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Full-azimuth angle domain
reverse time migration

Ning Qin and Jianen Xiao*

Shengli Geophysical Research Institute of Sinopec, Dongying, China

With the advent of wide-azimuth and high-density acquisition technologies,
seismic data has become richer and more informative, necessitating advanced
seismic imaging techniques. This paper presents a full-azimuth reverse time
migration imaging approach constrained by wavefield gradients, grounded
in wave theory. The method initiates with an iterative determination of
the propagation direction vector, leveraging gradient information from both
amplitude and phase to bolster the algorithm’s stability and precision. An angle
filter is subsequently formulated within the angle domain imaging condition
to diminish the impact of large-angle energy interference. Following this, full-
azimuth angle domain common imaging gathers are derived through integration
across azimuth and reflection angles. The CPU-GPU collaborative parallel
algorithm and the encoding-decoding-based data compression technology are
also introduced to tackle the challenges of high computational load and limited
storage capacity. Ultimately, numerical experiments validate the efficacy of the
proposed algorithm and its suitability for imaging complex geological structures.
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1 Introduction

With the progression of wide-azimuth and high-density acquisition technology,
seismic data now provides an extensive amount of subsurface information. Nevertheless,
traditional imaging techniques overlook azimuth information and the geological traits
of underground reservoirs, resulting in the underutilization of angle domain data,
including azimuth, reflection, and dip angles of subsurface imaging points. This deficiency
hampers our comprehension of reservoir stress distribution, fracture development,
and the precision of reservoir information depiction. Conversely, full-azimuth imaging
technology harnesses azimuth information fully, effectively mitigating imaging artifacts in
intricate media, and offering a more precise and comprehensive portrayal of subsurface
structural characteristics. Consequently, it is more favorable for reservoir inversion and
fracture prediction.

Full-azimuth imaging technology primarily relies on two distinct theoretical
frameworks: ray-based and wave-based algorithms. The ray-based approach is founded
on geometric ray theory, where it primarily computes travel times, paths, amplitudes,
and other relevant information through ray tracing, thereby providing both flexibility
and computational efficiency. In the industry, Kirchhoff migration stands as a
representative method. Building upon ray theory, Miller et al. (1987) was the first to
introduce the concept of local angle domain imaging. Subsequently, Koren and Ravve
(2011) comprehensively delineated the principles of full-azimuth local angle domain
imaging technology, highlighting its superior capabilities in fracture-cavity imaging
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and reservoir characterization. In recent years, Paradigm’s ES360
imaging technology has gained promotion and application in
various exploration fields, showcasing the benefits of full-azimuth
imaging (Ravve and Koren, 2011). This technology maps seismic
data recorded at the surface to the local angle domain of subsurface
imaging points and traces rays back from these points to the
surface, with all rays participating in imaging to ensure true
amplitude imaging (Inozemtsev et al., 2015; Inozemtsev et al.,
2017). However, ray theory’s limitations restrict its application in
environments with strong lateral velocity variations and complex
structures. Gaussian beam imaging is an enhanced ray-based
imaging technique that blends computational efficiency with
imaging precision, while also offering targeted imaging capabilities
(Hill, 1990; Hill, 2001). Furthermore, it computes propagation
angle information during the migration process, enabling the direct
extraction of angle domain common imaging gathers (Yue, 2011).
As seismic exploration theory continues to evolve and computer
hardware rapidly improves, the theory and methods of Gaussian
beam migration have progressed significantly. However, due to
constraints like computational complexity and storage limitations,
research on full-azimuth Gaussian beam imaging technology
remains limited, falling short of the production requirements for
wide-azimuth and high-density seismic data.

Reverse time migration is a key algorithm within wave-based
methods. It employs the comprehensive acoustic wave equation to
propagate both source and receiver wavefields, thereby transcending
limitations related tomigration dip angle and aperture.This approach
adeptly manages substantial variations in the physical properties
of the Earth’s media, encompassing both vertical and horizontal
directions (Baysal et al., 1983; Symes, 2007). Yoon andMarfurt (2006)
harnessed the Poynting vector to ascertain propagation direction and
refined the imaging condition, effectively mitigating low-frequency
noise in reverse time migration. Wang et al. (2013) leveraged the
first-order stress-velocity equation to compute the Poynting vector,
thereby efficiently extracting angle gathers during the reverse time
migration imaging process. Wu et al. (2021) merged the efficiency
of the Poynting vector method with the precision of the local
wavefielddecompositionmethod, achievingangle gather extraction in
reverse timemigration. Nonetheless, constraints such as the accuracy
of complex wavefield angle calculations, computational demands,
and storage capacity limitations have primarily confined research
endeavors to angle gather extraction, hindering the full exploitation
of subsurface azimuthal information.

This paper introduces a full-azimuth reverse time migration
imaging technique, grounded in wave theory and constrained by
wavefield gradients. This method not only generates high-quality
migration profiles and full-azimuth angle domain common imaging
gathers (ADCIGs), but also provides solid support for subsequent
migration velocity analysis and reservoir characterization.

2 Theory

2.1 Propagation information extraction
based on wavefield gradient constraint

The Poynting vector is frequently utilized for extracting
propagation vector information owing to its adaptability, efficiency,

and fine angular resolution (Zhang et al., 2010; Yan and Dickens,
2016). Nevertheless, it is plagued by both limited accuracy and
computational instability. To tackle these obstacles, this paper
employs the amplitude gradient and phase gradient of wavefields
to impose constraints and iteratively determine the propagation
vector during wave propagation, thereby significantly improving the
stability and precision of propagation information extraction.

Firstly, based on the gradient information of the wavefields, the
following constraint equations are formulated for each time slice of
wavefield extrapolation at both the shot and receiver points:

dP(x,y,z, t)
dt
= Pxu+ Pyv+ Pzw+ Pt = 0 (1)

Subsequently, the following energy objective function can be
constructed based on Equation 1:

{{{
{{{
{

min E =min {∭{(Pxu+ Pyv+ Pzw+ Pt)
2 + α2 · [‖∇u‖2 + ‖∇v‖2 + ‖∇w‖2]} dxdydz}

‖∇‖2 = ( ∂
∂x
)
2
+( ∂

∂y
)
2
+( ∂

∂z
)
2

(2)

where α is the balance coefficient that controls the balance between
data term and smoothing term.

Finally, Equation 2 is minimized through iterative solving for
the wavefield vector direction. Upon meeting the set threshold
or reaching the maximum number of iterations, the wavefield
propagation vectors for the shot and receiver points on the respective
time slice are obtained. To ensure the minimization of the energy
function, the Horn-Schunck method (Zhang, 2014) is employed to
solve the optical flow field, yielding the gradient direction as follows:
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2 + (Py)

2 + (Pz)
2

(3)

where u,v,w in Equation 3 are the gradient components in the x, y,
and z directions.

Compared to the Poynting vector method, the propagation
vector obtained through the gradient-constrained inversion
approach leverages both the temporal and spatial derivatives of
displacement, yielding superior accuracy. Moreover, the iterative
inversion method utilized in this gradient-constrained technique
enhances the stability of the wavefield vector direction estimation.

Once the propagation vectors for the shot point and receiver
point are obtained, the reflection angle and azimuth at the
subsurface imaging point can be precisely determined using the
geometric relationship diagram of the subsurface propagation angle
depicted in the Figure 1.

The azimuth angle and reflection angle of the subsurface imaging
point can be determined using Equation 4:

γ1 =
1
2
arccos

PS ·PR

|PS||PR|

γ2 = arccos
(Pm × y) · (PS ×PR)
|Pm × y||PS ×PR|

(4)
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FIGURE 1
The geometric relationship of subsurface propagation angles. M represents the local reflection plane; γ1 and γ2 respectively represent the half opening
angle and its azimuth angle; ν1 and ν2 respectively represent the dip angle and its azimuth angle.

where γ1 is the reflection angle, γ2 is the azimuth angle of reflection, y
is the unit vector in the y-direction, PS and PR respectively represent
the Propagation vectors at the shot point and receiver point, Pm =
PS +PR.

2.2 Construction of angle domain imaging
condition

The angle domain source and receiver wavefields can be derived
by incorporating the propagation direction. The imaging condition
in the angle domain is expressed as follows:

I(r) = ∑
θs

∑
θg

I(θs,θg,r) (5)

where θs and θg are the directions of incidence and scattering,
respectively; I(θs,θg,r) is the partial image of angle domain, which
can be expressed as:

I(θs,θg,r) = ∫
Tmax

0
us(θs,r, t)ug(θg,r,Tmax − t) (6)

According to the angle domain imaging conditions given
by Equation 5, imaging result is performed indiscriminately for all
angles, whichmay result in lowwavenumber interference.Therefore,
an angle filter can be introduced into Equation 6:

I(r) = ∑
θs

∑
θg

F(θs,θg) · I(θs,θg,r) (7)

where F(θs,θg) is the angle domain filter used to suppress energy
from large reflection angles.

According to Snell’s Law, for a locally planar reflection surface,
the relationship between the incident angle, the scattered angle,
and the inclination angle of the reflection surface is illustrated in

FIGURE 2
The Target Coordinate System and Observation Coordinate System.
The red lines represent the two base vectors of the observation
system’s coordinate system; the blue lines represent the two base
vectors of the target system’s coordinate system; the thick black lines
represent the local reflection interface.

Figure 2. The observation coordinate system can be rotated into
alignment with the target coordinate system using Equation 8:

{{{
{{{
{

γ1 =
θs − θg

2

ν1 =
θs + θg

2

(8)

The Equation 7 can be further modify to Equation 9:

I(r) = ∑
γ1

∑
ν1

F(γ1,ν1)I(γ1,ν1,r) (9)
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FIGURE 3
The local imaging matrix. The horizontal and vertical coordinates
represent the incident angle and the scattering angle, respectively; the
main diagonal corresponds to the reflection angle, and the secondary
diagonal corresponds to the dip angle.

2.3 Extraction of full-azimuth ADCIGs

Full-azimuth ADCIGs depict the relationship between the local
incidence angle, azimuth angle, and spatial position of imaging
points. They are widely acknowledged as artifact-free gathers
and are suitable for azimuthal stacking imaging and migration
velocity analysis.

The local imaging matrix, depicted in Figure 3, is derived by
merging all partial images from Equation 5. By integrating the
azimuth and reflection angles along the main diagonal, full-azimuth
ADCIGs can be extracted. To mitigate discrepancies between the
computed angle and the sampling angle, Gaussian filtering is
employed to facilitate uniform interval angle sampling, thereby
improving the signal-to-noise ratio. The formula for mapping full-
azimuth ADCIGs is as follows:

I(r,γ0) =∑
s

∑t=tmax

t=0
S(r; t)R(r; t)e−

(γ−γk)
2

2σ2

∑t=tmax

t=0
S2(r; t)

(10)

where S(r; t) and R(r; t) in Equation 10 are the source and receiver
wavefields, respectively. γk is the discrete angle, and σ is the variance.

2.4 Collaborative acceleration of CPU and
GPU

With the advancement of wide-azimuth and high-density
acquisition technologies, it has become standard practice in 3D
exploration to fire tens of thousands of shots and receive tens of
thousands, or even hundreds of thousands, of traces within a single
work area. For reverse timemigration, each spatial point necessitates
thousands of time steps of wavefield extrapolation, leading to an
immense computational burden.

For full-azimuth angle domain reverse time migration, the
computational demands are even more substantial due to the
additional requirement of solving for both the reflection angle and
azimuth angle at the subsurface imaging points. Consequently, the
implementation of CPU and GPU collaborative parallel algorithms
(illustrated in Figure 4) can be utilized to enhance computational
efficiency. Initially, the GPU is employed to compute imaging
values and determine subsurface propagation angles, while storing
the imaging data and angle field data. Once the calculations are
completed, these two types of data are transferred back to the CPU
for reorganization into angle gathers.

2.5 Data compression technology based
on encoding and decoding

Reverse time migration is a comprehensive wavefield imaging
technique that demands substantial storage resources. In particular,
the memory requirements for full-azimuth reverse time migration
surpass those of conventional reverse time migration by over
a hundredfold, thereby imposing more stringent demands on
computer hardware.

Within the RTM imaging algorithm framework, once the
azimuth and reflection angles are computed in the compute nodes,
we can harness the properties of floating-point data. By storing the
positive or negative status of the angles in the sign bit, compressing
and encoding the reflection angle in the exponent bit, and similarly
compressing and encoding the azimuth angle in the mantissa bit.
This method enables the storage of two angles within a single
floating-point character, leading to memory savings, enhanced I/O
efficiency, and the added advantage of data encryption. Upon
transmission of the data back to the main node, it undergoes
decoding based on the compressed encoding scheme, is converted
back to azimuth and reflection angle data, and subsequently, the
imaging values are refined. The detailed implementation process is
illustrated in Figure 5.

3 Numerical examples

3.1 Depression model

In this section, we use the Depression model to test the
effectiveness of the proposed method. The model consists of a
depression and two horizontal layers, as depicted in Figure 6. It
features a grid size of 201 × 201 × 201, with grid spacings of 20m,
20m, and 15m, respectively. The seismic records encompass 441
shots, all of which are fully received. The recording duration is 3.0s,
with a sampling interval of 1 m.The azimuth angle spans from 0° to
180°, with intervals of 45°, while the reflection angle ranges from 0°
to 60°, with intervals of 1°.

The migration profile and full-azimuth ADCIGs of Line 101
are shown by Figure 7. The imaging result exhibits an excellent
match with the precise model, clearly showing the depression
and the two horizontal layers. Additionally, full-azimuth ADCIGs
extracted at CDP 101 reveal the interaction between seismic waves
and reflective interfaces in the angle domain. The gather appears
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FIGURE 4
Collaborative acceleration framework of CPU and GPU.

FIGURE 5
The implementation process of data compression technology based on encoding and decoding.

FIGURE 6
The velocity and observation systems of Depression model: (a) velocity field; the red line represents the location of the target line; (b) observation
systems; the red dots and blue dots represent the distribution of shot points and receiver points, respectively.
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FIGURE 7
Trial calculation results of Line 10l: (a) the migration profile; (b) full-azimuth ADCIGs extracted at CDP 101. The rose chart represents different
azimuth angles.

FIGURE 8
The shot record and observation systems of Salt model: (a) shot record; (b) observation systems; the red dots and blue dots represent the distribution
of shot points and receiver points, respectively.

generally flattened, and the variation in energy across azimuth and
reflection angles is relatively consistent.

3.2 Salt model

The SEG/EAGE salt model is recognized as an international
standard for three-dimensional geological modeling. The top of the
salt dome has complex structures, with small fault zones developed
in the upper part. It encompasses various characteristics beneath
the salt dome and poses high requirements for imaging algorithms,
making it suitable for verifying the correctness and effectiveness
of algorithms. The model grid size is 451 × 451 × 251, with
grid spacings of 30 m, 30 m, and 20 m, respectively. The synthetic

seismograms consist of 3,333 shots, each containing 4,001 time
sampling points at an interval of 2 m (as shown by Figure 8). The
azimuth angle range is 0°–180°, with intervals of 45°, and the
reflection angle range is 0°–60°, with intervals of 2°.

Figure 9 presents the velocity field and full-azimuth reverse
time migration profile of Line 200. It can be observed that full-
azimuth reverse time migration effectively characterizes the top
and bottom interfaces of the salt body. Additionally, the small
fault zone in the upper part of the salt and the complex structure
below the salt are also clearly depicted. To further validate the
algorithm, full-azimuth ADCIGs are extracted at CDP 211 and
371 (as shown in Figure 10). The gathers are accurately positioned
and generally exhibit a flattened state, with events appearing more
continuous and focused.
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FIGURE 9
Trial calculation results of Line 200: (a) velocity field; (b) full-azimuth reverse time migration profile.

FIGURE 10
Full-azimuth ADCIGs extracted at: (a) CDP 211; (b) CDP 371. The rose chart represents different azimuth angles.

Figure 11 illustrates the stacked profiles with varying azimuth
angles, highlighting the inconsistent energy distribution across
different structures in various azimuthal sections. By comparing the
azimuthal stacked profiles, it is clear that the fault in the bottom
left corner exhibits the strongest energy at the azimuth of 135° (as
indicated by the red arrow), and its strike lies within this range.
Based on this characteristic, the elimination of imaging artifacts can
also be carried out.

The Comparison of computational efficiency and memory
consumption is shown by Table 1. It is evident that the efficiency can
be improved by 40% and memory usage can be optimized by 30%
after optimization, greatly enhancing the practicality of the method.

4 Discussion

With the development of wide azimuthal and high-density
acquisition technology, the seismic data contains abundant media
information, providing higher demands for full-azimuth imaging
technology. Based on different theories, full-azimuth imaging
technology is mainly divided into ray-tracing algorithms and wave-
propagation algorithms. Paradigm’s ES360 imaging technology is
the representative ray-tracing algorithm that demonstrates the
advantages and potential of full-field imaging (Koren and Ravve,
2011; Inozemtsev et al., 2015; Inozemtsev et al., 2017). This method
exhibits high computational efficiency and flexibility. However, it is
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FIGURE 11
Stacked profiles with different azimuth angle: (a) stacked profile of 0–45° azimuth angles; (b) stacked profile of 46–90° azimuth angles; (c) stacked
profile of 91–135° azimuth angles; (d) stacked profile of 136–180° azimuth angles. The rose chart represents different azimuth angles.

TABLE 1 Comparison of computational efficiency and memory requirements between the initial algorithm and the optimized algorithm.

Salt model Comparison of computational efficiency Comparison of memory consumption

Initial algorithm 30 min per shot 60 Gb

After algorithm optimization 18 min per shot 42 Gb

Overall improvement 40% 30%

constrained by the inherent limitations of ray theory, resulting in
theoretical deficiencies when dealing with complex structures and
regions with strong lateral velocity variations.

The reverse time migration, based on the numerical solution
of the wave equation, is capable of accurately describing the
propagation patterns of seismic waves, making it the representative
imaging algorithm in thewave-propagation algorithms (Baysal et al.,
1983). The theoretical challenge emphasized for the full-azimuth
reverse time migration is the accuracy of propagation angle

calculations in complex wavefield scenarios. The Poynting Vector
Method, a widely applied algorithm in the industry, offers
high computational efficiency and angular resolution (Yoon and
Marfurt, 2006; Zhang et al., 2010; Yan and Dickens, 2016).
However, it has issues with local computational instability and
inaccuracy. The Wavefield Decomposition Method effectively
enhances the calculation accuracy of propagation angles in complex
wavefield scenarios (Wu et al., 2021). However, it requires more
computational resources and storage capacity, placing higher
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demands on computer hardware. This paper, based on the
conventional Poynting algorithm, introduces the amplitude and
phase gradients of the wavefield to perform iterative solutions
for the propagation vector. This approach not only effectively
enhances the stability and accuracy of the algorithm, but also offers
high computational efficiency, making it more suitable for large-
scale data.

The practical application of full-azimuth reverse time migration
is hindered by computational demands and storage requirements,
posing a significant bottleneck. Consequently, existing research
predominantly focuses on extracting the reflection angle, often
neglecting azimuthal information (Wang et al., 2013; Zhang,
2014). In this paper, we present a novel approach that combines
a CPU-GPU collaborative parallel algorithm with encoding-
decoding-based data compression technology. This integration
significantly enhances computational efficiency and optimizes
memory utilization, allowing us to extend the angle domain
algorithm to full-azimuth. By fully harnessing the energy differences
across various azimuths, our method effectively eliminates imaging
artifacts in complex media, leading to a more accurate and reliable
restoration of true subsurface geological structures.

5 Conclusion

This paper develops a full-azimuth angle domain reverse
time migration technology, which can fully utilize subsurface
azimuth and reflection angle information to output high quality
imaging profiles and full-azimuth gathers. Furthermore, we have
devised an iterative approach to determine the propagation vector,
leveraging the amplitude and phase gradients of the wavefields.
This method offers enhanced stability and accuracy compared to
the conventional Poynting vector algorithm. Meanwhile, through
the using of CPU/GPU collaborative parallel computing technology
and data compression technology based on encoding and decoding,
the computational and storage bottlenecks faced by full-azimuth
imaging have been effectively addressed, enhancing the practicality
of the algorithm. In the future research, we will focus on the impact
of illumination issues among different azimuths and velocity errors
on the accuracy of gathers.
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