 6

5 1:1 5:1 40 8

6 2:1 1:1 10 4

7 2:1 2:1 20 6

8 2:1 3:1 30 8

9 2:1 4:1 40 0

10 2:1 5:1 0 2

11 3:1 1:1 20 8

12 3:1 2:1 30 0

13 3:1 3:1 40 2

14 3:1 4:1 0 4

15 3:1 5:1 10 6

16 4:1 1:1 30 2

17 4:1 2:1 40 4

18 4:1 3:1 0 6

19 4:1 4:1 10 8

20 4:1 5:1 20 0

21 5:1 1:1 40 6

22 5:1 2:1 0 8

23 5:1 3:1 10 0

24 5:1 4:1 20 2

25 5:1 5:1 30 4

5 Results and analysis

The average values of physical and mechanical parameters,
including density, uniaxial compressive strength, elastic modulus,
Poisson’s ratio, cohesion, and internal friction angle, were obtained
for 25 sets of material samples with different mixing ratios.
These values were determined through mass measurement, size
measurement, uniaxial compression tests, and variable angle shear
tests, as summarized in Table 5.

The data presented in Table 5 confirmed that the density, uniaxial
compressive strength, elastic modulus, Poisson’s ratio, cohesion, and
internal friction angle for similar materials were 1.597–2.227 g/cm3,
0.481–5.77 MPa, 2.33–1575.73 MPa, 0.09–0.86, 0.1422–3.147 MPa,
and 19.2°–40.6°, respectively; while their average values were
1.984 g/cm3, 1.771 MPa, 454.74 MPa, 0.39, 0.842 MPa, and 29.5°,
respectively.Thematerialexhibitedrelativelyhighdensitybutgenerally
low compressive strength, indicating moderate overall strength.
The elastic modulus exhibited significant variability, suggesting
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FIGURE 1
Sample production process.

FIGURE 2
Prepared samples.

FIGURE 3
Uniaxial compression test procedure. (a) Debugging the equipment. (b) Loading the sample. (c) Applying load. (d) Compression completed.
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FIGURE 4
Variable angle shear test procedure (a). Angle mold fixture (b). Loading the sample (c). Shearing completed.

considerable differences in material stiffness. The Poisson’s ratio was
relatively high, indicating some compressibility of the material. The
cohesion was low, reflecting moderate internal bonding capacity of
the material, while the internal friction angle was relatively high,
demonstrating the material has strong shear resistance.

6 Data analysis

Table 5 presents a total of 25 data sets, each comprising six
distinct features. The section analyzed the maximum, minimum,
mean, and median values of each feature to assess whether the
data exhibited skewed distribution. Given that these six features
have different units and meanings, each feature was examined
individually. The findings are detailed in Table 6, while the feature
distribution map is illustrated in Figure 5.

As depicted in Table 6 and Figures 5a, f, the maximum,
minimum, mean, median, and mode values for the density were
2.227, 1.597, 1.972, 1.995, and 1.995, respectively. Similarly, for
the internal friction angle, these values were 40.6, 19.2, 30.82,
30.8, and 30.8, respectively. This indicated that the distributions of
density and internal friction angle are approximately normal. To
further illustrate this, a box plot was constructed, as presented in
Figure 6. Table 7 and Figure 5b demonstrated that the minimum,
maximum, mean, and median values for the uniaxial compressive
strengthwere 0.481, 5.77, 1.83, and 1.29, respectively. Its distribution
curve showed a distinct peak between 1 and 3, indicating a
concentration of data within this range. The data for smaller and
larger values in this region gradually decreased, showing a right-
skewed distribution. As demonstrated in Table 6 and Figure 5c, the
minimum, maximum, average, and median values for the elastic
modulus were 72.33, 1575.73, 406.95, and 168.97, respectively. Its
distribution curve exhibited a clear peak between 500 and 750,
suggesting data concentration in this range. The data for smaller
and larger values in this region gradually decreased, showing a
right skewed distribution. As revealed in Table 6 and Figure 5d, the
minimum, maximum, average, and median values for the Poisson’s
ratio were 0.09, 0.86, 0.37, and 0.28, respectively. Its distribution

curve showed a notable peak between 500 and 750, indicating data
concentration in this range. The data for smaller and larger values
in this region gradually decreased, demonstrating a right-skewed
distribution. As illustrated in Table 6; Figure 5e, the minimum,
maximum, average, and median values for the cohesion were 0.142,
3.147, 0.666, and 0.338, respectively. Its distribution curve presented
a clear peak near 1, indicating that the data was concentrated within
this range. The data for smaller and larger values in this region
gradually decreased, showing a right-skewed distribution.

The density exhibited a normal distribution because barite has
a density significantly greater than that of other materials. As
the barite content increased, the density of similar materials also
increased. However, the change in barite content was non-linear,
it demonstrated a non-linear relationship with density. Specifically,
when the barite content was low, the increase in density was
more noticeable, but as the barite content continued to rise, the
density increase tended to stabilize. This non-linear relationship
indicated that the change in density were influenced by multiple
factors, resulting in a relatively uniform normal distribution within
a specific range.

The internal friction angle, which was significantly influenced
by glycerol content, also followed a normal distribution. As glycerol
content increased, the internal friction angle initially decreased, then
increased, and finally decreased again. This observation occurred
because, when the glycerol content was low, its dominant lubricating
effect significantly reduced particle friction, thus leading to a
significant decrease in the internal friction angle. As the glycerol
content continued to increase, the lubricating layer gradually
thickened, shifting the particle contact mode from point contact
to surface contact, which increased friction. Simultaneously, the
viscous effect of glycerol hindered the relative sliding between
particles, leading to an increase in the internal friction angle.
However, when the glycerol content reached its maximum, the
relative sliding between particles became easier. Despite the presence
of viscosity, excessive glycerol caused looser particle contact,
resulting in a reduction in friction and a subsequent decrease in the
internal friction angle. The effect of glycerol on the internal friction
angle was non-linear. This nonlinearity diversified the changes in
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TABLE 5 Mechanical parameters of similar material samples.

Number Density
(g/cm3)

Compressive
strength (MPa)

Elastic
modulus (MPa)

Poisson’s ratio Cohesion
(MPa)

Internal
friction angle

(°)

1 1.993 5.77 571.21 0.6 3.147 34.5

2 1.995 4.66 1456.85 0.8 2.6 22.6

3 1.999 2.297 676.33 0.3 0.4281 31.6

4 2.074 1.637 378.12 0.86 0.832 19.4

5 2.11 1.744 193.44 0.09 0.338 36.6

6 1.756 5.606 1575.73 0.18 2.4063 19.2

7 1.847 2.335 244.36 0.27 1.0247 29

8 2.016 1.63 602.95 0.3 0.4453 28.9

9 2.149 2.037 842.49 0.58 0.4866 22.8

10 2.227 1.295 119.35 0.25 0.663 25.7

11 1.693 1.942 1571.17 0.68 0.874 29.4

12 1.818 1.077 221.67 0.67 0.5419 31.8

13 1.995 0.602 128.54 0.24 0.244 22.2

14 2.148 1.216 112.25 0.2 0.1746 32.6

15 2.22 1.825 105.12 0.24 0.298 39.5

16 1.654 0.793 168.97 0.14 0.3574 28.3

17 1.786 1.07 171.38 0.66 0.2479 37.2

18 1.924 0.893 158.63 0.5 0.1863 39.7

19 2.049 0.807 119.02 0.55 0.1422 26.2

20 2.189 0.932 155.23 0.14 0.2601 21.8

21 1.597 2.721 146.32 0.09 0.2628 30.8

22 1.785 1.056 151.28 0.12 0.2203 33.8

23 1.957 0.521 121.96 0.28 0.171 33.9

24 2.14 0.481 109.14 0.36 0.1659 38

25 2.192 0.849 72.33 0.14 0.1451 40.6

the internal friction angle, which contributed to its distribution
approaching a normal distribution.

The compressive strength, elastic modulus, and cohesion
all exhibited a right-skewed distribution, which was primarily
influenced by the cement-to-gypsum ratio. As the primary bonding
material, cement produced hydration products (e.g., calcium
hydroxide, calcium silicate, etc.) that strengthen the material
by forming strong bonds between aggregates. The hydration
reaction of cement is a complex chemical process. As the cement

content increased, the quantity of hydration products also rose,
thereby improving the compressive strength, elastic modulus, and
cohesion of the material. Experimental results demonstrated a
non-linear relationship between the cement-to-gypsum ratio and
these properties. At a cement-to-gypsum ratio of around 1:1,
these properties peaked due to the most efficient hydration and
highest material density. However, at higher cement-to-gypsum
ratios (e.g., 3:1 or above), stress concentration may occur inside the
material. This may lead to the formation of microcracks, ultimately
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TABLE 6 Statistical characteristics of data.

Density Compressive
strength

Elastic modulus Poisson’s ratio Cohesion Internal friction
angle

Average 1.972 1.831 406.95 0.37 0.666 30.8

Minimum value 1.597 0.481 72.33 0.09 0.142 19.2

25th percentile 1.802 0.871 120.65 0.16 0.203 24.2

Median 1.995 1.295 168.97 0.28 0.338 30.8

75th percentile 2.144 2.167 587.08 0.59 0.748 35.5

Maximum value 2.227 5.57 1575.73 0.86 3.147 40.6

weakening the overall strength of thematerial. In addition, excessive
cement may also increase the porosity of the material, reducing
its compactness. Consequently, the compressive strength, elastic
modulus, and cohesion decreased, resulting in some samples
exhibiting values significantly lower than their peak levels, thereby
contributing to the right-skewed distribution.

Similarly, Poisson’s ratio also demonstrated a right-skewed
distribution, mainly influenced by aggregate-to-binder ratio. A
higher aggregate-to-binder ratio implied a greater involvement of
aggregates, which enhances the contact area between particles.
This increase in contact area made the material more prone to
lateral expansion or contraction under stress, thereby resulting in a
higher Poisson’s ratio. A higher aggregate-to-binder ratio weakened
the binder’s effectiveness, leading to a reduction in the overall
stiffness of the material and a corresponding increase in plasticity.
Plastic materials typically exhibit greater deformation under stress,
which manifests as larger transverse strains. Consequently, the
Poisson’s ratio was elevated. Conversely, lower aggregate-to-binder
ratio resulted in stiffer materials with lower Poisson’s ratio. This
occurred because the binder effectively consolidated the aggregates,
limiting lateral deformation. As the aggregate-to-binder ratio
increased, the Poisson’s ratio rose gradually. Particularly at high
aggregate-to-binder ratios, material plasticity enhanced, leading to
a significant increase in the Poisson’s ratio and a right-skewed
distribution.

7 Construction of PSO-BP regression
prediction model

Neural network algorithms are widely used in engineering. Shi-
fan et al. (Qiao et al., 2021) studied the prediction of excavation
settlement of foundation pits under different influence states using
the GWO-ELM model The application of BP neural network based
on water cycle algorithm by Zhang et al. (2021b) in landslide
prediction has achieved good prediction results.

The Particle Swarm Optimization (PSO) algorithm is
grounded in the concept of swarm intelligence, which simplifies
complex mathematical models into a series of particle swarm
models that can be effectively simulated. These models can
simulate different communities to effectively address complex

mathematical problems (Hu et al., 2023). Particles, characterized
by their unique perspectives, insights, and collaborative abilities,
continually adjust their trajectories and velocities while navigating
the boundaries of the analytical universe. The core principle of
the PSO algorithm involves iteratively updating the positions and
velocities of the particles, guiding the swarm towards the optimal
solution. The main components of this algorithm include particles’
position, velocity, and fitness function. The position represents a
possible solution, and the velocity determines the direction and
speed of particle movement in the solution space. The fitness
function is used to evaluate the quality of each particle’s solution.
Through iterative updates, the particle swarm gradually converges
to the optimal solution.

Assuming a population ofN particles in a D-dimensional space,
the dimension D is represented by Equation 8:

N = I× p+ p× q+ p+ q (8)

where I represents the number of nodes in the input layer of
the neural network, p represents the number of nodes in the
hidden layer, and q represents the number of nodes in the output
layer.

Upon initialization, the algorithm automatically generates a
set of n-dimensional particles, whose positions can be abstractly
represented as nodes in an n-dimensional search space or as
solutions in an n-dimensional optimization space. The current
position vector of a particle is denoted as X j:

Xj = Xj1,Xj2, ...,Xjn

The current velocity of the jth particle, represented as
V j, is a dynamic variable whose value changes during the
optimization process:

Vj = Vj1,Vj2, ...,Vjn

Before each iteration, the position vectors of the particles need
to be input into a pre-defined fitness function to compute their
respective fitness values. By comparing these values, the optimal
fitness value can be identified, which enables the determination of
the optimal position Pj and global position Gj for each generation
of the PSO algorithm.This process ensures the effective operation of
the PSO algorithm.

Pj = Pj1,Pj2, ...,Pjn
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FIGURE 5
Distribution histogram of each factor. (a) Density. (b) Compressive strength. (c) Elastic modulus. (d) Poisson’s ratio. (e) Cohesion. (f) Internal
friction angle.

Gj = Gj1,Gj2, ...,Gjn

The PSO algorithm iteratively updates particle positions using
Pj, Gj, X j, and V j for optimizing the objective function, ultimately
achieving the optimal solution. Its evolutionary equation can be
represented by Equations 9, 10:

Vj(k = 1) = ω ·Vj(k) + c1 · r1 · [Pj(k) −Xj(k)] + c2 · r2[Gj(k) −Xj(k)]
(9)

Xj(k+ 1) = Xj(k) +Vj(k+ 1) (10)

where ω represents the inertia weight, c1 and c2 are parameters for
generating randomnumbers;R1 and r2 are two independent random

numbers within the range [0,1]. The kth and (k+1)-th generations
replace the jth particle. To avoid ineffective searches by particles, the
maximum running rate vmax is typically set within the range of [-
vmax, vmax].

The efficiency of this algorithm depends on the inertia weight
ω. A higher value enhances the overall search capability, whereas
a lower value confines the search to specific regions. In addition, a
higher ω results in fewer iterations, as described by Equation 11:

ω = ωmax − (ωmax −ωmin) · k/kmax (11)

where k represents the current number of iterations, and kmax
denotes themaximumnumber of iterations;ωmax andωmin represent
the maximum and minimum values of ω, respectively.
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FIGURE 6
Box plot of density and internal friction angle (a). Density (b). Internal friction angle.

TABLE 7 Comparison of prediction results between the two models.

Actual value Predicted value

PSO-BP model BP model

Aggregate-to-binder ratio

3 3.000 3.0759

4 3.9996 3.8390

5 4.9996 4.9355

1 0.9998 1.0245

2 2.0001 2.2252

Cement-to-gypsum ratio

4 3.999 4.734

5 4.999 4.962

1 1.000 0.993

2 2.000 2.007

3 2.999 3.004

Barite content

0.3 0.302 0.336

0.4 0.399 0.378

0 0.000 0.001

0.1 0.099 0.095

0.2 0.200 0.195

Glycerol content

0.06 0.060 0.063

0.08 0.079 0.084

0 0.000 0.005

0.02 0.020 0.025

0.04 0.040 0.044
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7.1 Determination of sample data and grid
parameters

The data utilized for dataset construction were sourced from the
mechanical parameters listed in Table 5. These parameters include
density, uniaxial compressive strength, elastic modulus, Poisson’s
ratio, cohesion, and internal friction angle, which were selected as
inputs. The outputs were defined as the aggregate-to-binder ratio,
cement-to-gypsumratio, barite content, and glycerol content. A total
of 25 samples were chosen, with the first 20 samples designated
as training samples and the remaining 5 samples used as testing
samples. Given the small sample size, a 5-fold cross-validation
approach was employed to enhance the accuracy and reliability of
the prediction results. At the same time, bootstrap method is used
to extend the data to improve the reliability of the data and the
generalization ability of the model.

The determination of the number of hidden layer neurons
in the neural network, although lacking a universally accepted
standard, can be approached by combining empirical insights and
computational methods. Firstly, the initial number range of hidden
layer neurons was empirically. Subsequently, the golden section
method was applied to calculate themost optimal number of hidden
layer neurons (Chen et al., 2023). The specific steps of the “golden
ratio method” are to calculate within the approximate range [a,
b] of the determined hidden layer nodes. The error results of two
experimental points x1 = 0.618 × (b-a) + a and x2 = 0.382 × (b-a) +
a. According to the principle of rounding off “inferior” and taking
“excellent,” if the error of x1 is small, then [x2, b] is retained; If the
error of x2 is small, retain [a, x1]; if the errors of both are the same,
retain [x2, x1]. Repeat sampling within the reserved interval, discard
“inferior” and choose “superior” until the result is satisfactory. The
calculation formulas for a and b are as follows, see Equation 12:

a =
ni
n0
≤ nh ≤ (ni + n0) + 10 = b (12)

In the formula, ni, nh, and n0 represent the number of nodes in
the input layer, hidden layer, and output layer. As a result, the final
number of hidden layer neurons was determined to be 22.

The neural network structure adopted in this study is a (6-22-
4) model. This model consists of a single hidden layer, with 6 nodes
in the input layer, 22 nodes in the hidden layer, and 4 nodes in the
output layer.

Due to the varied dimensions and differing physical meanings
of the input data, normalization of the data is essential to prevent
features with smaller values from being overshadowed. This study
employed the Sigmoid activation function, which provides smooth
transitions in the saturation region. However, its low slope may lead
to gradient vanishing issues, thereby complicating the training of the
neural networks. The sample undergoes a standard normalization
process before training, see Equation 13:

Xi =
Xi −Xmin

Xmax −Xmin
(13)

where Xi is the input data; Xmin is the minimum value of input data;
Xmax is the maximum value of the input data.

Furthermore, a gradient descent method that includes a
momentum factor was introduced to minimize learning oscillation
and enhance the stability of the algorithm. Based on previous

experiences and parameter adjustments, the particle swarm size was
set to 10, with a particle dimension of N = 312 and a maximum
iteration number of kmax = 50. The inertia weight decreased linearly
as the increase of iterations increased. The learning factors were set
to c1 = c2 = 4.494, and the maximum particle velocity was set to 1.

7.2 Model performance analysis

The performance of the constructed models needs to be
thoroughly validated. Figure 7 illustrates the iteration curves of the
PSO-BP and traditional BP neural network models, constructed
from the data in Table 5. The initial error of the PSO-BP neural
network model (0.7) was smaller than that of the traditional BP
neural network model (0.9). The PSO-BP neural network model
and the traditional BP neural network model achieved near-
zero error after approximately 4 and 6 iterations, respectively.
Therefore, the PSO-BP neural network model demonstrated a
faster convergence rate in finding the optimal solution. Regression
analysis in Figures 8, 9 showed that the PSO-BP neural network
model outperformed the traditional BP neural network model in
fitting performance across the training, testing, validation, and
overall datasets.

7.3 Result analysis

The predicted and actual values of aggregate-to-binder ratio,
cement-to-gypsum ratio, barite content, and glycerol content
for the PSO-BP and traditional BP neural network models are
compared in Table 7.

As illustrated in Table 7, the actual values and predicted
values generated by the PSO-BP, model for the five test
samples—specifically for aggregate-to-binder ratio, cement-to-
gypsum ratio, barite content, and glycerin content—exhibited a
high degree of similarity. In contrast, the predicted results from the
traditional BP, neural network model were notably less accurate
than those of the PSO-BP, model.

To further validate the performance of the established model,
it is essential to select various indicators for evaluation. In this
study, three key performance indicators were chosen: the correlation
coefficient (R2), the root mean square error (RMSE), and the mean
absolute error (MAE). The mathematical formulations for these
three indicators are as follows, see Equations 14–16:

R2 =

n

∑
i=1
(Yi − y)

2(yi − y)
2

n

∑
i=1
(Yi − y)

2
n

∑
i=1
(yi − y)

2
(14)

RMSE = √ 1
n

n

∑
i=1
(Yi − yi)

2 (15)

MAE = 1
n

n

∑
i=1
|Yi − yi| (16)

where n is the length of the data,Yi is the predicted value of the slope
safety factor at time i, yi is the true value of the slope safety factor at
time i, and y is the mean of the actual safety factor.
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FIGURE 7
Iteration curves of two models.

Table 8 visually compare the R2, RMSE, and MAE values for
the PSO-BP model and BP model, which facilitates a more accurate
assessment of their performance. For these three metrics, a larger
R2 value indicates better performance, while lower RMSE andMAE
values are preferred. According to Table 8, the PSO-BP model had
a higher R2 value compared to the BP model, while its RMSE and
MAE were lower. This suggested that the PSO-BP model yielded
the highest prediction accuracy, better performance, and higher
credibility.

8 Case study

The Xinping Ludian Iron Mine, located in Yuxi City, Yunnan
Province, runs in a north-south direction and is inclined to the
east, with a gentle slope in the southern and a steeper slope in the
northern. The dip angle of the ore body ranges from 25° to 50°,
while between lines 3 and 11, the dip angle is generally between 50°
and 60°. The ore body is mainly composed of primary siderite, with
only a minimal amount of oxidized ore located south of line 0. The
quality of the ore body is stable. The roof, floor, and surrounding
rock in the mining area are primarily composed of limestone, which
belongs to a hard rock group. The integrity of these rock masses
good, and their quality is rated as average, reflecting a moderate
level of rock mass quality. This study selected the southern 23 #
mining area for analysis. The parameters of the surrounding rock
are detailed in Table 9.

Based on the physical and mechanical parameters of the
original rock and the stress similarity ratio, the theoretical values
of the similar materials were calculated and input into the PSO-
BP prediction model. The optimal mixing ratios for the similar
materials were determined as follows: aggregate-to-binder ratio of
4.7:1, cement-to-gypsum ratio of 4.6:1, barite content of 36%, and
glycerol content of 7%. Samples were prepared using these material
mixing ratios and the aforementioned methods for mechanical
testing. The theoretical and measured values of these parameters
for the original rock and similar materials are summarized
in Table 10. Simultaneously calculate the relative error between

the theoretical value and the actual value, using the following
formula, see Equation 17:

Relative error =
|Measuredvalue−Truevalue|

Truevalue
× 100% (17)

A comparison of theoretical and measured values of physical
andmechanical parameters for similarmaterials inTable 10 revealed
that the errors for density, uniaxial compressive strength, elastic
modulus, Poisson’s ratio, cohesion, and internal friction angle were
all within 5%. This confirms the reliability of the empirical formula
derived in this study for efficiently determining themixing ratios for
similar materials.

9 Conclusion

This study investigated the optimal mixing ratio of similar
materials for surrounding rock in goafs using orthogonal
experiments and machine learning techniques. The results
are as follows:

(1) The similar material test used quartz, cement, gypsum,
barite, and glycerol as raw materials. The density, uniaxial
compressive strength, elastic modulus, Poisson’s ratio,
cohesion, and internal friction angle for similar materials
were 1.597–2.227 g/cm3, 0.481–5.77 MPa, 2.33–1575.73 MPa,
0.09–0.86, 0.1422–3.147 MPa, and 19.2°–40.6°, respectively;
while their average values were 1.984 g/cm3, 1.771 MPa,
454.74 MPa, 0.39, 0.842 MPa, and 29.5°, respectively. The
results indicated high density and generally low compressive
strength, suggesting moderate strength of the material.
The elastic modulus showed significant variation, reflecting
large differences in material stiffness. The Poisson’s ratio
was relatively high, indicating certain compressibility of
the material. The cohesion was low, suggesting average
internal bonding capacity of the material. The internal friction
angle was relatively high, showing strong shear resistance of
the material.
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FIGURE 8
Regression analysis of PSO-BP model.

(2) Analysis of the data from 25 sets of mix-ratio tests indicated
that the cement-to-gypsum ratio is the primary factor affecting
the compressive strength and elastic modulus of similar
materials.Barite had a significant impact on the density of
similar materials. The aggregate-to-binder and cement-to-
gypsum ratios greatly influenced the Poisson’s ratio and
cohesion. Glycerol content is the main factor affecting the
internal friction angle of similar materials.

(3) Comparison between the PSO-BP and traditional BP
prediction models showed that that the PSO-BP neural
network model performed better in regression prediction

analysis. It offered higher accuracy and efficiency in
determining the optimal mixing ratio for similar materials.

(4) By inputting actual mechanical parameters into the PSO-
BP prediction model, the optimal mixing ratio for similar
materials was obtained. Similar materials that met the
requirements of similarity theory were successfully prepared.
This provides an effective experimental platform for simulating
the mechanical behaviors of surrounding rock in goafs.
The errors between theoretical and measured values of key
parameters, such as density, compressive strength, elastic
modulus, Poisson’s ratio, cohesion, and internal friction angle
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FIGURE 9
Regression analysis of BP model.

TABLE 8 Evaluation indicators for different models.

Model Model evaluation indicators

R2 RMSE MAE

PSO-BP 0.9914 0.0098 0.0124

BP 0.9543 0.1229 0.0322

were all within 5%. This verifies the reliability of the PSO-BP
neural network prediction model in quickly determining the
mixing ratios for similar materials.

Although this study has achieved certain results, there
are still some limitations: 1) limited sample size: although an
orthogonal experimental design was used, only 25 different
proportioning schemes were tested, which may not fully cover
all possible combination situations. 2) Insufficient consideration
of environmental factors: During the research process, the impact
of different environmental conditions (such as temperature and
humidity) on the properties of similar materials was not fully
taken into account, which may lead to deviations in material
performance from expectations under certain specific conditions.
3) Insufficient long-term stability assessment: There is a lack of in-
depth research on the stability and durability of similar materials in
long-term use. Based on the shortcomings of the above research, the
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TABLE 9 Parameters of surrounding rock.

Compressive
strength (MPa)

Elastic modulus
(GPa)

Poisson’s ratio Internal friction
angle (°)

Cohesion (MPa) Density (g/cm3)

26.11 58.3 0.25 42.8 2.01 2.68

TABLE 10 Physical and mechanical parameters of prototype and model materials.

Materials Compressive
strength
(MPa)

Elastic
modulus
(MPa)

Poisson’s
ratio

Internal
friction angle

(°)

Cohesion
(MPa)

Density
(g/cm3)

Original rock
parameters

26.11 58,300 0.25 42.8 2.01 2.68

Theoretical value 0.217 485 0.25 42.8 0.016 2.2

Measured value 0.22 464 0.24 41.5 0.017 2.3

Relative error 1.3% 4.5% 4.1% 3.1% 5.0% 4.3%

following future research directions are proposed: 1) Expanding
the sample range: further increasing the number of different
proportioning schemes, especially for material performance testing
under extreme conditions, to obtain more comprehensive data
support. 2) Environmental adaptability research: Conduct research
on the properties of similar materials under different environmental
conditions (such as high temperature, low temperature, high
humidity, etc.), explore their adaptability and variation patterns.
3) Long term stability testing: Establish a long-term monitoring
mechanism, regularly test the physical and mechanical properties
of similar materials, evaluate their stability and durability during
long-term use, and ensure their reliability and effectiveness in
practical applications. 3) Introducing more advanced algorithms:
In addition to the existing PSO-BP neural network model, other
advanced machine learning or deep learning algorithms such
as Convolutional Neural Networks (CNN), Long Short Term
Memory Networks (LSTM), etc. can be attempted to improve
prediction accuracy and efficiency. 4) This article mainly focuses
on the physical and mechanical parameters of similar materials,
but does not involve the analysis of the microstructure of the
materials. Future research can combine microscopic analysis
techniques such as scanning electron microscopy (SEM) and X-
ray diffraction (XRD) to further explore the relationship between
material microstructure and macroscopic properties. Through the
above improvement measures, the proportioning scheme of similar
materials can be further improved, and more solid theoretical and
technical support can be provided for their widespread application
in engineering practice.
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