Skip to main content

ORIGINAL RESEARCH article

Front. Earth Sci.

Sec. Geohazards and Georisks

Volume 13 - 2025 | doi: 10.3389/feart.2025.1571640

DEVELOPMENT OF ANN-BASED DATA-DRIVEN GROUND MOTION MODEL FOR AZERBAIJAN USING TEMPORAL EARTHQUAKE RECORDS OF 2022-2024

Provisionally accepted
  • 1 Institute of Geology and Geophysics, Ministry of Science and Education, Baku, Azerbaijan
  • 2 Nazarbayev University, Nur-Sultan, Kazakhstan

The final, formatted version of the article will be published soon.

    This paper evaluates the applicability of the Soviet-era ground motion prediction equation (named as A&K-1979), comparing its predictions against a strong-motion dataset of 500 records. Additionally, an Artificial Neural Network (ANN)-based ground motion model (GMM) is developed for Azerbaijan to improve predictions of horizontal peak ground acceleration (PGA) for seismic hazard analyses. GMMs are essential tools in civil and earthquake engineering and machine learning algorithms are increasingly used to address the limitations of linear empirical models by capturing complex, nonlinear ground motion behaviors. The performance of A&K-1979 is assessed using the most up-to-date dataset (2022-2024), while a novel ANN-based approach is introduced for Azerbaijan. A&K-1979-1 (for PGA ≥ 160 cm/s²) overestimates predictions, whereas A&K-1979-2 (for PGA < 160 cm/s²) underestimates them. The ANN model is trained on the dataset of 500 records to predict the horizontal PGA. The model consists of an input layer (earthquake magnitude and hypocentral distance), followed by three hidden layers (32-32-16 neurons), using the Rectified Linear Unit (ReLU) activation function. The model is validated using a testing dataset of 268 records, with performance evaluated based on bias, standard deviation of residuals (sigma), mean absolute error (MAE), root mean squared error (RMSE) and R². The ANNbased GMM achieved a bias of -0.0076, sigma of 0.5971, MAE of 0.4416, RMSE of 0.5972 and an R² of 0.4601. Despite some limitations, the results demonstrate that the ANN-based GMM provides a more reliable alternative to A&K-1979, particularly for preliminary seismic hazard assessments in Azerbaijan.

    Keywords: artificial neural network, ground motion model, A&K-1979, Azerbaijan, Earthquake records, seismic hazard

    Received: 05 Feb 2025; Accepted: 25 Feb 2025.

    Copyright: © 2025 Babayev, Babayev, Irawan and Bayramov. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

    * Correspondence:
    Tural Babayev, Institute of Geology and Geophysics, Ministry of Science and Education, Baku, Azerbaijan
    Sonny Irawan, Nazarbayev University, Nur-Sultan, Kazakhstan

    Disclaimer: All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article or claim that may be made by its manufacturer is not guaranteed or endorsed by the publisher.

    Research integrity at Frontiers

    Man ultramarathon runner in the mountains he trains at sunset

    94% of researchers rate our articles as excellent or good

    Learn more about the work of our research integrity team to safeguard the quality of each article we publish.


    Find out more