
94% of researchers rate our articles as excellent or good
Learn more about the work of our research integrity team to safeguard the quality of each article we publish.
Find out more
ORIGINAL RESEARCH article
Front. Earth Sci.
Sec. Geohazards and Georisks
Volume 13 - 2025 | doi: 10.3389/feart.2025.1554812
This article is part of the Research Topic Understanding Geomaterial Instability: Physics and Mechanics of Landslides and Seismic Events View all 13 articles
The final, formatted version of the article will be published soon.
You have multiple emails registered with Frontiers:
Please enter your email address:
If you already have an account, please login
You don't have a Frontiers account ? You can register here
In pursuit of eco-friendly soil improvement strategies, this study explores the synergistic potential of cement kiln dust (CKD) and calcium carbide slag (CCS) for expansive soil stabilization.Laboratory investigations encompassed compaction tests, free swelling rate measurements, unconfined compressive strength (UCS) assessments across multiple curing periods, and scanning electron microscopy (SEM). Results indicate that combined CKD-CCS formulations significantly outperform single-stabilizer systems, achieving higher densification, lower swelling ratios, and enhanced mechanical strength. Specifically, a 10% CKD-9% CCS mixture attained a maximum dry density of 1.64 g/cm ³ , reduced the free swelling rate to 22.7% at 28 days, and reached a UCS of 371.3 kPa. SEM images revealed a denser soil matrix with extensive hydration product formation, including calcium silicate hydrate (C-S-H) and calcium aluminate hydrate (C-A-H), which fill interparticle voids and strengthen interparticle bonds. CCS promotes early-stage strength through rapid hydration, while CKD sustains long-term strength via progressive development of C-S-H gels.Together, these dual mechanisms optimize mechanical performance and volumetric stability.Consequently, CKD -CCS blends provide a promising low-carbon alternative for expansive soil stabilization, offering both immediate and sustained performance improvements compared to traditional stabilizers.
Keywords: expansive soil, Cement kiln dust, Calcium carbide slag, soil stabilization, Microstructural analysis, Sustainable construction materials
Received: 03 Jan 2025; Accepted: 11 Feb 2025.
Copyright: © 2025 Yan, Peng, Li, Wang, Zuo, Lv and Wang. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.
* Correspondence:
Wenwei Li Li, Shandong University, Jinan, 250100, Shandong Province, China
Disclaimer: All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article or claim that may be made by its manufacturer is not guaranteed or endorsed by the publisher.
Research integrity at Frontiers
Learn more about the work of our research integrity team to safeguard the quality of each article we publish.