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This study evaluates the Soviet-era ground motion prediction equation (named
as A&K-1979) and introduces an Artificial Neural Network (ANN)-based GMM
specifically designed for Azerbaijan to improve prediction accuracy. Ground
motion models (GMMs) are essential for predicting earthquake-induced ground
motions, aiding seismic hazard assessments and engineering designs. While
traditional linear empirical models have been widely used, they often struggle
to capture complex nonlinear ground motion behaviors. The performance of
A&K-1979 was assessed using a strong-motion dataset comprising 500 records
collected between 2022 and 2024. Two variants of A&K-1979 were tested: A&K-
1979-1 for PGA ≥160 cm/s2 and A&K-1979-2 for PGA <160 cm/s2. An ANN-based
GMM was developed using earthquake magnitude and hypocentral distance as
inputs, followed by three hidden layers (32-32-16 neurons) with the Rectified
Linear Unit (ReLU) activation function. The model was validated with a separate
dataset of 268 records, evaluated using metrics such as bias, standard deviation
of residuals (σ), mean absolute error (MAE), root mean squared error (RMSE),
and R2. The A&K-1979 model exhibited notable prediction biases: A&K-1979-1
overestimated PGA values, while A&K-1979-2 underestimated them. The ANN-
based GMM achieved improved performance metrics, with a bias of -0.0076, σ
of 0.5971, MAE of 0.4416, RMSE of 0.5972, and an R2 of 0.4601. The improved
accuracy of the ANN-based GMM highlights its potential as a valuable tool for
seismic hazard assessments in Azerbaijan. By providing enhanced prediction
capabilities, the ANN model demonstrates greater reliability and practical value
than A&K-1979, reinforcing the need for updated predictive models in the region
and supporting its use in preliminary hazard analysis.
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artificial neural network, ground motion model, A&K-1979, Azerbaijan, earthquake
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1 Introduction

Throughout history, earthquakes have been a leading cause of human casualties
and severe economic losses, especially in earthquake-prone regions. From antiquity
to the modern era, these catastrophic events have consistently posed a major threat,
resulting in widespread destruction of infrastructure and significant loss of life in
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vulnerable areas. Seismic hazard assessment is a fundamental
scientific discipline dedicated to quantifying the potential ground
motion induced by earthquakes. Its significance stems from
its role in informing earthquake-resistant design, guiding land-
use planning, and enhancing disaster preparedness strategies,
all of which are crucial for safeguarding public safety and
fostering sustainable infrastructure development (Wang, 2011).
Seismic hazard assessment integrates multiple critical factors,
including understanding seismic sources, employing appropriate
strong-motion models and selecting representative scenarios, to
provide a comprehensive evaluation of potential ground shaking
(Benito and Gaspar-Escribano, 2007). Two primary approaches,
Deterministic Seismic Hazard Analysis (DSHA) and Probabilistic
Seismic Hazard Analysis (PSHA), are widely employed (Gürboğa
and Sarp, 2013) for over 50 years (Abrahamson, 2006). Both
deterministic seismic hazard analysis (DSHA) and probabilistic
seismic hazard analysis (PSHA) are establishedmethods in this field,
each offering distinct approaches and analytical tools to address
seismic hazard challenges (Wang, 2011; Babayev and Babayev,
2024). DSHA focuses on simulating the worst-case scenario by
modeling an individual target earthquake-based ground motion
from a defined maximum credible earthquake, incorporating site-
specific geological and seismotectonic conditions (Abrahamson,
2006; Babayev and Babayev, 2024; Bulajic and Manic, 2006). DSHA
is particularly suitable for assessing seismic hazards for critical
infrastructure such as dams, power plants, and tunnels, where
worst-case scenarios must be considered (Sawires et al., 2023).
In contrast, PSHA is widely applied in seismic design levels,
hazard mapping, and the development of seismic building codes
worldwide (Sawires et al., 2023; McGuire, 2008). PSHA calculates
the probability of exceeding a certain ground motion level over a
specified time period, integrating statistical models of earthquake
recurrence and ground motion attenuation accounting all possible
earthquake scenarios (Wang, 2011; Abrahamson, 2006; Cornell,
1968). Both approaches rely heavily on Ground motion models
(GMMs). GMMs form the analytical foundation for both PSHA
and DSHA, providing essential tools for quantifying seismic hazard
levels across different regions with accuracy and consistency.

Ground motion models (GMMs) are widely utilized in civil and
earthquake engineering for applications such as deterministic and
probabilistic seismic hazard analyses, as well as the development of
hazard maps for building code designs (Mohammadi et al., 2023).
These models estimate various levels of ground motions based on
seismological parameters, including earthquake magnitude, fault
mechanism, focal depth, and source-to-site distance measures
(Karimzadeh et al., 2024). Empirical GMMs proposed at both
global and regional scales on basis of regression analysis
(Mohammadi et al., 2023) are represented in the form of equations
that are known as ground motion prediction equations (GMPEs).
GMPEs are central to seismic hazard assessment, modeling peak
ground motion parameters predictions such as peak ground
acceleration, velocity and displacement (Wang, 2011; Babayev and
Babayev, 2024), derived empirically by the regression of earthquake
magnitude, distance and site-specific conditions (Boore and
Atkinson, 2008). The region-specific GMPEs take part as important
element of the seismic hazard analysis (Anbazhagan et al., 2013).
Classically, empirical GMPEs are derived through linear regression
and have been widely used in ground motion prediction studies

(Douglas, 2011; Campbell and Bozorgnia, 2008; Bozorgnia et al.,
2014; Zalachoris and Rathje, 2019).These models effectively capture
first-order relationships between seismic and ground motion
parameters, but struggle to account for complex nonlinear behaviors
observed in real earthquake records. Although additional terms
and regression coefficients are often introduced to address these
limitations, the predefined mathematical forms of regression-based
approaches still pose challenges in accurately representing intricate
source, site, and path effects (Luco and Cornell, 2007; Güllü and
Erçelebi, 2007; Alavi and Gandomi, 2011).

In recent years, seismological parameters, such as seismic
moment (Gencoglu and Sayil, 2019) and earthquake ground-
motion duration (Yaghmaei-Sabegh, 2018), have been utilized in the
development of ground motion models.

There is a vast repository of empirical GMPEs (Douglas, 2019).
While BA08 (Boore and Atkinson, 2008) is a globally applied
GMPE, AC10 (Akkar and Cagnan, 2010), ASB14 (Akkar et al.,
2014) are GMPEs proposed for Middle Eastern and European
regions and KAAH15 (Kale et al., 2015) is proposed for Türkiye
and Iran, the border countries of Azerbaijan. Moreover, Bindi et al.
(2007); Gülkan and Kalkan (2002); Akinci et al. (2006); Akyol and
Karagöz (2009); Kayabali and Beyaz (2011) are some of the Türkiye-
specific empirical GMPEs.

To overcome such limitations in regression-based empirical
GMMs, machine learning algorithms are utilized to form GMMs
that can train the nonlinear complex behaviors of ground motions
(Karimzadeh et al., 2024; Khosravikia and Clayton, 2021). Machine
learning algorithms might be considered as an effective tool for
seismic hazard assessment (Trugman and Shearer, 2018; Kong et al.,
2019). A significant popularity is observed in ML-based studies
in geosciences (Asencio-Cortes et al., 2018; Zhou et al., 2018;
Sudakov et al., 2019; Achieng, 2019). Similarly, while machine
learning has a long-standing history in seismology, its applications
have expanded significantly in recent years (Mousavi and Beroza,
2023). In ground motion parameters prediction, ML algorithms are
used in different places of the world, such as in Türkiye (Güllü
and Erçelebi, 2007), in Europe (Ahmad et al., 2008), in Taiwan
(Kerh and Ting, 2005), in Japan (Derras et al., 2012; Asencio-
Cortes et al., 2017), in Poland (Wiszniowski, 2019), in some states of
USA (Khosravikia et al., 2018). Artificial Neural Network (hereafter,
ANN), Random Forest (hereafter, RF), Support Vector Machine
(hereafter, SVM), extreme gradient boosting (hereafter, XGBoost),
gradient boosting (hereafter, Gb) are well known machine learning
algorithmswhich handle nonlinear feature influence and interaction
effectively (Mohammadi et al., 2023; Khosravikia and Clayton,
2021; Kong et al., 2019). Khosravikia and Clayton, (2021) suggest
that the provision of accuracy is fine in sufficient amount of
data. The above-mentioned ML-techniques were tested by several
authors for various regions (Khosravikia and Clayton, 2021;
Seo et al., 2022).Mohammadi et al. (2023) describes the drawback of
the ML-algorithms as “black boxes”, emphasizing that, the difficulty
lies in understanding and interpreting the underlying processes.

ANNs are complex systems made up of interconnected neural
units, which can process input data and adjust to their surroundings
through a learning process (Karimzadeh et al., 2024). ANN-
based GMMs are proposed by several authors for Türkiye by
various authors Mohammadi et al. (2023); Karimzadeh et al.
(2024); Temiz et al. (2024). Furthermore, Thomas et al. (2013),
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Derras et al. (2014), Khosravikia et al. (2019) and Derakhshani
and Foruzan (2019) are some other studies suggesting data-driven
GMMs using ANN.

InAzerbaijan, comprehensive seismic hazard assessment studies
remain largely unexplored, with existing research primarily focusing
on multi-scenario-based deterministic assessments for specific
seismic regions such as the eastern slope of the Greater Caucasus
(Babayev et al., 2010; Babayev et al., 2020a; Babayev G. R. et al.,
2023; Babayev et al., 2024; Babayev and Telesca, 2016), the Middle
Kur Depression (Babayev and Babayev, 2024; Babayev, 2024)
employing Soviet-era GMM–A&K-1979 (Aptikayev andKopnichev,
1979). However, the validity of ground motion prediction equation
suggested by Aptikayev and Kopnichev (1979) has never been
systematically tested against modern seismic data.

This present study aims to address this gap by evaluating
the performance of A&K-1979 using the most up-to-date
dataset, covering earthquakes from 2022 to 2024. We introduce
a novel approach for Azerbaijan, developing GMM applying
ANN implementation in Python. We selected ANN-based
modeling since the training database contain small to moderate
earthquakes which is easier for ANN to handle rather than,
for instance, XGBoost (Karimzadeh et al., 2024). The suggested
model estimates the horizontal peak ground acceleration (PGA)
based on input parameters, including local magnitude (ML) and
hypocentral distance (Rhyp). The developed model is made available
as a supplementary resource in a GitHub repository, allowing
end-users to input parameters such as magnitude, focal depth,
and epicentral distance. The model automatically calculates the
hypocentral distance and incorporates it as an input parameter,
alongside the magnitude.

2 Study area

Azerbaijan, officially known as the Republic of Azerbaijan, is
a transcontinental country situated at the intersection of West
Asia and Eastern Europe. Covering an area of approximately 86.6
thousand km2, it is part of the South Caucasus region. The country
is bordered by the Caspian Sea to the east, Russia’s Republic of
Dagestan to the north, Georgia to the northwest, Türkiye to the
southwest, Armenia to the west, and Iran to the south. As of
the end of 2024, Azerbaijan’s population exceeds 10 million. The
historical monuments and archaeological findings in the region
reflect Azerbaijan’s rich historical and cultural heritage. Baku, the
capital and largest city of Azerbaijan, is a coastal urban center
situated on the Absheron Peninsula along the Caspian Sea, covering
an area of 2,140 km2. With a population approaching 2.5 million
as of 2023, it serves as the country’s political, economic, and
cultural hub.

Azerbaijan is situated on six tectonic structures: the
Samur (Gusar)–Devechi (Shabran) zone, the Eastern Greater
Caucasus, the Kur intermountain depression, the Outer
Lesser Caucasus, the Inner Lesser Caucasus, and the Talysh
mountains (Alizadeh et al., 2016). The Samur-Devechi and
Eastern Greater Caucasus megazones form part of the Greater
Caucasus Fold-Mountain System, with the Eastern Greater
Caucasus megazone encompassing the southern and southeastern
slopes. Similarly, the Outer Lesser Caucasus and Inner Lesser

Caucasus megazones belong to the Lesser Caucasus region
(Alizadeh et al., 2016). The Caucasus region, part of the Alpine
belt, has a complex geological history and was formed as a
result of the closure of the Neotethys Ocean (Adamia et al.,
2011; Barrier and Vrielynck, 2008). The Greater Caucasus
represents the highest mountain belt in Europe, formed due
to the collision between the Arabian and Eurasian plates
(Mosar et al., 2010). It is a fold-and-thrust belt separated from
the Lesser Caucasus with the Kur foreland sedimentary basin
(Mosar et al., 2010; Tibaldi et al., 2024).

The Samur-Devechi is characterized by Quaternary rocks
(Alizadeh, 2024). The Eastern Greater Caucasus formed by various
geological content, encompassing mainly Jurassic, Cretaceous,
Paleogene, and Neogene rocks. We observe Jurassic, Albian to
Maastrichtian sediments in the border with Kur depression,
where Kur depression is subducted under the Eastern Greater
Caucasus forming post-Eocene thrusts (Sosson et al., 2016).
Kur basin is covered by Pliocene and Quaternary sediments
and volcanites (Alizadeh, 2024; Sosson et al., 2016). In Outer
Lesser Caucasus is mostly characterized by Bajocian to Upper
Jurassic volcanogenic series with Upper Jurassic-Lower Cretaceous
intrusions, Middle Jurassic to Lower Cretaceous ophiolitic series,
Paleocene to Oligocene molasses and volcanites and for the
Inner Lesser Caucasus the characterization can be similarly
seen with Paleocene to Oligocene molasses and volcanites and
Bajocian to Upper Jurassic volcanogenic series with Cretaceous
and Cenozoic intrusions, furthermore, with Devonian to Permian
plateform formations and Miocene volcagenics (Alizadeh, 2024;
Sosson et al., 2016). Talysh mountains show up mainly with
Paleogene rocks (Alizadeh, 2024).

The complex tectonic structure of Azerbaijan results in
significant seismic activity (Babayev et al., 2020b). The study
of seismicity in Azerbaijan is divided into two periods:
the pre-instrumental (historical) and instrumental periods
(Babayev T. H. et al., 2023). During the historical period, records
of destructive and strong earthquakes were documented in ancient
Arabic chronicles, manuscripts, and travel writings (Ashurbeyli
and Bakuvi, 1958). Several significant historical earthquakes
have been noted in Azerbaijan, including the earthquake of 427,
the Ganja (Goygol) earthquake of 1139, the Ganja earthquake
of 1235, the East Caucasus earthquake of 1667, the Mashtaga
earthquake of 1842, and multiple Shamakhi earthquakes (1192,
1667, 1668, 1669, 1828, 1859, 1868, 1872, 1902). Other notable
events include the Ardabil earthquake of 1924, the Lankaran
earthquake of 1913, and several Caspian Sea earthquakes (957,
1812, 1842, 1852, 1911, 1935, 1961, 1963, 1986, 1989, 2000). These
earthquakes are well known for their intensity, often resulting
in surface deformations, widespread building destruction, and
significant human casualties (Babayev and Agayeva, 2021). These
historical events highlight the necessity of enhancing seismic
hazard assessment methodologies to improve the understanding of
earthquake risks and develop more effective mitigation strategies
in Azerbaijan. Extensive seismic monitoring activities have
been regularly conducted across various regions of Azerbaijan
under the Republican Center of Seismic Survey (RCSS, 2024)
(Yetirmishli et al., 2013; Yetirmishli et al., 2015; Yetirmishli et al.,
2016; Yetirmishli et al., 2018). Additionally, various local and
international scientists contributed in the analyses of seismicity
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(Telesca et al., 2013; Telesca et al., 2017), assessment of seismic
hazard (Babayev et al., 2010; Babayev et al., 2020a; Babayev et al.,
2024) across various regions of Azerbaijan. Bondar et al. (2024)
proposed a comprehensive instrumental catalog for the period
1951–2019, combining the bulletins of local and international
agencies, with relocation performed using the iLoc algorithm
(Bondár et al., 2024). Similarly, Gunnels et al. (2021) proposed
a double-difference (DD) relocated earthquake catalog for the
period 2011–2016 and generated high-resolution 3D seismic
velocity models for the Eastern Greater Caucasus and Kur basin
(Gunnels et al., 2021). 57 seismic stations serve in Azerbaijan for the
seismic monitoring studies under RCSS (RCSS, 2024).

Figure 1 illustrates six tectonic structures on geological map of
Azerbaijan (Alizadeh et al., 2016; Budagov, 1993a; Budagov, 1993b),
the fault map of Azerbaijan (Yetirmishli et al., 2017) and seismic
stations distribution of the RCSS network. This study evaluates the
existing GMPE used in seismic hazard analyses for Azerbaijan and
proposes an ANN-based GMM, derived from a 2022–2024 database
created using local station data.

3 Dataset acquisition and processing

3.1 Acquisition

The GMM validation and derivation starts with the dataset of
earthquake recordings that could be used for regression analysis
in empirical models (Bommer et al., 2010). Accurate validation
of Ground Motion Prediction Equations (GMPEs) requires a
robust dataset composed of reliable earthquake records and
associated ground motion parameters. In this study, we developed
a comprehensive dataset spanning seismic events from 2022 to
2024 in Azerbaijan, ensuring consistency and quality through
systematic data selection and processing. The initial dataset was
based on a seismic catalog containing essential parameters for
each event, including local magnitude (M), date and time (UTC),
longitude, latitude, and depth. The catalog was sourced from the
Republican Center of Seismic Survey of Azerbaijan online database
(RCSS, 2024). Events with incomplete metadata or poor location
accuracy were eliminated during the selection process to ensure
dataset integrity. The dataset was further refined to include only
earthquakes for which station records were accessible via the
IRIS FDSN web service [IRIS, 2024 (I. R. I. for Seismology)].
Since some of the Azerbaijani seismic stations became operational
on the IRIS network only after mid-2022, our dataset covers
seismic events from June 2022 to December 2024. A total of 183
earthquake events, with magnitudes ranging from 3.0 to 6.1, were
initially included (Figure 2).

Seismic waveform data were accessed and processed via the IRIS
FDSNweb service using theObsPy Python library (Beyreuther et al.,
2010). For each earthquake event, all seismic stations in Azerbaijan
with available data on the IRIS network were queried based on
the specific date and time of the event. Among the stations
that successfully recorded the event, the five closest stations
were selected. If five or fewer than five stations recorded the
event, all available records were retained. However, 9 events with
fewer than two valid station records were excluded to maintain
reliability.

3.2 Processing

The raw waveform data from the selected stations underwent
systematic preprocessing. For each earthquake, using the ObsPy
library of Python, the script fetches waveform data from the selected
stations within a specified time window (30 s before to 90 s after
the earthquake) (Beyreuther et al., 2010). The instrument response
is removed using the remove_response method, which converts the
waveform to acceleration time series (m/s2). The remove_response
method eliminates instrument response effects by deconvolving the
instrument transfer function, ensuring that the recorded waveform
accurately represents ground motion (Beyreuther et al., 2010). This
method allows conversion of raw seismic data into acceleration
(m/s2), velocity (m/s), or displacement (m), depending on the
desired output. By applying this correction, the processed data
more accurately reflect the true ground motion, independent
of the specific characteristics of the recording instrument. The
waveform data undergoes bandpass filtering with a frequency range
of 1–48 Hz, effectively isolating the relevant seismic signals while
attenuating low-frequency noise and high-frequency artifacts. This
enhances the clarity of the recorded groundmotion, ensuring amore
accurate representation of the earthquake’s dynamic characteristics.
From these processed records, the peak ground acceleration
(PGA)—defined as the maximum absolute value in the acceleration
time series—was extracted for each station. Additionally, both
epicentral distance (Repi) and hypocentral distance (Rhyp) were
calculated using Python scripting. As the final step in dataset
preparation, 74 events recorded by fewer than five stations were
eliminated to enhance the reliability of the dataset, meanwhile this
step serves the expansion of the dataset. The 100 events recorded
at 5 stations present 5 PGA values at 5 hypocentral distances.
Therefore, the dataset becomes of 500 records. The processed data
were assembled into a structured dataset containing parameters such
as magnitude (ML), longitude, latitude, depth (km), date and time
(UTC), station name, epicentral distance (km), hypocentral distance
(km), and PGA (cm/s2). Finally, the dataset was exported as a CSV
file for subsequent analysis, aimed at validating the GMPE–A&K-
1979. Additionally, the dataset will be used to train an Artificial
neural network (ANN) model to develop a new ground motion
model (GMM), as discussed in the following sections (Figure 3).
The 74 events recorded by at least 2, at most 4 stations are retained
as a separate testing dataset to evaluate the performance of the
new ANN model, after expanding them to 268 records with the
same manner (Figure 4).

To summarize, the dataset was divided into training and testing
subsets based on the number of station recordings per event. Events
recorded by five stations (100 events, 500 records) were used for
training the ANN-based GMM. Meanwhile, events recorded by
at least two but at most four stations (74 events) were retained
for testing, and their records were expanded to 268 following
the same methodology. This separation ensures a balanced and
representative dataset for both training and evaluation, as illustrated
in Figures 3, 4.

Figure 3A illustrates the relationship between magnitude (ML)
and hypocentral distance (Rhyp) for the earthquakes in the dataset.
For the given dataset, the range of the magnitude is 3.0 ≤ ML
≤ 6.1 and the range of the hypocentral distance is 12.05 km
≤ Rhyp ≤ 412.73 km. The dataset is typically characterized with
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FIGURE 1
Combined tectonic, geological and fault map of Azerbaijan with the representation of 57 seismic stations of the RCSS network [adapted from
(Alizadeh et al., 2016; Budagov, 1993a; Budagov, 1993b)]. Tectonic zones: 1 – Samur (Gusar)–Devechi (Shabran), 2 – Eastern Greater Caucasus, 3 – Kur,
4 – Outer Lesser Caucasus, 5 – Inner Lesser Caucasus, 6 – Talysh. Generalized depth faults of Azerbaijan are adapted from Yetirmishli et al. (2017).
Longitudinal faults: 1–1 Makhachkala–Turkmenbashi; 2-2 Khudat–Gilazi; 3–3 Akhti-Nugadi-Gilazi; 4–4 Siyezen; 5–5 Qaynar-Zengi; 6–6 Vandam; 7–7
Ajichay-Elet; 8-8 Kur; 9–9 Lesser Caucasus; 10–10 Talysh. Latidudinal faults: I-I Gazakh-Siqnakh; II-II Sharur-Zagatala; III-III Ganjachay; IV-IV
Arpa-Samur; V-V Palmir-Absheron; VI-VI West-Caspian.

low-magnitude events, since accelerograms are deficient in high
magnitudes (Ml ≥ 5.5). When magnitude and distance distributions
are considered together, the data are richer for 3.0 ≤ Ml ≤ 4.0 and
Rhyp > 45 km (Kale et al., 2015). These are the results of some
obstacles in the database forming: the stations from which data
retrieved record only post-2022 earthquakes and the number of
them in Azerbaijan are limited. Furthermore, the earthquake focal

depths are changing from quite shallow till deep enough in range
2–72 km (Figure 3D). Therefore, the database contains mostly weak
earthquakes in small magnitudes and high hypocentral distances
(Figures 3B, C). The testing dataset elements also follow similar
trends with magnitude, hypocentral distance and depth ranges of
3 ≤ M ≤ 5.8, 14.38 km ≤ Rhyp ≤ 408.60 km and 3 km ≤ h ≤ 75 km
respectively (Figure 4).
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FIGURE 2
Map of the initial catalog (183 events) and 22 seismic stations used for event recordings.

These dataset characteristics indicate a significant predominance
of low-magnitude and high-hypocentral-distance events, which
may influence the model’s predictive performance. A statistical
comparison between the training and testing datasets further
highlights this trend. The training dataset has a mean magnitude of
3.73, with the majority of events clustered around Ml 3.0–4.0, and
very few exceeding Ml 5.5, reinforcing the limited representation
of strong-motion records. Similarly, the testing dataset exhibits
an even stronger skew towards smaller magnitudes (mean Ml
= 3.56) and a slightly lower maximum magnitude (Ml 5.8 vs.
6.1 in training). Regarding hypocentral distances, while both
datasets share a broad range, the testing set is characterized by
a slightly lower mean distance (128.15 km vs. 154.15 km) and
reduced variability, suggesting that test events are somewhat more
concentrated around intermediate distances. In terms of PGA, the
testing dataset has a highermean PGA (0.464 cm/s2 vs. 0.268 cm/s2)
and greater variability, though extreme values remain a challenge
in both datasets due to high skewness. These statistical differences
underscore potential biases in dataset composition, with the ANN
model likely being more exposed to weak-to-moderate earthquakes
occurring at mid-to-far distances, while having limited exposure to
strong-motion events at short distances (Tables 1, 2).

4 Methods

4.1 Testing A&K-1979

To evaluate the validity of the ground motion prediction
equation (GMPE), we compare the predicted ground motion
parameters with actual recorded data, which provides insight into
the accuracy of the GMPE. In this study, we use PGA values from

500 station-recorded ground motions to assess the performance of
theA&K-1979GMPE for horizontal PGApredictions.This equation
has been regarded as the most appropriate for Azerbaijani territory
to date (Babayev et al., 2020a; Babayev et al., 2024). The comparison
is conducted using the perfect alignment line and residuals analysis.
The perfect alignment line, represented by the function y = x, serves
as the ideal reference, where the observed and predicted PGA values
are equal. This comparison allows for a quantitative assessment of
the prediction accuracy. The residuals, defined as the difference
between the observed and predicted PGA values, further quantify
the predictive performance (Equation 1). Ideally, residuals should
be zero, or as close to zero as possible, reflecting a high level of
prediction accuracy:

Residuals = logPGAobs − logPGApred, (1)

where log PGAobs and log PGApred represent the logarithms of the
observed PGA values from real records and the PGA predictions
from A&K-1979, respectively.

The GMM proposed by Aptikayev and Kopnichev (1979) is
divided into two components and shown in the Equations 2, 3
respectively (Aptikayev and Kopnichev, 1979):

log PGAA&K−1979−1 = 0.28M− 0.8 log R+ 1.70, (2)

where R is the hypocentral distance, PGAA&K−1979−1 is predicted
PGA by A&K-1979 in cm/s2, for PGA ≥ 160 cm/s2;

log PGAA&K−1979−2 = 0.8M− 2.3 log R+ 0.80, (3)

where R is the hypocentral distance, PGAA&K−1979−2 is predicted
PGA by A&K-1979 in cm/s2, for PGA < 160 cm/s2.

The perfect alignment and residual analysis will be shown in
Results section.
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FIGURE 3
Training dataset representation. (a) Scatter plot of magnitude (ML) versus hypocentral distance (Rhyp), histogram of number of events versus (b)
magnitude (ML) and (c) hypocentral distance (Rhyp), (d) the 3D representation of earthquake magnitudes in longitude, latitude and depth axes.

4.2 Training ANN-based GMM

Given the characteristics of both the training and testing
datasets in Tables 1, 2, the use of ANN for developing a GMM
is justified due to the following key factors. First, the datasets
exhibit significant non-linearity and complex interactions between
magnitude, hypocentral distance and PGA. Traditional regression-
based GMMs often struggle to capture these relationships, as
discussed already, particularly in cases where the data distribution is
skewed and contains amix of near-field and far-field events.Thehigh
skewness and kurtosis values, especially for PGA (9.13 in training,
6.52 in testing), indicate that standard parametric models may not
effectively generalize across the entire dataset.

Furthermore, the datasets contain imbalances in magnitude and
distance distributions, with a predominance of small-magnitude
and high-hypocentral-distance events. ANNmodels are well-suited
for handling such imbalanced–non-linear datasets, as they can
learn complex patterns from limited high-magnitude observations
while avoiding overfitting to the dominant low-magnitude cases.
Additionally, the ability of ANNs to approximate highly non-linear
functions makes them advantageous when dealing with datasets
that do not follow traditional empirical relationships, particularly
given the wide range of hypocentral distances (12–412 km in

training, 14–408 km in testing) and varying focal depths (2–72 km
in training, 3–75 km in testing).

Moreover, the flexibility ofANNmodels allows them to integrate
additional input parameters, such as site conditions (e.g., Vs30),
which may further improve predictive accuracy. Given the dataset’s
limitations—particularly the lack of strong-motion records—ANNs
can leverage their ability to interpolatemissing patterns and enhance
predictions for rare, high-magnitude events. Therefore, an ANN-
based approach provides a robust and data-driven alternative to
traditional GMMs, ensuring greater adaptability and accuracy in
predicting ground motion parameters.

ANN is a computational model that mimics the way the
human brain processes information (Haykin, 2008). It consists of
layers of interconnected neurons, where each neuron processes
data and passes it to the next layer. ANNs have emerged as
powerful computational tools for solving complex regression
problems, particularly in applications where traditional empirical
models struggle to capture intricate nonlinear relationships
(Mohammadi et al., 2023). Inspired by the structure of biological
neural networks, ANNs consist of interconnected computational
units (neurons) arranged in layers: an input layer, one or more
hidden layers, and an output layer (Karimzadeh et al., 2024).
These networks learn from data by adjusting connection weights
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FIGURE 4
Testing dataset representation. (a) Scatter plot of magnitude (ML) versus hypocentral distance (Rhyp), histogram of number of events versus (b)
magnitude (ML) and (c) hypocentral distance (Rhyp), (d) the 3D representation of earthquake magnitudes in longitude, latitude and depth axes.

TABLE 1 Statistical metrics for the training dataset.

Mean Median Std. Dev Min Max Skewness Kurtosis

Ml 3.73 3.3 0.81 3 6.1 1.11 0.18

Rhyp 154.15 134.17 92.91 12.05 412.73 1.17 0.99

PGA 0.27 0.04 1.03 3.64E-05 15.94 9.13 113.82

TABLE 2 Statistical metrics for the testing dataset.

Mean Median Std. Dev Min Max Skewness Kurtosis

Ml 3.56 3.3 0.67 3 5.8 1.78 2.86

Rhyp 128.15 124.81 58.43 14.38 408.60 1.01 3.50

PGA 0.46 0.04 1.84 3.71E-05 15.99 6.52 45.69

to minimize prediction errors, making them well-suited for ground
motion modeling (Withers et al., 2020).

In this study, we develop an ANN-based ground motion
prediction model specifically for Azerbaijan, leveraging a dataset

of observed PGA values. The ANN model is trained to predict
the logarithm of PGA values based on two key input parameters:
earthquake magnitude and hypocentral distance. Following best
practices in ANN-based ground motion modeling (Khosravikia
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and Clayton, 2021; Khosravikia et al., 2019), we divide the dataset
into training and testing subsets, as 80% and 20% respectively, to
optimize model performance while preventing overfitting.

The selection of input parameters for the ANN-based GMM
was based on the available data and their relevance to ground
motion prediction.Magnitude (ML) and hypocentral distance (Rhyp)
were chosen as the primary inputs, as they are fundamental factors
influencing seismic ground motion. While Vs30 and depth are
important for refining GMMs, we did not have consistent Vs30
data across the entire study area, and depth is implicitly accounted
for in the calculation of hypocentral distance (Equation 4). Thus,
magnitude and hypocentral distance were deemed the most reliable
and relevant predictors given the dataset constraints. Future research
could explore the inclusion of additional parameters for enhanced
model accuracy.

Rhyp = √R
2
epi + h

2, (4)

where Rhyp and Repi are hypocentral and epicentral distances
respectively and h is the focal depth of the earthquake.

The network is trained using backpropagation and the Adam
optimizer with a learning rate of 0.01, which iteratively adjusts
the model’s weights to minimize prediction errors. This approach
allows for effective modeling of complex seismic relationships,
providing a powerful tool for earthquake groundmotion prediction.
Backpropagation is a widely recognized multilayer neural network
approach that employs a gradient-descent technique to minimize
errors during the learning process (Karimzadeh et al., 2024;
Adamowski and Karapataki, 2010). This method effectively reduces
prediction errors, optimizing model accuracy while preventing
overfitting. The model is trains using the TensorFlow Keras library.
It consists of an input layer with two neurons corresponding to
the earthquake magnitude and hypocentral distance, followed by
two hidden layers with 32 neurons each, employing the Rectified
Linear Unit (ReLU) activation function to introduce non-linearity
and enhance learning capabilities. An additional hidden layer with
16 neurons is included to further refine feature extraction. The
output layer consists of a single neuron representing log PGA with
a linear activation function, allowing for unrestricted predictions.
The model employs the Mean Squared Error (MSE) loss function
for training while tracking the Mean Absolute Error (MAE) as
an additional evaluation metric. The network is trained over 100
epochs (Withers et al., 2020) with a batch size of 32, ensuring
convergence while maintaining computational efficiency. Epoch is
the number of times the model has gone through the training
dataset. We present the schematic view of the ANN structure used
in this study in Figure 5.

By leveraging ANN-based modeling, this study offers an
alternative to traditional empirical GMMs, demonstrating the
ability of machine learning techniques to capture complex seismic
relationships that conventional models may not fully account for
(Mohammadi et al., 2023; Karimzadeh et al., 2024).

5 Results

The following section presents the results of validating the A&K-
1979 GMPE and developing the new ANN-based GMM using the
respective methodologies outlined in Section 4.

5.1 Perfect alignment and residual analysis
of A&K-1979 predictions

The perfect alignment (Figure 6A) and residual analysis
(Figure 6B) of both versions of A&K-1979 expose the level of
discrepancy between GMPE-suggested ground motion modeling
and real strong motion dataset. A&K-1979-1 which is designed for
high groundmotion levels (≥160 cm/s2), predicts overestimated and
low accurate PGA values for the area in comparison to the data.This
is represented in Figure 6A with the position of the predicted points
– they are positioned under the perfect alignment line. In Figure 6B
we observe negative residual values with high frequencies. This
means high number of residuals with overestimation. Residuals are
too frequent between −3.5 and −1.5. Since the residual is simply
the difference between observed (real data) PGA and predicted (by
GMPE) PGA values (1), closer the residual to 0, more accurate
it is. And the negative value means that predicted PGA values
are greater than the values of real data. In the same manner,
the plots of Figure 6 in green, for the low-level ground motion
prediction equation–A&K1979-2 (<160 cm/s2) represent mainly
underestimation. We observe satisfying modeling in the very low
values of PGA (0–1 cm/s2), while the underestimation starts above
the PGA > 1 cm/s2.

5.2 ANN-based developed GMM

This section presents the results for the proposed ANN-based
GMM for Azerbaijan. The model’s performance is evaluated using
various statistical metrics, including Bias, Sigma, Mean Absolute
Error (MAE), Root Mean Squared Error (RMSE), and R2, as
detailed in Table 3. Figures 7, 8 display the training, validation,
and testing results. Figure 7 illustrates the trends for Mean Squared
Error (MSE) and MAE during training and validation. Figure 8
highlights the predictive performance of the ANN-based model,
showing scatter plots of predicted versus observed PGA (8a),
residuals vs hypocentral distance (8b), and residuals vs the log of
themodel-predicted PGA (8c). Figures 8D, E show the performance
comparisons of the ANN-based model and the A&K-1979 GMPE,
using scatter plots and residuals histograms, respectively, for the
testing dataset (analogous to Figures 6A, B).

The ANN-based model outperforms both versions of the A&K-
1979 GMPE in terms of predictive accuracy and consistency.
As shown in Table 3, the ANN model demonstrates significantly
lower Bias (−0.0076), a reduced Sigma (0.5971), and a smaller
RMSE (0.5972), indicating a more accurate and reliable prediction.
Furthermore, the ANN model’s R2 score of 0.4601 represents an
improvement of 46% compared to A&K-1979-2, which has a R2 of
0.4154. This suggests that the ANN model has a better overall fit to
the data, with less variance in its predictions. In comparison, A&K-
1979-1 exhibits much higher Bias (12.9530) and Sigma (9.0744),
with a very low R2 score of −73.5202, indicating poor predictive
accuracy and significant deviation fromobserved values. In contrast,
A&K-1979-2 shows a more reasonable performance with a small
Bias (−0.0120), low Sigma (1.4008), and a higher R2 score (0.4154),
but it still falls short in comparison to the ANNmodel.

Figures 8D, E clearly illustrate these performance differences,
where the scatter plot and residuals histogram show that the
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FIGURE 5
ANN Architecture for ground motion modeling. Predictive input layers are magnitude and hypocentral distance. Output layer is the logarithm of PGA.
Hidden layers are shown as NumberofHiddenlayer

4
to avoid the mess in the scheme.

FIGURE 6
Observed PGA values versus prediction of A&K-1979. Blue for A&K-1979-1 (≥160 cm/s2), green for A&K-1979-2 (<160 cm/s2). (a) The scatter plot and
perfect alignment line. (b) The logarithmic residuals.

TABLE 3 Statistical metrics of the A&K-1979 GMPE and
developed ANN-GMM.

GMM Bias Sigma MAE RMSE R2 score

A&K1979-1 12.9530 9.0744 12.9530 15.8154 −73.5202

A&K1979-2 −0.0120 1.4008 0.3743 1.4008 0.4154

ANN-model −0.0076 0.5971 0.4416 0.5972 0.4601 (46%)

ANN-based model aligns more closely with observed PGA values,
while A&K-1979-1, exhibits more variability and higher predictive
uncertainty.This further highlights the superior predictive capability

and consistency of the ANN-based GMM, making it a more robust
alternative to the traditional A&K-1979 GMPE for seismic hazard
assessment.

6 Discussion of proposed GMM

6.1 The validation of the GMM

Upon training completion, the ANN-model is tested on an
unseen dataset to evaluate its predictive performance. For the
validation, we used the secondary dataset in which 268 records
of ground motion exist (Figure 4). Predicted log PGA values are
converted back to PGA (cm/s2) for comparison with observed
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FIGURE 7
Training and validation plots of ANN model. (a) MSE. (b) MAE.

values. The model’s accuracy is assessed using standard statistical
measures, including Bias, Sigma,Mean Absolute Error (MAE), Root
Mean Squared Error (RMSE) and R2 – coefficient of determination
(Mohammadi et al., 2023). Figure 7 illustrates the training and
validation Loss and MAE trends of the model. The training and
validation loss (Figure 7A) is a plot of Mean Squared Error (MSE;
y-axis) versus the epochs (x-axis). MSE is a measure of how far
the model’s predictions deviate from the actual values. Decreasing
training loss means that the model is learning and improving
its predictions. Increasing validation loss means that this may
indicate overfitting after a certain number of epochs. When a gap
between training and validation loss is small, the case is normal,
but a large gap suggests overfitting (the model is performing well
on training data but poorly on unseen data). The training and
validation MAE (Figure 7B) is a plot of Mean Absolute Error
(MAE; y-axis) versus the epochs (x-axis). If both training and
validation MAE decrease, the model is learning well. If validation
MAE starts increasing while training MAE keeps decreasing, the
model is overfitting. Ideally, both training and validation loss/MAE
should gradually decrease and then stabilize at a low value. There
should be a small gap between training and validation loss/MAE.
If validation loss/MAE starts increasing while training loss/MAE
keeps decreasing, the model is memorizing the training data but
failing to generalize to unseen data, which is the case of overfitting.
Similarly, if both training and validation loss/MAE remain high,
the model is too simple and is failing to learn the data patterns,
which is the case of underfitting. When it comes to our results,
loss (Figure 7A) starts high at the beginning and rapidly decreases
within the first few epochs, which is expected as the model
learns. After about 10–20 epochs, both the training loss (blue
line) and validation loss (orange line) stabilize around a similar
level. The validation loss does not increase significantly, meaning
there is no severe overfitting. Some fluctuations in the validation
loss are visible, which is normal. The MAE (Figure 7B) follows a
similar pattern to the loss. The validation MAE is slightly higher
than the training MAE but remains stable. Some fluctuations in
validation MAE indicate some variability in model performance,

but overall, the difference is small. No major overfitting is observed.
Overall, the model is relatively stable. Moreover, we present the
predicted versus observed PGAs (Figure 8A) and residuals versus
hypocentral distance (Figure 8B) obtained from secondary-testing
dataset, where we observe grouping of scatters around the perfect
line (red dashed line).

The performance of the developed artificial neural network
ANN-based GMMwas evaluated using statistical metrics, including
bias, standard deviation of residuals (sigma), mean absolute error
(MAE), root mean squared error (RMSE), and the coefficient of
determination (R2). Table 3 shows the obtained estimations of the
metrics.Themodel exhibited a near-zero bias of −0.0076, indicating
minimal systematic over- or under-prediction of peak ground
acceleration (PGA). The residuals showed a standard deviation
(sigma) of 0.5971, reflecting moderate variability in prediction
errors, which is expected given the inherent uncertainty in ground
motionmodeling.TheMAEwas found to be 0.4416, suggesting that,
on average, the predicted PGA deviates by a factor of 10^0.4416
≈ 2.75 from observed values. The RMSE, which penalizes larger
errors more heavily, was 0.5972, further reinforcing the moderate
dispersion of residuals. The ANN model achieved an R2 score
of 0.4601 (46%), indicating that the model explains 46% of the
variance in the observed PGA values. While the R2 value suggests
room for improvement, the model remains acceptable given certain
limitations, which will be discussed below. Given these results,
the model provides a reasonable first approximation for PGA
prediction and can be considered suitable for preliminary seismic
hazard assessments, particularly in data-limited regions or as a
complementary tool alongside traditional GMPEs.

Regarding the Figures 9, 10 we observe that model trained the
dataset well and works in an acceptable level for both training
(Figure 9) and testing (Figure 10) datasets. However, Figures 10C, D
show that the ground motion model performs poorly during the
tests for high-magnitude earthquakes. Reversely, the performance
is moderate or even better for smaller magnitudes (Figures 10A, B).
This is not actually about themodel, but it is about the content of the
database, which is discussed in the limitations section.
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FIGURE 8
PGA Predictions of ANN-based GMM for Azerbaijan versus real PGA values of testing dataset. (a) Predicted vs. Observed PGA scatters around perfect fit
line in logarithmic scale. (b) Logarithmic residuals vs. hypocentral distance scatters around perfect fit line. (c) Logarithmic residuals vs. predicted
logarithmic PGA scatters around perfect fit line. (d) Scatters of observed PGA values based on testing set versus prediction of A&K-1979-1, A&K-1979-2,
ANN-model around perfect line. (e) The logarithmic residuals.

6.2 Limitations of the GMM

During the 2022–2024 period, Azerbaijan experienced no
significant earthquakes. The largest earthquakes, with magnitudes
of M = 5.1, 5.5, 5.9, 6.0, and 6.1, occurred in Iran or along
the Iranian-Azerbaijani border. An earthquake with a magnitude
of M = 5.8 occurred in Dagestan. In the Caspian Sea, near the
northeastern coast of Azerbaijan, two earthquakes with magnitudes
of M = 5.6 occurred at depths of 66 and 70 km on 03.07.2023
and 07.12.2023, respectively. Although these events may appear
significant due to their magnitudes, they were not felt strongly in
Azerbaijan and in some cases, were practically undetectable. The
nearest station in Azerbaijan recorded a peak ground acceleration
(PGA) of 0.14 cm/s2 from the strongest Iranian earthquake, with a

magnitude ofM = 6.1 and a depth of 10 km, which occurred 241 km
away (Figure 11). As a result, the seismicity inAzerbaijan during this
period was dominated by small-magnitude events. Our ANN-based
model was trained on this database, where the highest recorded PGA
was approximately 16 cm/s2. Themodel, therefore, “recognized” the
region as being relatively weak in terms of seismic hazard levels.
This limitation affects the model’s ability to predict larger ground
motions accurately. This issue stems from the composition of the
dataset, but we chose not to exclude records with high magnitudes
but low PGAs to avoid artificially reducing the dataset size during
model training. Mohammadi et al. (2023) highlight the critical role
of the dataset used in seismic hazard analysis, stressing its impact on
the applicability of GMMs. Furthermore, Karimzadeh et al. (2024)
identify this limitation as a key drawback of GMMs, especially in
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FIGURE 9
PGA vs. hypocentral distance for constant magnitude. Model predictions versus training set. Sigma ∼0.6. (a) M = 3. (b) M = 4. (c) M = 5. (d) M = 6.

FIGURE 10
PGA vs. hypocentral distance for constant magnitude. Model predictions versus testing set. Sigma ∼0.6. (a) M = 3. (b) M = 4, 4.1, 4.2. (c) M = 5.1.
(d) M = 5.8.
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FIGURE 11
28.01.2023 M = 6.1, h = 10 km, Iran Khoy earthquake. (a) Distance from Azerbaijan stations that recorded the earthquake. The records of Khoy
earthquake from (b) DSKN, (c) TOVZ, (d) HASN, (e) ZRNV, (f) MV08 stations. The PGAs at DSKN, TOVZ, HASN, ZRNV, MV08 stations for this earthquake
are 0.136, 0.187, 0.109, 0.053, 0.055 cm/s2 respectively.

regions lacking recorded large-magnitude events, as also noted by
Gianniotis et al. (2014). This concern is relevant to our study, where
the absence of strong-motion records for large-magnitude events
has influenced both the development and validation of the model.
Similar challenges are discussed in the works of Temiz et al. (2024),
Rezaeian et al., (2024), Yamamoto and Baker (2013).

6.3 Future work

To overcome the limitations mentioned above, previous studies
tend to generate synthetic dataset and conduct ground motion
simulations based on them. Temiz et al. (2024) simulate ground
motions for the North Tabriz Fault in northwest Iran, which
exhibits a significant seismic gap (Temiz et al., 2024). Ground
motion simulations offer critical insights into the potential effects

of earthquakes, especially in areas with scarce recorded seismic
data, facilitating more precise risk assessments and the formulation
of effective mitigation strategies (Temiz et al., 2024). Rather than
relying solely on future earthquakes, synthetic ground motion
simulations can be used to expand recorded datasets by generating
both historical and hypothetical events. These simulations have
been extensively applied in various studies to reconstruct past
earthquakes, explore potential seismic scenarios, assess structural
demands across different building types, and GMMs (Temiz et al.,
2024; Withers et al., 2020). Several studies have utilized ground
motion simulations to reconstruct historical earthquakes and
validate their results against empirical data. For instance, Tanırcan
and Yelkenci-Necmioğlu (2020) modeled the 2017 Bodrum-Kos
earthquake. More recently, Can et al. (2021) conducted simulations
of the 2002 Çay earthquake in Türkiye, further demonstrating
the applicability of such methods in seismic analysis. To mention

Frontiers in Earth Science 14 frontiersin.org

https://doi.org/10.3389/feart.2025.1571640
https://www.frontiersin.org/journals/earth-science
https://www.frontiersin.org


Babayev et al. 10.3389/feart.2025.1571640

further examples, Turkish authors such as Ugurhan and Askan
(2010), Özmen et al. (2020), Askan et al. (2013), Karimzadeh
and Askan (2018), Cheloni and Akinci (2020), Arslan Kelam et al.
(2022) have employed stochastic simulation techniques to address
the scarcity of recorded accelerograms for large-magnitude events
by generating ground motions simulations (Ugurhan and Askan,
2010; Ozmen et al., 2020; Askan et al., 2013; Karimzadeh and
Askan, 2018; Cheloni and Akinci, 2020; Arslan Kelam et al., 2022).
They modeled several major historical earthquakes in Türkiye,
including the 1999 Düzce (Mw 7.1), 1939 and 1992 Erzincan
(Mw 7.8, 6.6 respectively) as well as more recent events such
as the 2020 Elazığ (Mw 6.8) and 2023 Kahramanmaraş (Mw
7.8) earthquakes. Karimzadeh et al. (2024) produces ANN-based
GMM for Türkiye using simulated records with stochastic method.
Furthermore, several studies have focused on validating synthetic
records from both seismological and engineering perspectives
(Fayaz et al., 2020; Karimzadeh, 2019; Karimzadeh et al., 2019;
Karimzadeh et al., 2020; Karimzadeh et al., 2021).

To conclude, ground motion simulations using synthesized
acceleration data present an optimal approach to addressing the
scarcity of recorded datasets, particularly for large-magnitude
events, where data limitations are most pronounced.

7 Conclusion

This paper evaluates the applicability of A&K-1979 for
Azerbaijan by comparing its predictions against a strong-motion
dataset with 500 records. The analysis revealed significant
discrepancies between the GMPE-suggested ground motion and
observed data.The high groundmotion version (A&K-1979-1, PGA
≥160 cm/s2) systematically overestimated PGA values, as indicated
by the negative residuals concentrated between −3.5 and −1.5.
In contrast, the low ground motion version (A&K-1979–2, PGA
<160 cm/s2) exhibited underestimation. These findings underscore
the limitations of applying A&K-1979 in the region, emphasizing
the need for a more regionally adapted model.

To address this gap, we developed an ANN-based GMM for
Azerbaijan training the 500 records-dataset and assessed its predictive
performanceusingunseentestingsetof268groundmotionrecords for
validation.Themodel exhibited a bias of −0.0076, indicatingminimal
systematic over- or under-prediction. The standard deviation of
residuals(sigma)was0.5971,while themeanabsoluteerror(MAE)and
rootmean squared error (RMSE)were 0.4416 and0.5972, respectively.
The ANN-based GMM achieved an R2 score of 0.4601 (46%),
explaining nearly half of the variance in the observed PGAvalues.The
training and validation loss curves confirm that the model avoided
severe overfitting. While the ANN-GMM demonstrated satisfactory
predictive capability for small to moderate magnitude events, its
performance for high-magnitude earthquakes was influenced by the
limited number of strong-motion records in the dataset. Despite this
limitation, the proposed ANN-based GMM provides a more reliable
alternative to A&K-1979 for Azerbaijan, particularly for preliminary
seismic hazard assessments.

Future improvements may focus on expanding the dataset
through synthetic ground motion simulations and incorporating
additional seismological parameters to enhance model accuracy,
especially for large-magnitude events.

8 Model provision

We provide the readers with the link to our GitHub repository
where they can find the ANN-GMM model in. h5 format, a pkl-
extension file that normalizes the input features of the model, two
Python scripts in Jupyter notebook format to execute the model
for single and multiple PGA predictions and a readme file for the
detailed instructions. The link to the GitHub repository: https://
github.com/turalbabaev/ANN_GMM_AZE_2025.git.
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