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The water inrush is one of the most catastrophic emergencies in metro tunnels.
To avoid the potential water inrush, this paper proposes a risk assessment
model for the metro tunnel based on Delphi survey method and machine
learning. The proposed model consists of two parts, the risk assessment index
system and the risk level prediction model. Firstly, by using the Delphi survey
method, appropriate risk factors are assembled into the water inrush risk
assessment index system. To guarantee the accuracy of prediction results,
only the correctly selected risk factors, validated by Grey Relational Analysis
(GRA), are recognized as assessment indexes. Then, the Radial Basis Function
(RBF) network, improved by the Locally Linear Embedding (LLE) algorithm and
the Particle Swarm Optimization (PSO), is applied to predict the risk level.
Training and test sample sets are constructed using engineering data from
Qingdao metro tunnel construction. In the comparison with baseline models,
the proposed model demonstrates the best accuracy and mean square error,
which are 92.5% and 0.015, respectively. The LLE-PSO-RBF model is applied
to the Qingdao Metro Line 4 tunnel project. Three tunnels are predicted by
invoking the trained model, and the risk level of water inrush is I, III and
IV, respectively.
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1 Introduction

With increasing urbanization and growing transportation demands, metro tunnel
engineering is developing rapidly. When tunneling, various disasters often occur caused
by groundwater (Gong and Guo, 2021; Wang et al., 2020; Sousa and Einstein, 2021). The
water inrush hazard is the most common issue encountered in tunneling engineering when
interacting with groundwater, often resulting in serious loss of life and property (Zhu et al.,
2022; Zhang et al., 2023c; Zhang et al., 2023a). Therefore, timely and effective assessment of
the water inrush risk is of great significance in ensuring tunnel safety.

In tunnel engineering, water inrush disasters are influenced by various factors such
as rock properties, hydrological conditions, and construction methods, making their
underlying mechanisms extremely complex (Gong et al., 2025; Li et al., 2018; Xue et al.,
2021; Gong et al., 2024; Feng et al., 2024;Wang et al., 2023;Wu et al., 2019).This complexity
makes it difficult to measure the impact of different factors on water inrush disasters,
which in turn complicates risk assessment. For comprehensive and objective selection
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of risk assessment indexes, the expert questionnaire survey
method has been widely applied, combined with methods such as
Delphi method (Kim et al., 2022), combined weighting method
(Zhang et al., 2023b), and relative importance index (Shelake et al.,
2022), etc., to reduce subjective influence. On the other hand, the
collation and analysis of past disasters can help people recognize
their mechanics and develop effective reference for prevention
(Beard, 2010; Liu et al., 2022b; Liu et al., 2022a). Subsequently,
scholars quantitatively assess risks with various methods, including
Analytic Hierarchy Process (AHP) (Sun and Guan, 2024; Wu et al.,
2011), cloud model (Yang et al., 2016), fuzzy comprehensive
evaluation method (Li et al., 2011; Li and Zou, 2011), Fault
Tree Analysis (FTA) (Hyun et al., 2015), risk matrix method,
matter element expansion model, etc. Peng et al. (2020) proposed
eight evaluation indexes and corresponding grading standards for
water inrush by comprehensively analyzing the contributing factors,
and established a cloud model for risk evaluation through the
comprehensive standardization process and AHP with application
to the Longjinxi Tunnel. Benekos and Diamantidis (2017) discussed
three methods, qualitative, semi-quantitative and quantitative, and
proposed a risk analysis and assessment methodology applicable
to road tunnels based on the selection of the best integrated
framework in terms of risk reduction, socio-economic factors,
and safety measures. Ou et al. (2021) proposed a tunnel risk
assessment model that integrates Dempster-Shafer (D-S) evidence
theory and geological advance investigation, which was validated
and applied in the Yuxi Tunnel. And with the development of
Artificial Intelligence algorithms, it has become an indispensable
tool for risk assessment in geotechnical engineering (Su et al.,
2024; Liang et al., 2014; Gong, 2021; Lu et al., 2020; Zhang, 2024;
Borg et al., 2014; Zhang et al., 2014; Zhang et al., 2016). Based
on BN, Wang et al. (2014) proposed a tunnel risk probability
assessment and predicted the damage risk of the existing property
of the tunnel. Kovačević et al. (2021) developed a prediction model
for long-term deformation of tunnels in soft rock strata based on
Particle Swarm Optimization (PSO) and neural network. Feng and
Zhang (2021) established a tunnel stability assessment model with
adjacent tunnel construction as the main influencing factor based
on neural network optimized by PSO. Mahmoodzadeh et al. (2021)
systematically analyzed the applicability of six machine learning
methods in predicting tunnel water inrush, including Long Short-
Term Memory (LSTM), Deep Neural Networks (DNN), k-Nearest
Neighbors (KNN), Gaussian Process Regression (GPR), Support
Vector Regression (SVR), andDecision Trees (DT), and ranked their
performance based on prediction accuracy.

In this paper, the case study of water inrush in different tunnel
is used as a basis for analyzing and selecting the influencing factors
using Delphi survey method. The risk assessment index system is
constructed using the selected factors by referring to the Guidelines
on Risk Assessment for Safety in the Design of Highway Bridge
and Tunnel EngineeringWorks, whose accuracy is verified by GRA.
Based on the RBF neural network improved with LLE algorithm and
PSO, a risk predictionmodel of tunnel water inrush was established.
The engineering data of Qingdao metro tunnel was collected as the
learning dataset for the evaluation model, and the risk prediction
results were compared with other methods. Finally, the model was
verified by a real arithmetic example of Qingdao Line 4 between
Jing-sha section.

FIGURE 1
The flow chart of the proposed model.

FIGURE 2
Conceptual diagram of the PSO.

FIGURE 3
Schema of LLE-PSO-RBF network.

2 Evaluation methods and rationale

2.1 Overview of the assessment model

This paper proposed a novel risk assessment model for water
inrush in metro tunnel, comprised a factor screening model to
establish the risk assessment index system and a prediction model
to predict the risk level. This model incorporates a variety of
theories, including Delphi survey method, GRA, RBF network, LLE
algorithm and PSO, which detailed process is shown in Figure 1.

The water inrush in metro tunnels is a result of the coupling
interaction with various factors. As shown in Figure 1, based
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TABLE 1 Analysis of main risk factors.

Cases Methods Risk factors

A tunnel in Xinjiang,
China

BP neural network

Engineering geology

Hydrogeology

Construction design

A tunnel in Henan,
China

Comprehensive fuzzy
evaluation

Other natural factors

Engineering geology

Hydrogeology

Construction design

Construction method

Yunshan Tunnel
AHP-ideal point

method

Unfavorable geology

Stratum lithology

Hydraulic conditions

Human factors

A deep-buried
extra-long tunnel

BP neural network

Unfavorable geology

Stratum lithology

Water table

Topography and
landforms

Inclination of the rock
layer

Fracture of surrounding
rock

A tunnel in a fault zone Set pair analysis model

Stratum lithology

Surrounding rock grade

Fault character

Fracture development
degree

Surface water
catchment area

Tunnel buried depth

Construction
interference degree

(Continued on the following page)

on investigating the existing findings, including water inrush
assessment cases and relevant norms, the Delphi method is used to
select potential water inrush evaluation indexes, which have a large
impact. After several rounds of screening by the Delphi method, the
water inrush assessment index system is established.Meanwhile, the
GRA is introduced to verify the accuracy of the assessment index

TABLE 1 (Continued) Analysis of main risk factors.

Cases Methods Risk factors

A karst tunnel
Combined

empowerment TOPSIS
method

Rock occurrence

Topography and
landforms

Geological structure

Climatic precipitation

Stratum lithology

Water table

A tunnel in Kangding,
China

Combined
empowerment TOPSIS

method

Disaster-pregnant
environment

Disaster-causing factors

Positive driving factors

Negative driving factors

Disaster-bearing body

A tunnel in Yiwan,
China

Multi-level fuzzy
evaluation

Stratigraphic factors

Geological structure

Topography and
landforms

Hydrogeology

FIGURE 4
Delphi flow chart.

system. The subsequent prediction of the water inrush risk will not
be proceeded unless the constructed assessment index system is
verified for accuracy. Then, the RBF network is used as a tool for
predicting the water inrush risk. In the RBF network architecture,
the LLE algorithm is introduced for data preprocessing to eliminate
redundant information, while the PSO algorithm is used to help the
RBF network find the optimal parameter combination to improve
computational performance. Finally, the constructed risk prediction
model is validated and applied.

2.2 Delphi survey method

The Delphi survey method (Kim et al., 2022) is essentially a
feedback anonymous inquiry method that provides multiple rounds
of controlled feedback surveys and finally reaches the consensus
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TABLE 2 Delphi investigation results.

Main hierarchy Subordinate hierarchy First round Second round Third round

(CVR) (Importance) (CVR) (COV)

Engineering geology A

Grade of surrounding rock 1.00 100 0.81 0.15

Rock mass integrity 0.95 95 1.00 0.13

Weathering degree 0.62 71 0.71 0.17

Fracture development 0.62 90 0.62 0.17

Ratio of soft to hard strata 0.43 65 0.43 0.27

Uniaxial compressive strength 0.48 58 – –

Hydrogeology B

Permeability coefficient 0.81 90 1.00 0.11

Catchment area 1.00 88 1.00 0.12

Water head height 0.62 91 0.71 0.2

Water-richness 0.62 72 0.43 0.15

Construction Design C

Buried depth of tunnel 0.81 85 1.00 0.11

Tunnel section width 0.62 85 0.71 0.17

Excavation disturbance 0.38 – – –

Natural condition D

Landform 0.81 88 0.90 0.20

Average monthly rainfall 0.90 84 0.81 0.16

Seasonal distribution 0.14 – – –

of the expert group. This method, characterized by anonymity,
feedback and statistics, can significantly eliminate the effect of
authority and subjectivity on the results, making the evaluation
results objective and credible, and avoiding the shortcomings that
only reflectmajority opinions in expertmeetings. In thismethod, the
importance of each survey result was determined by calculating the
content validity ratio (CVR) of each round of survey results, which
is shown in Equation 1.

CVR =
ne −N/2
N/2

(1)

In Equation 1, ne indicates the number of members considering
the element to be indispensable and N is total number of team
members. The closer the CVR is to 1, the more closely aligned the
number of members considering the factor essential is to the total.
The Coefficient of Variation (COV) is used to verify the final Delphi
survey results, and if the COV is greater than 0.8, an additional
round of investigation will be required for this result.

2.3 Grey relational analysis (GRA)

GRA is an analytical method that quantitatively describes the
development trend of a system by assessing the correlation between

reference and comparison data columns. It can demonstrate the
magnitude of relation between different sequences, and can be used
to characterize the sensitivity of results to different factors. The
correlation coefficient is determined by five steps:

1. Determine the analysis sequence.

The risk level is defined as the parent sequence that reflects the
characteristics of the system, and assessment indexes are defined
as subsequences that affects the system. In this paper, the parent
sequence and n subsequences of the measured water inrush data
of the m (number of data groups) group are used to analyze and
construct the original data matrix as shown in Equation 2.

[X] =
[[[[

[

x1,0 ⋯ x1,n
⋮ ⋱ ⋮

xm,0 ⋯ xm,n

]]]]

]

(2)

2. Dimensionless processing.

Due to variations in dimensions across different indexes, the
error is too large in the analysis and comparison, making it difficult
to draw correct conclusions. In order to reduce the analysis error
caused by different dimensions, the original data was processed
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TABLE 3 Assessment indexes of tunnel water inrush.

Level 1 index Level 2 index Risk level

I (Low) II (Mid) III (High) IV (Very)

Engineering geology A

Grade of surrounding rock A1 I, II III IV V, VI

Rock mass integrity A2 Intact Relative Crushed Utterly

Weathering degree A3 (1, 0.9) [0.9, 0.8) [0.8, 0.6) ≤ 0.6

Fracture development A4 Not Weak Medium Strong

Ratio of soft to hard strata A5 <25 [25, 50) [50, 75) ≥75

Hydrogeology B

Permeability coefficient B1 <0.01 [0.01, 1) [1, 10) ≥10

Catchment area B2 <20 [20, 40) [40, 60) ≥60

Water head height B3 <10 [10, 30) [30, 60) ≥ 60

Water-richness B4 No Slightly Relative Rich

Construction Design C
Buried depth of tunnel C1 <10 [10, 30) [30, 50) ≥50

Tunnel section width C2 <8.5 [8.5, 12) [12, 14) ≥14

Natural condition D
Landform D1 Flat Ramp Ravine Denuded

Average monthly rainfall D2 <60 [60, 80) [80, 100) ≥100

TABLE 4 Grey correlation between factors.

A1 A2 A3 A4 A5 B1 B2 B3 B4 C1 C2 D1 D2

I 0.96 0.94 0.49 0.97 0.89 0.66 0.89 0.88 0.67 0.91 0.70 0.66 0.69

II 0.93 0.79 0.74 0.76 0.94 0.54 0.94 0.79 0.54 1.00 0.89 0.86 0.91

III 0.93 0.89 0.76 0.88 0.94 0.82 0.94 0.86 0.61 0.91 0.93 0.86 0.91

IV 0.96 0.83 0.48 0.82 0.89 0.47 0.89 0.82 0.33 1.00 0.68 0.66 0.69

0.95 0.86 0.62 0.86 0.91 0.62 0.91 0.84 0.54 0.95 0.80 0.76 0.80

using initial value method. The data processing is mathematically
represented as shown in Equation 3:

X′ = xij/xi1 (3)

where i = 1, 2,⋯ , m; j = 0, 1,⋯ n.

3. Calculate the correlation coefficient.

The gray relational coefficient between the subsequence and the
parent sequence is calculated according to Equation 4:

ξij =
min{|X′ij −X

′
i0|} + ρmax{|X′ij −X

′
i0|}

|X′ij −X
′
i0| − ρmax{|X′ij −X

′
i0|}

(4)

where ξij is the correlation coefficient between the ith parameter of
the jth subsequence and the ith parameter of the parent sequence,

max {|X′ij −X
′
i0|} is the maximum difference between the parent

sequence and subsequences, ρ is the differentiation coefficient, with
values in the range [0,1].

4. Correlation calculation.

The average value obtained by averaging the correlation
coefficient series is the correlation degree, through Equation 5 as
shown below:

γ0i =
1
n

n

∑
i=1

ξij (5)

Correlation coefficient γ0i > 0.5 indicates that there is a
relatedness between the parent sequence and subsequences,
and the γ0i closer it is to 1, the higher the correlation is
between the two.
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TABLE 5 Sample data.

No. Level A1 A2 A3 A4 A5 B1 B2 B3 B4 C1 C2 D1 D2

1 I II Intact 0.85 Not 36.98 0.004 41.3 3.01 Slightly 12.6 6.2 Flat 59.5

2 II IV Crushed 0.5 Weak 84.4 2.851 69 8.84 Rich 12.8 6.2 Flat 59.5

3 IV V Utterly 0.3 Medium 85.7 4.493 77.2 12 Rich 14 6.2 Flat 59.5

4 IV VI Utterly 0.3 Strong 91 25.92 75 10.47 Rich 13.95 6.2 Ramp 59.5

5 II IV Crushed 0.7 Weak 34.48 0.001 11 1.28 Slightly 11.6 5.2 Ramp 57.9

6 IV V Utterly 0.3 Strong 69.56 5.184 28.4 3.27 Relative 11.5 5.2 Ramp 57.9

7 II V Crushed 0.5 Strong 21.8 0.004 0.1 0.1 Slightly 11 5.2 Flat 57.9

8 II V Crushed 0.5 Weak 53.84 5.184 31.2 3.25 Slightly 10.4 5.2 Flat 57.9

9 IV VI Crushed 0.2 Medium 94.12 15 77.4 9.73 Rich 13.6 6.4 Ramp 57.9

10 III V Crushed 0.4 Weak 93.75 0.1 74.5 11.92 Rich 16 6.4 Flat 57.9

11 I IV Intact 0.4 Not 32.65 0.01 1.63 0.16 Slightly 9.8 6.4 Denuded 57.9

12 IV VI Utterly 0.3 Strong 91.76 0.5 84.1 13.12 Rich 15.6 6.4 Flat 57.9

13 II II Crushed 0.8 Medium 52.9 0.5 21.0 22 Relative 25.5 9.0 Ramp 57.5

14 I II Intact 0.75 Weak 60 0.5 28.0 22 Rich 25 5.9 Ramp 57.5

15 II III Crushed 0.7 Weak 60 3.2 11.6 19 Rich 23 5.9 Flat 57.5

16 III II Crushed 0.85 Medium 111.5 0.5 75.1 18.6 Relative 20 5.9 Flat 57.5

FIGURE 5
Results of the proposed model and baseline models.

3 Improved RBF network model
optimized with LLE and PSO

The RBF neural network, composed of input, hidden, and
output layers, is a feed forward neural network renowned for its

FIGURE 6
The ground collapse.

excellent classification and approximation capabilities (Wang et al.,
2018). It has simple learning rule, fast convergence speed, high
stability and strong self-learning ability, and can create more
accurate estimation value under the condition of small number
of samples (Liu et al., 2020).

In RBF network training, the more number and dimensionality
of original data, the more time and amount of calculation are
needed. Therefore, the LLE algorithm is used to reduce the data
dimension, creating a low-dimensional data set to optimize the
RBF input layer. The LLE algorithm is a non-linear dimensionality
reduction method that maps data from a high-dimensional space
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FIGURE 7
The geological conditions near the collapse area.

to a low-dimensional space while preserving the original structural
information (Roweis and Saul, 2000). Its fundamental concept is
to assume that the data is linear in a smaller local space, in which
a certain point can be approximately linearly represented by other
points in the neighborhood (Chen and Liu, 2011). It is calculated
as follows:

1. Select point Xi and its k nearest neighbors X(k)i .

Suppose there are D points in a space. Calculate the euclidean
distance between point Xi and the other D− 1 points in the space,
and select the k points that are closest to point Xi.

2. Calculate the weighting coefficient wij between Xi and X(k)i .

Xi can be approximated linearly from X(k)i by a coefficient vector
wi. The wi is composed of a set wij, and satisfies the loss equation
as shown in Equation 6.

w∗i = argwi
min1

2
||Xi −wiX

(k)
i ||

2 (6)

where argwi
min means finding the weights that minimize the

loss function.

3. Construct low-dimensional data collections.

Assuming that the corresponding low-dimensional projections
of Xi and X(k)i are Yi and Y(k)i , which satisfy the same linear
relationship, the low-dimensional data is mathematically
represented as shown in Equation 7:

Y∗ = argminY∑||Yi −w∗i Y
(k)
i ||

2 (7)

where Y
∗
is an n× d matrix that represents the low-dimensional

embedding of the original data.
Additionally, as the RBF network uses the radial basis

function as its activation function, the selection of center points
significantly impacts its computational performance. Therefore,
the PSO algorithm is introduced to help the RBF network find
the optimal parameter combination. The PSO algorithm (Kennedy
and Eberhart, 1995) is an method that can optimize nonlinear and
multi-dimensional problems, the basic concept of which is to create
a fully linked swarm in the space where particles move and share
information amongst themselves to find the place that best suits
their needs, as shown in Figure 2. Each particle has two attributes:

position xi,d and velocity vi,d, and it continuously updates its position
according to Equation 8 and Equation 9,

xi,d (it+ 1) = xi,d (it) + vi,d (it+ 1) (8)

vi,d (it+ 1) =ωvi,d (it) +C1 ×Rnd (0,1) × [pbi,d (it) − xi,d (it)]

+C2 ×Rnd (0,1) × [gbd (it) − xi,d (it)]
(9)

whereω is the inertia weight,C is constant, Rnd is a randomnumber
ranging from 0 to 1, pbi,d is the optimal position of particle i, gbd is
the optimal position of all particles.

The schema of improved assessmentmodel is shown in Figure 3.

4 Model validation

4.1 Establishment of water inrush risk
assessment index system

As water inrush hazards result from the coupling of various
factors, the primary task in risk assessment is to identify the
contributing factors. These factors are characterized as having a
significant effect on the potential for tunnel water inrush.Therefore,
the rationality of factor selection directly affects the reliability of
subsequent risk assessment results.

Li et al. (2018) have conducted a detailed analysis of various
water inrush disasters and their corresponding triggering factors by
reviewing numerous tunnel water inrush cases. On this basis, while
combining several risk assessment cases as shown in Table 1, the
types of main factors influencing the tunnel water inrush have been
identified. There are four types of factors, including engineering
geology, hydrological conditions, construction design and other
natural conditions.

The above-mentioned four types of factors are first-level indexes
affecting water inrush, which need to be further refined into second-
level indexes before conducting the risk level prediction. In order to
ensure the objective and accurate selection of possible risk factors,
Delphi multi-round survey method was used for screening. In
this study, an expert investigation team with 30 invited experts
was formed, including professors of tunnel engineering, design
experts and researchers with advanced experience. After that, the
above-mentioned potential risk factors were screened to identify
secondary risk indexes, based on an anonymous feedback method
involving two rounds of screening and one round of validation,
as shown in Figure 4.

The risk factors listed in Table 1 are specific to a particular
project and are not directly applicable to a new project. To establish
a universal risk assessment index system, we derived the risk
factors in Table 2 based on previous research findings, combined
with our experience in tunnel engineering and expert consultations.
And then, a questionnaire was designed to survey these factors.

In the first round of Delphi survey, experts evaluated the
rationality of the 16 risk factors in the inquiry form and calculated
the CVR value to verify the applicability of these factors. After
calculation, two factors were considered unsuitable for subsequent
assessment, as a CVR value of less than 0.4. The remaining 14
factors proceeded to the second roundof screening, where the expert
investigation team scored each factor according to its importance. In
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TABLE 6 Data from different tunnels.

No. A1 A2 A3 A4 A5 B1 B2 B3 B4 C1 C2 D1 D2

1 II Intact 0.8 Not 16.2 0.0026 21.6 1.4 Relative 16.2 7.4 Flat 118.6

2 IV Crushed 0.75 Medium 87.4 0.5184 77.2 15.94 Rich 17.7 7.4 Flat 118.6

3 V Crushed 0.7 Strong 80 0.5184 74.2 17.9 Rich 19 7.4 Denuded 118.6

the second round, one factor was unsatisfactory for risk assessment
with a score of less than 60 and therefore it was not considered for
participation in the third round of Delphi survey. The remaining
13 elements are selected as the contents of the third round of
inquiry form, and the results of the first two rounds of inquiry form
and the survey data of Qingdao tunnel are attached for experts’
reference to judge the feasibility of each factor as risk evaluation
index.Meanwhile, the COVwas used to verify the final investigation
result. If the COV is greater than 0.8, an extra round of investigation
needs to be added for the result. The results show that all 13 risk
elements CVR and COV meet the requirements, which indicates
that they can be used as the secondary index for constructing the
risk assessment system.

In accordance with the results of the three rounds of survey,
the tunnel risk evalua-tion system was established finally, including
4 primary index layers and 13 secondary dependent indexes.
With the risk factors selected, they are categorized into different
ranges corresponding to different risk levels. Based on engineering
specifications, while considering the geological characteristics
and construction features of Qingdao area, the risk assessment
index system for water inrush in metro tunnel is proposed
as shown in Table 3.

In addition, GRA was used to verify the reasonableness of
risk factor selection. Taking the risk level as the parent sequence
and the quantitative index values as the subsequence, the gray
correlation coefficients between the parameters were calculated
and homogenized, and the correlations obtained are shown in
Table 4. In Table 4, the correlation of all factors was greater than 0.5,
indicating that the risk factors selected based on the Delphi survey
method were reliable and reasonable.

4.2 Model analysis

In this paper, 16 groups of tunnel data of Qingdao Metro were
selected as the training data for the assessment method. The source
of this dataset is the geological and construction materials of the
different section tunnels in Qingdao Metro, including, Kai-sheng
section of Line 1, Shui-kai section of Line 1, Shi-miao section of
Line 2, Wu-nan section of Line 2 and Xin-zhao section of Line 6,
thus it is very reliable and trustworthy. In training, the 13 quantified
risk factor indexes were used as input data for the input layer, and
the water inrush risk class was output from the output layer. During
training, the order of the dataset was disrupted, and the data was
divided into a training set and a test set in a 70:30 ratio. The sample
data of each tunnel section is shown in Table 5.

To validate the effectiveness of the proposed model, the
RBF neural network and CNN were used as baseline models.
Meanwhile, to mitigate the effect of randomness, the test was
repeated 10 times, using overall accuracy (OA) and mean squared
error (MSE) as evaluation metrics. The detailed comparison results
are shown in Figure 5. It can be seen that the proposed model
achieves the best OA and MSE, with values of 92.5% and 0.015,
respectively, among the three models. This indicates that the
proposed model has the best predictive performance. In contrast,
the OA of the CNN and RBF models are relatively lower, at 85%
and 82.5%, respectively, while their MSE are larger, at 0.017 and
0.028, respectively. The possible reasons for the weak prediction of
the baseline models are twofold. Firstly, the hyperparameters of the
RBF and CNN models need to be manually tuned. Additionally,
the training data is relatively small, and the feature distribution
is imbalanced. By constructing the LLE-PSO-RBF model, the
prediction performance is improved with small samples.

5 Case study

5.1 Project overview

The Jing-sha section of Qingdao Metro Line 4 is located between
JingangRoadStationandShazikouStation,LaoshanDistrict,Qingdao.
On27May2019,while tunneling toZDK25+343, a catastrophicwater
inrushoccurred.Thetunnelwater inrushultimately led toa large-scale
ground collapse, forming a deep pit approximately 6 m in depth and
30 m in diameter, as shown in Figure 6. Figure 7 shows the geological
conditionsnear thecollapse region,where the strataconsistofplainfill,
silty clay, amedium-coarse sand layer, and tuff.The rock classification
of the tunnel surrounding is Grade V, characterized by a broken rock
mass and well-developed fractures. And under the impact of blasting
construction, the rock mass is further damaged, increasing the risk of
disasters.The tunnel is buried at a depth of approximately 19.6m,with
thewater table relative to the tunnel vault at 19 m.The thickness of the
saturated sand layer is 7.1m,and it isprone toerosionbywaterflowdue
to its loose properties. The overburden of the tunnel vault is strongly
weathered rock, with a thickness of only 0.7 m. In this unfavorable
situation, continuous rainfall exacerbates the conditions.

5.2 Risk prediction with the proposed
model

In this section, the trained LLE-PSO-RBF model is invoked
to predict the water inrush risk for the metro tunnel. Data
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from three tunnel sections are collected for model prediction,
as shown in Table 6, with No. 3 representing the data from the
aforementioned water inrush disaster tunnel.

Based on the model predictions, the water inrush risk levels
for the three tunnels are I, III, and IV, respectively. During
the actual construction, the management failed to properly
recognize the significant potential risks. In response to the water
seepage at the site, the construction staff used conventional
treatment methods. However, the actual water inflow during
the inrush incident was 4,755.8 m3, demonstrating that this
disaster exceeded the empirical judgment (4,154.4 m3). This
highlights the importance of conducting risk level assessments in
advance, as it enables staff to implement early safety measures
and effectively prevent the occurrence of disasters. Based on the
evaluation results, on-site construction measures can be adjusted
and improved to establish a dynamic mechanism for construction
management.

6 Conclusion

In this paper, a novel risk assessment model for water
inrush in metro tunnels is proposed, including factor selection
and risk prediction. The performance of the proposed model
is verified by comparison with baseline models, and it is
applied to assess a real project. The main conclusions are
as follows:

1. The main risk factors causing tunnel water inrush disaster are
identified as engineering geology, hydrological conditions,
construction design, and natural conditions, based on
which the risk assessment index system for water inrush of
metro tunnel is established with 13 risk factor indicators.
The correlation between risk indexes and risk levels is
calculated using the GRA, indicating that the selection of
risk factors is reasonable as the correlation of each factor is
greater than 0.5.

2. Constructed a water inrush risk level prediction model
for metro tunnels based on the improved RBF model,
which is optimized by LLE algorithm and PSO algorithm.
Different model prediction results comparison proves
that the proposed model have better risk assessment
performance. The model is invoked to predict the water
inrush risk level of the Jing-sha section in Qingdao
Metro Line 4, and the predicted results of each tunnel is
I, III and IV.

Tunnel water inrush is the result of the multi-factor coupling
effect. The complex correlation between risk factors has influence
on assessment results, but in this paper, its influence is not
considered. Therefore, selecting risk factors which are independent
and unaffected by other factors is an issue that should be considered
for subsequent water inrush risk assessments. In addition, applying
different methodologies is necessary to reduce the subjectivity effect
in factor selection.
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