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Unlike conventional sandstone reservoirs, which store hydrocarbons in
sandstone pores, fault-controlled tight sandstone reservoirs are unconventional,
primarily storing oil or/and gas in fault zones. While these reservoirs have
significant reserves, their highly heterogeneous fault zones structures, including
fault core and damage zone, pose challenges for geological modeling and
precise development. Traditional two-point geostatistics (TPG) struggle to
reproduce strike-slip fault zones patterns, and object-based methods have
difficulty statistically quantifying their structural parameters. Deterministic
methods, truncated by seismic data threshold, often misalign with well
data, reducing accuracy in representing fault zone details. To overcome
these challenges, we propose a new modeling workflow for fault-controlled
tight sandstone reservoirs based on multi-sources information-constrained
multiple-point geostatistics (MPG). First, a deep neural network (DNNs) is
used to correlate conventional logging curves with fracture density (FD) to
obtain well-interpreted facies data. Next, inter-well factors like brittleness
index, shale content, and fault proximity are used to construct four single-
sources probability bodies. These are combined into a multi-source probability
body using the Permanence of Ratios (PR) method, which effectively
integrates the contributions of different sources for greater constraint. Finally,
the multiple-point geostatistical direct sampling (DS) algorithm generates
a three-dimensional (3-D) geological model that captures the reservoir’s
geological features, while satisfying the multi-source information constraints.
The results shows that the proposed method effectively reduces model
uncertainty and improves spatial prediction of the reservoir, achieving over
85% accuracy when compared with field production data. This workflow
offers a promising approach for fine-scale modeling of fault-controlled tight
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sandstone reservoirs, with broad potential for similar reservoir development and
management.

KEYWORDS

fault-controlled tight sandstone reservoir, geological modeling, Permanence of ratios
Probabilistic fusion, multiple-point geostatistics, fracture

1 Introduction

The fault zone is a complex volumetric zone composed of
various internal structures (Brogi, 2008; Caine et al., 1996), affecting
groundwater migration, CO2 sequestration, and geothermal energy
development. In conventional reservoirs, fault zones are typically
seen as a conduit structural for fluid connectivity but do not serve as
reservoir themself (Liu et al., 2020; Zeng and Li, 2009; Wang et al.,
2022). However, recent studies have revealed that in the dense
lithologies, fault zones can create reservoir space throughdissolution
by surface water or deep hydrothermal fluids, forming unique fault-
controlled reservoir (Li et al., 2019; Qiao et al., 2023). Examples
include fracture-cave carbonate reservoirs in the Tarim and Sichuan
Basins, China (Deng et al., 2022; Liu et al., 2021; Wang et al., 2021),
and fault-controlled tight sandstone reservoirs in the Ordos Basin
(He et al., 2020; Zhao et al., 2024;Wang Y. et al., 2023), with reserves
in the billions of tons.

Geological modeling integrates multi-source information
to accurately represent reservoir spatial distribution, making it
essential for oil and gas field development. However, the internal
structures of fault zones have high heterogeneity, and the availability
of data is limited. For example, in fault-controlled sandstone
reservoirs, particularly those formed by strike-slip fault zones,
two types of facies are typically identified: the fault core and
the damage zone (Berg and Skar, 2005; Faulkner et al., 2010).
The fault core is the result of localized strain and intense shear,
accommodating most of the displacement within the fault zone
and may include slip surfaces, chemically altered rocks, cataclasites,
gouges, and breccias (Torabi et al., 2019). The damage zone, with
weaker deformation, features subsidiary structures like fractures,
folds, and joints (Balsamo et al., 2019; Celestino et al., 2020). In
outcrop settings, the fault core and damage zone characteristics are
often directly observable. However, the boundary between them
becomes less distinct in the subsurface. Due to limited seismic
resolution, detailed structural information is difficult to obtain,
reducing the accuracy of fault core and damage zone boundary
identification. While well data can hint at fracture distribution, its
spatial limitation hinders precise delineation of fault structures.
Additionally, reservoir location within fault zones increases risks
of drilling blowouts and fluid losses, limiting the availability of
well data. Both of them pose challenges for fault-controlled tight
sandstone reservoir modeling to guide reservoir production and
development.

Satellite images or surface scans are oftenmeasured and digitally
processed to construct conceptual reservoir models (Braathen et al.,
2009; Qu and Tveranger, 2016). For example, Choi et al. (2016)
defined structural boundaries between fault core and damage zone
by measuring fracture density (FD) through fault-controlled tight
sandstone reservoirs outcrop observation. Similarly, Silva et al.
(2022) built continuous permeability model of a basin-bounding

fault damage zone using sequential Gaussian simulation (SGS)
techniques based on outcrop measurements. These models align
well with fault zone patterns and accurately characterize parameters
within fault zone structures, and can provide a conceptual model to
guide the understanding of underground fault zones reservoirs.

Common subsurface reservoir modeling methods include
deterministic methods (e.g., constrained by seismic data or trend
surfaces) and stochastic methods (e.g., two-point geostatistics
(TPG) or object-based modeling). Seismic attribute-constrained
deterministic methods have been widely used to model subsurface
fault-controlled tight sandstone reservoirs (Botter et al., 2017a;
Botter and Champion, 2019; Li et al., 2022). This involves
establishing thresholds for seismic attribute that define facies
boundary, based on the relationship between 1D drilled reservoir
intervals at wells and corresponding seismic attribute values. These
thresholds are then applied to convert the 3-D seismic volume to
the reservoir model (Zhang T. et al., 2021). However, deterministic
method often fails to fully align with well data and lack the precision
needed to capture fault zones structures due to the amplifying effect
of seismic data (Botter et al., 2017b; Fossen et al., 2018), limiting their
accuracy for detailed reservoir development.

Compared to deterministic methods, stochastic methods better
assess the uncertainty in modeling results. However, few are
specifically tailored for fault-controlled tight sandstone reservoir.
TPG is unsuitable for this type of modeling, as it struggles to
capture the complex morphology of fault zone structures (Deutsch
and Journel, 1992). Object-based methods also face challenges
in these reservoirs, where statistically quantify key morphological
parameters, such as the height and aspect ratio of irregular, banded
fault cores, remains difficult.

The multiple-point geostatistics (MPG) method has gained
popularity over the past 30 years for its ability to combine data
conditioning with geological pattern reconstruction (Mariéthoz
and Caers, 2014). This makes it especially effective for reservoir
modeling in complex environments like meandering rivers and
deltas (e.g., Yin et al., 2020; Wang et al., 2022b). Initially introduced
by Farmer, Deutsch and Journel (Farmer, 1988; Deutsch and
Journel, 1992), MPG has since evolved to address challenge
to non-stationarity, reservoir continuity, conditional processing
and simulation speed. Algorithms such as Snesim (Strebelle,
2002), SIMPAT(Arpat, 2005), FILTERSIM (Zhang et al., 2006),
iCCSIM (Tahmasebi et al., 2012), DS (Mariethoz et al., 2010)
and GOSIM (Yang et al., 2016) have been developed to enhance
these aspects. The DS algorithm, in particular, stands out for
its simplicity and efficiency, directly samples the training image
while effectively preserving themulti-point relationships of complex
geological structures. Additionally, MPG can greatly reduce model
uncertainty when constrained by accurate probability bodies, which
incorporate expert geological knowledge, well data, and other
relevant information to improvemodel accuracy (Tahmasebi, 2018).
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Compared to single-sources data constraints, multiple-source
probability bodies better handle data noise and reduce uncertainty
by minimizing errors from individual source, enhancing model
stability (Cui et al., 2021). Common probability fusion methods in
MPG include Bayesian updating (Jef, 2011), weighted averaging, and
evidence theory (i.e., Dempster-Shafer theory) (Shafer, 1976).These
methods combine data from different sources (e.g., logging data,
seismic data) to generate a comprehensive probability body model.
Bayesian updating incorporates new information progressively
by updating prior and posterior probabilities, while weighted
averaging integrates data based on reliability. Evidence theory
uses belief functions to obtain uncertainty. When dealing with
multiple data sources and high uncertainty, Bayesian updating
and Dempster-Shafer Theory are computationally intensive, and
determining weights for weighted averaging is challenging. Journel
(2002) proposed the Permanence of Ratios (PR) model as an
alternative probability fusion method. It is computationally simpler
in high dimensions, making it suitable for large datasets and
complex geological modeling. It assumes that the ratio of probability
increments across different data types remains constant, implying
that conditional independent between data. This allows the PR
model to effectively integrate data from different sources and scales
without losing geological information (Journel, 2002).ThePRmodel
has been successfully applied in geological modeling of complex
underground reservoirs such as braided river sandstones and karst
carbonates (Kang et al., 2023; Liu et al., 2018; Liu et al., 2020).

Additionally, fault-controlled tight sandstone reservoirs
often have limited well data due to drilling challenges like lost
circulation, and core data is particular scarce. Well-interpreted
facies data are crucial for subsurface reservoir modeling as they
provide reliable hard data. Cumulative FD curves are effective for
classifying fault facies (Choi et al., 2016), and conventional logging
curves correlate well with fracture development, allowing for the
classification of facies at wells by fitting the relationship between
logging data and FD. However, traditional approaches like multiple
regression analysis struggle with complex nonlinear relationships,
especially in uneven fracture distribution. Machine learning (ML),
including deep neural networks (DNNs), provide robust tools to
model these complexities.

Therefore, to model a more accurate fault-controlled tight
sandstone reservoir to meet the needs of reservoir development,
we propose a new modeling workflow that combines the DNNs
method, the PR model, and the DS algorithm, with surface outcrop
patterns as prior information. First, reservoirs characteristics are
described using outcrop observation, core data, log data and seismic
data. Then, DNNs correlate conventional logging curves with FD to
obtain well-interpreted facies data. Inter-well factors like brittleness
index, shale content, and fault proximity are used to constructmulti-
source probability body using the PR probability fusion method.
Finally, the DS algorithm stochastically generates several three-
dimensional (3-D) geological models that capture the reservoir’s
geological features while meeting the multi-source information
constraints.

This paper is organized as follows: the first section provides an
overview of the study area, followed by the proposed workflow in
the second; the third section details the development characteristics
of fault-controlled tight sandstone reservoir; the forth section
applied the DNNs method for one-dimensional (1-D) well facies

interpretation, while the fifth introduce the PR method for
constructing 3-D multi-sources probability constraint bodies; the
sixth section covers the DS method, 3-D model generation, and
accuracy testing; the final two sections include the discussion and
conclusions.

2 Geological setting

The Ordos Basin, a large-scale cratonic basin in western North
China, features a research area located at its southern margin, near
the Yishan Slope to the north and the Weibei Uplift to the south,
within a transitional zone of tectonic activities (Figure 1A). The
basin’s tectonic evolution has resulted in the numerous fractures
and fissures, especially in the southern region. During the Yanshan
and Xishan periods, major fractures and fissures were formed
in the Triassic Chang 8 to Chang 6 formations. During the
Yanshan period, oblique collision between the Pacific Plate and
the Eurasian Plate at the southern margin of the basin created a
NW-SE stress field, promoting extensive regional fractures in the
Mesozoic strata (Lyu et al., 2019; Wang et al., 2019). During the
Xishan period, the subduction of the Indian Plate and the Pacific
Plate overlaid or modified the pre-existing faults, resulting in the
development of left-lateral strike-slip faults, predominantly trending
in the NEE direction, within the Chang 8 to Chang 6 formations
(Meng et al., 2023) (Figure 1B).

This study focuses on the Chang 8-1 sub-member of the
Yanchang Formation, characterized by a braided river delta front
depositional system with a thickness of approximately 40 m–60 m.
The lithology is mainly light gray fine sandstone, occasionally
interbedded with siltstone and dark gray mudstone or silt mudstone
(Figure 1C). Core data show that the sandstone porosity in the
Chang 8member ranges from8% to 12%,with permeability between
0.1 × 10−3 μm2 and 0.2 × 10−3 μm2, indicating a low porosity and
ultra-low permeability reservoir (Sun et al., 2019).

3 Materials and methods

The proposed workflow for modeling fault-controlled
tight sandstone reservoirs involves four main steps: reservoirs
description, well facies interpretation, multi-source probability
fusion, and geological modeling (Figure 2).

In the first step, the internal structure of fault-controlled tight
sandstone reservoirs in the study area is described using outcrop
observations, core, logging, and seismic data to obtain expert
geological knowledge and corresponding prior geological patterns.
The second step involves well facies interpretation where DNNs is
applied to relate conventional logging data with FD and classify
fault facies based on cumulative FD curves. In the third step,
four factors—brittleness index, shale content, faults proximity, and
coherence attributes—are selected to build single-source probability
bodies, which are then integrated into a comprehensivemulti-source
probability model using PR. Finally, 3-D geological modeling is
conducted usingDS, and facies-constrained permeabilitymodels are
then established.
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FIGURE 1
Location of the study area and stratigraphic chart. (A) Regional tectonic setting; (B) Well locations and fault distribution in the modeling area; (C)
Stratigraphic columnar section of the Yanchang Formation.

FIGURE 2
The flow chart of fault-controlled tight sandstone reservoirs modeling.

4 Development characteristics of
fault-controlled tight sandstone
reservoir resource identification
initiative

This section first observes the geological pattern of
fault-controlled tight sandstone from field outcrops, then
describes reservoir characteristics at core, logging, and
seismic scales in the study area to guide more accurate
3-D modeling.

4.1 Outcrop observation

Outcrop profiles reveal the geological patterns of fault-
controlled tight sandstone reservoirs. Observations of the Xujiahe
Formation outcrops in the western Sichuan depression show
higher FD in the hanging wall than in the footwall, with fracture
frequency increasing near the fault plane (Liu et al., 2023). In the
Ruihe section of Pingliang City, Gansu Province, the Yanchang
Formation in the Ordos Basin fully exposes well-developed fault-
related fractures (Figure 3). Near the fault, fragmented sand bodies
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FIGURE 3
Outcrop pattern of fault-controlled tight sandstone reservoirs (adapted from Lyu et al., 2019). (A, C) show fault zone outcrops observed in Gansu and
Xinjiang, respectively, while (B, D) are the corresponding schematic patterns. The fault core accommodates most of the fault displacement, leading to
sandrock fragmentation and the formation of cavities. FD gradually decreases from the damage zone to the wallrock.

create a fault core about 20 cm wide with “cavities,” resulting in
higher porosity than the surrounding bedrock. The damage zone,
extending 30 cm–50 cm from the fault, contains multiple sets of
conjugate fractures, with FD decreasing with distance from the fault.

4.2 Core, well and seismic data analysis

Figure 4 show core samples photographs at JH17P23 well
from the fault-controlled tight sandstone reservoir in the study
area. Core observation directly provide high-resolution subsurface
data, revealing detailed fracture developmental characteristics.
Most fractures are vertical structural types, with occasional
nearhorizontal stratification fractures (Figures 4A, B). They range
from 50 cm to 100 cm in length and 0.2 mm–0.5 mm in width,
predominantly remaining open, though some are calcite-filled.
Fracture development varies notably across lithologies (Figures 4C,
D) and will be further elaborated in Section 5.

Compare to direct core observation, conventional logs, imaging
logs and seismic data provide an indirect but broader view of
the internal structure of fault-controlled tight sandstone reservoirs.
For instance, horizontal well JH17P23, which intersects faults F2
and F3 in the Yulinzi fault zone, displays significant stratigraphic
displacement in large-scale seismic profiles (Figures 5A, B). In
high-resolution imaging logs, capable of detecting features at
scale of 2 cm, fractures appear as dark sinusoidal curves, forming
black bands as frequency increases. Conventional logs, with a
detection scale of 12.5 cm, reveal distinctive fault zone responses,
where drilling fluid infiltration along fractures lowers resistivity
in fractured segments. The fault core has higher porosity than
both the damage zone and the surrounding wallrock, along with
greater permeability through the fault zone. Thus, a well-defined
vertical damage zone and fault core structure at F3 fault can be
identified, displaying a banded structure ranging from less than 1m
to nearly 10 m (Figures 5C, D). This detailed fault characterization
is essential for accurately represent the heterogeneity of subsurface
fault-controlled tight sandstone reservoirs.

Seismic data is crucial for depicting large-scale inter-well
fracture distribution in strike-slip fault zones, revealing structural
variability due to differing local stress fields. Figure 6 visualizes of
the Yulinzi fault zone structure in the study area. In Figure 6A,
the coherence slice clearly highlights the planar distribution
of the fault zone, with bright areas indicating lower structural
coherence (fault cores) and darker areas indicating higher structural
coherence (damage zones). Black areas indicate wallrock without
structural activity. The study area consists of two parallel primary
strike-slip faults, predominantly exhibiting linear structures with
localized braided structures. Figures 6B–E display amplitude
distribution maps of different fault segments, illustrating various
structural patterns. Figures 6D, E show cross-sections of linear
segments with typical graben structures and significant stratigraphic
displacement. Figures 6B, C depict cross-sections of braided
segments with branching faults, indicating areas of intense local
deformation with complex flower structures. A strong correlation
exists between seismic attributes and faults, enable a more accurate
capture of the complexity of strike-slip fault zone structures.

5 DNNs method for well facies
interpretation

Our study area contains 13 horizontal wells intersecting strike-
slip faults (Figure 1), with two wells (JH17P23, JH23) containing
imaging log and core data. From the imaging log, we sampled
845 FD points at 0.1 m intervals. averaged every five points
after removing outliers, yielding 169 sample points. Correlation
analysis of normalized conventional logs with imaging logs-
measured FD in Figure 7A shows strong correlations for wellbore
diameter (CNL), resistivity (RT), acoustic transit time (DT), and
change in acoustic transit time (ΔDT), indicating their fracture
sensitivity. Previous studies support these results, for example,
drilling through fault zones can cause wellbore collapse and
wellbore diameter enlargement (Tokhmechi et al., 2009; Lyu et al.,
2016) and drilling fluid infiltration into fractures often lower
resistivity, with more pronounced effect in larger aperture and
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FIGURE 4
Core samples photographs in the study area. (A) Low-angle bedding-parallel oblique fracture; (B) High-angle vertical structural fractures with
calcite-filled fissure; (C) Structural fractures extending along the sandstone and terminating at a mudstone interlayer; (D) High-angle vertical
structural fracture.

FIGURE 5
Schematic diagram of the fault-controlled tight sandstone reservoir structure. (A) Seismic profile over well JH17P23; (B) Reservoir pattern for well
JH17P23; (C, D) are log-scale views of black frame area in b, displaying the internal structure of the fault-controlled tight sandstone reservoir. Imaging
logs characterize the distribution patterns of fault cores and damage zones, which strongly correlate with conventional log curves.
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FIGURE 6
Planer seismic coherence attribute (A) and corresponding seismic amplitude profile (B–E) of fault-controlled tight sandstone reservoirs. The red line
represents fault lines, and the yellow dashed line in (A) marks the section line locations for composite flower structure (B) flower structure (C),
composite graben (D), and Graben (E).

FIGURE 7
Fitted results. (A) Correlation analysis between CNL, RT, DT, ΔDT, and FD. R2 and N represent the coefficient of determination and the number of
sample points, respectively; (B) Neural network fitting results.

higher angle (Dong et al., 2020a); Longitudinal waves travel
faster through rock than mud in fracture segments, leading to
noticeable frequency jumps, particularly with smaller fracture angle
(Dong et al., 2020b; Zeng et al., 2016). In contrast, properties like
density have week correlation with FD in the fault-controlled tight
sandstone reservoir, as fractures development may increase rock

pore volume and decrease rock density inconsistently (e.g., calcite-
filled fractures may either increase or decrease it).

We aimed to model the relationship between these four
conventional logs with FD using DNNs, which are well-suited
for capturing complex nonlinear patterns. DNNs approximate a
mapping Rm = fθ(R

d), where fθ(·) represents the network’s function
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FIGURE 8
DNNs using in our application. Note that input and output layers represent values at each depth rather than entire log curves.

with trainable parameters θ (Hillier et al., 2023). Ourmodel includes
four inputs (CNL, RT, DT, and ΔDT), three hidden layers with
each of 6 nodes each, and an output layer representing predicted
FD (Figure 8). The input conventional logging values and the
FD from the imaging interpretation were combined to form a
5 × 169 sample point matrix, randomly split 70% for training
(i.e., training data set) and 30% for testing (i.e., test data set).
During training, errors between predicted and actual FD were
calculated, and a loss function is minimized via back-propagation
to update θ (Figure 8). After 200 iterations, the trained DNNs
achieved an accuracy of 84.59% on the test set, demonstrating robust
nonlinear mapping capabilities (Figure 7B). We then applied our
trained DNNs to other wells with conventional logs but lacking
imaging logs.

Figure 9 compares FD values from DNNs prediction (red
dashed line), imaging logs interpretations (green bar graph),
and core samples measurements (yellow bar graph). The
DNNs predictions align closely with actual values, particularly
when predicted FD exceed 4 fracture/m (abbreviated as
frac/m), indicating fragmentation in core samples and fault
core locations. This suggests that FD values can effectively

delineate fault facies. Additionally, calculating slope changes in
cumulative FD (Choi et al., 2016) helps differentiate between
the fault core and the damage zone. Using above methods, we
identified 102.5 m of fault core and 217.6 m of damage zone
across 13 wells, providing valuable hard data for modeling in the
study area.

6 Construction of inter-well
probability constraint bodies

After applying the DNNs method for well facies interpretation,
reliable well log facies data were obtained. Statistical analysis
of the well log and inter-well data allowed the construction of
inter-well probability constraint bodies, integrating data from
multiple sources to enhance the accuracy and reliability of the
geological modeling. This section first introduces geological genesis
and seismic responses that affect fractures in our study areas,
analysis their relationship to generate single-factor probability
constraint body, and integrates them using the PR probability
fusion method.
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FIGURE 9
Fault facies analysis in well JH17P23. Conventional log curves (CNL, RT, DT, and ΔDT) strongly correlate with FD identified by imaging logs (green
histogram), and fit well with FD prediction from trained DNNs (red dashed line). The yellow histogram represents the FD measurements from core
samples. Fragmentation in core sample (b), interpretive of fault core facies type, prevents FD measurement. The boundary between the fault core and
the damage zone is identified by the inflection points in the slope of the cumulative FD curve.

6.1 Constraints of geological genesis and
seismic responses

Previous studies have identified key factors influencing
fractures in fault-controlled tight sandstones, with a focus
on sedimentary and tectonic processes (He et al., 2019;
Li et al., 2021; Wang et al., 2016). Sedimentary processes
affect FD through lithology (e.g., mineral composition and

mechanical parameters) and bed thickness, while tectonic
processes affect FD mainly through fault (Finkbeiner et al., 1997;
Guo et al., 2025).

Under similar stress conditions, brittle rock with high brittle
mineral content fracture more easily than ductile rocks, leading
to extensive fracturing (Hanks et al., 1997; Narr, 1991). Brittleness
index for tight sandstone is commonly calculated form stress-strain
(Grieser and Bray, 2007) or mineral composition (Sondergeld et al.,
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2007). Here, we calculate brittleness index using longitudinal
wave velocities (VP), shear wave velocities (VS), and density
(Den) (Supplementary Appendix A). Since VP and Den curves
are typical complete but VS curves is limited, we established a
VP-VS relationship (Vs = 0.731Vp − 72.8, R2 = 0.83) from wells
where both curves are available. We use this relationship to estimate
VS for wells which miss VS curves in our study area. Finally,
fracture data and brittleness index were statistically evaluated
at 0.1 m intervals to determine damage zones and fault cores
frequencies (Figure 10A), normalized to establish development
probabilities in relation to brittleness index (Figures 10B, C;
Equations 1, 2):

{
y1 = 0 (0. ≤ x1 ≤ 0.25)
y1 = 0.0207e

4.0902x1 (0.25 < x1 ≤ 1)
(1)

{{
{{
{

y2 = 0 (0 ≤ x1 < 0.25)
y2 = 0.9928x1 − 0.2 (0.25 ≤ x1 ≤ 0.6)
y2 = −0.4823x1 + 0.6634 (0.6 < x1 ≤ 1)

(2)

where x1 represents brittleness index, y1 and y2 represents the
probability of fault core development and damage zone development
under the constraint of brittleness index, respectively.

Similarly, due to a higher shaliness content leading to reduced
fracture development, we established a correlation between the
shaliness curve from well logs and the development probability
of the fault-controlled tight sandstone reservoir (Figures 10D–F;
Equations 3, 4):

{ y3 = −0.513x2 + 0.5935 (0 ≤ x2 ≤ 1) (3)

{
y4 = 1.0177x2 + 0.05 (0 ≤ x2 < 0.4)
y4 = −0.774x2 + 0.75 (0.4 ≤ x2 ≤ 1)

(4)

where y3 represents the probability of fault core development
under the constraint of shaliness, y4 represents the probability of
damage zone development under the constraint of shaliness, and x2
represents the shaliness value.

Faults proximity also significantly impacts fracture
development, which refers to the distance between a given point
(e.g., well location or grid cell) and the nearest fault. Statistical
analysis of fault-controlled tight sandstone reservoirs and their faults
proximity in wells provides a quantitative insight into these patterns.
Within 100 m of a fault, the fault core predominantly develops,
with the likelihood of fault core and damage zone development
decreasing logarithmically beyond this distance (Figures 10G–I;
Equations 5, 6), which can be expressed as:

{
y5 = −0.0034x3 + 0.9057 (0 ≤ x3 < 100)
y5 = 0.3235e

−0.005x3 (100 ≤ x3 ≤ 1100)
(5)

{
y6 = 0.0023x3 + 0.0747 (0 ≤ x3 < 100)
y6 = −0.177 ln x3 + 1.1956 (100 < x3 ≤ 1100)

(6)

where x3 represents the fault proximity, y5 and y6 represents the
probability of fault core development and damage zone development
under the constraint of the fault proximity.

In addition, seismic data plays a crucial role in inter-well
constraints. Following seismic attribute optimization, the coherence
attribute, which measures the similarity between adjacent sampling

points to reflect spatial consistency, was chosen to enhancemodeling
of fault-controlled tight sandstone reservoirs between wells. We
established a linear regression between the seismic attribute values
at grids identified as developed fault-controlled tight sandstone
reservoirs in individual wells and their development probability
(Figure 10J).This regression defines a response relationship between
coherence attributes and fault-controlled tight sandstone reservoir
development probability (Figures 10K, L; Equations 7, 8).

{{
{{
{

y7 = −0.75x4 + 1 (0 ≤ x4 < 0.2)
y7 = −0.75x4 + 0.675 (0.2 ≤ x4 ≤ 0.9)
y7 = 0 (0.9 < x4 ≤ 1)

(7)

{{
{{
{

y8 = 0.5x4 (0 ≤ x4 < 0.2)
y8 = −0.673x4 + 0.634 (0.2 ≤ x4 ≤ 0.95)
y8 = 0 (0.95 < x4 ≤ 1)

(8)

where y7 represents the probability of fault core development under
the constraint of coherent attributes, y8 represents the probability
of damage zone development under the constraint of coherent
attributes, and x4 is the value of the coherent attribute.

Based well data, A brittleness index model and a shaliness
model were create using SGS and converted into 3-D brittleness
index-based fracture probabilitymodel and shaliness-based fracture
probability model, respectively. Additionally, according to the
relationship between fault proximity and coherence attributes, we
enable to convert 3-D structural fault model and seismic coherence
model into 3-D fault-proximity-based and coherence attributes-
based fracture probability model, respectively (Figure 11).

6.2 PR for multivariate constrained
probabilistic bodies fusion

Multi-source information fusion integrates geological and
geophysical data from different sources to reducemodel uncertainty
and improve prediction accuracy. However, differences in scale and
precision between the various data sources make this process highly
complex. The PR model offers an efficient mathematical approach
for multi-source data fusion, providing computational simplicity
compared tomethods like Bayesian inference, whichmakes it highly
well-suited for reservoir modeling.

Proposed by Journel (2002), the PR probability fusion model
integrates geological data from multiple sources and scales,
enhancing accuracy and reliability by effectively combining diverse
data types and accommodating complex geological structures. PR
operates on the principle that the ratio of probability increments
across different data sources remains constant, assuming conditional
independence between them, meaning that one data type does not
influence the probability increment provided by another. Suppose
different data sources (e.g., well logs, seismic data) provide varying
probability increments. While potentially limiting in some real
geological p well-logroblems, greatly simplifies the complexity of
data fusion in most application scenarios. The formula for the PR
model is as follows:

P{R|S1,…,Sn} =
( 1−P{R}

P{R}
)
n−1

( 1−P{R}
P{R}
)
n−1
+∏n

i=1
( 1−P{R|Si}

P{R|Si}
)

(9)
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FIGURE 10
Correlation between various constraint information and the probability of fault-controlled tight sandstone reservoirs development. (A) Histogram of
brittleness index versus reservoirs development probability; (B) Relationship between fault core and brittleness index; (C) Relationship between damage
zone and brittleness index; (D) Histogram of shaliness versus reservoirs development probability; (E) Relationship between fault core and shaliness; (F)
Relationship between damage zone and shaliness; (G) Histogram of versus reservoirs development probability; (H) Relationship between fault core and
faults proximity; (I) Relationship between damage zone and faults proximity; (J) Histogram of coherency attribute versus reservoirs development
probability; (K) Relationship between fault core and coherency attribute; (L) Relationship between damage zone and coherency attribute.

where P{R│S1, … ,Sn } is the probability of event R given all the data
S1, … ,Sn, P{R│Si } is the conditional probability of event R given
data S i, P{R} is the probability of R.

The multi-source probability fusion is performed using the PR
model. The number of samples for the fault core and damage zone
from thewell interpretations is divided by the total number of samples

toobtaintheinitialprobabilityP(R),withoutanyadditionaldatasource
constraints. The calculated probability body (Figure 11) is treated as
the conditional probability P (R | Si), and all conditional probabilities
along with the initial probability are substituted into the PR formula
(Formula 9).Theprobability bodies for the fault core (Figure 12A) and
damage zone (Figure 12B) are then calculated separately.
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FIGURE 11
Probability models for fault core facies (A) and damage zone facies (B) development in the study area. Both models constrained by brittleness index,
shaliness, fault proximity, and coherence attributes.

FIGURE 12
Multi-source probability fusion model for fault core facies (A) and damage zone facies (B) in the study area.

7 Geological modeling

Facies modeling is essential for capturing the complex
spatial structure within the reservoir. This section first generated
geological facies models using the DS algorithm and corresponding
permeabilitymodel using SGS, and validated them thought reservoir
dynamic at two wells observations.

7.1 DS method for geological facies
simulation

DS is a wildly used modeling technique that captures the
spatial distribution of complex geological structures by uses a
training image (TI) to represent nonlinear geological patterns.These
patterns, derived from the TI, and scanned and reproduced in the
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FIGURE 13
Results of three DS-generated facies models. The fault core is contained within the damage zone, exhibiting a parallel linear distribution and localized
braided structures.

simulated geologicalmodel.TheTI can construct fromobservations,
experiments, or synthetic models, serves as an idealized template
of the target geological structure. Here, we manually construct
the TI for reservoir facies modeling based on the geological
knowledge from Section 4.

Facies modeling must accurately reflect the multi-scale spatial
characteristics of facies distribution while aligning with well
facies data and constraints from multi-source data. Thus, besides
using well facies interpretation results serve as hard data, we
used the integrated probability fusion model provide soft data
constraints. Supplementary Appendix B detailed introduced the
specific steps of DS algorithm. After testing different sets with a “trial
and error” procedure in the DS algorithm, we set a data template
15 × 15 × 3, the multi-grid level 3, and the maximum number of
known domain nodes to 8.

Figure 13 shows the results of three DS-generated facies models
for fault controlled tight sandstone reservoir. The reservoir is
primarily distributed along the Yulinzi strike-slip fault zone in a
NEE orientation. The fault core width ranges from 70 m to 100 m,
while the damage zone width spans 100 m–300 m on both sides.
The reservoir extends along two faults in parallel linear features with
localized braided structures, consistent with the fault zone patterns
from outcrops observations and seismic data interpretations.

Deformation within fault zones significantly affects permeability,
especially in tight sandstones, where fracture network characteristics
play a key role (Bense et al., 2013). Factors like FD, orientation, and
lengthdistributiondictate thenetwork’s connectivity andpermeability
(Bour and Davy, 1997; De Dreuzy et al., 2001). We correlated well
log permeability values with fault facies and faults proximity, finding
a trend of decreasing permeability as faults proximity increase
(Figure 14), represented by the equation K = 117.02e−0.048d (R2 =
0.51). While traditional TPG methods often struggle to capture
intricate geological facies patterns, they are wildly used in reservoir
attribute modeling under facies constraint. Thus, we used the SGS
algorithm to generated a corresponding 3-D permeability model
constraintby fault facies (Figure 15), revealing significantpermeability
variations across fault facies.

We further enhance understanding by integrating multi-source
data, includingwell logs, seismic data, and field observations, tomap

FIGURE 14
Scatter plot of permeability and faults proximity.

the variability in permeability. The approach combines geological
and geophysical insights, offering a comprehensive view of the
subsurface structure. Permeability ranges from 10mD to 100 mD in
the fault core, 1mD to 10mD in the damage zone, and below1mD in
the surrounding wallrock. Our findings align with previous outcrop
measurements and experimental data (Caine et al., 1996; Evans et al.,
1997), providing a robust framework for understanding fault-
controlled tight sandstone reservoirs dynamics. By embracing the
complexity and heterogeneity of the reservoirs, this integrated
method offers a more accurate representation of the subsurface,
crucial for efficient resource extraction and management.

7.2 Model testing

Using wells JH17P13 and JH17P16 for further model
verification, we explore the relationship between fault zone
characteristics and production profiles. Figures 16A, B show two
cross-sections through the model, which also match the seismic
profiles. The DS-generated reservoir is not fully connected along
the entire fault but is segmented into smaller fault zone units
separated by tight sandstone bedrock, resulting in weak connectivity
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FIGURE 15
Permeability model. (A) Top view of permeability model; (B) Permeability model profiles along the AB line.

FIGURE 16
Results of the reservoir numerical simulation history matching. (A, B) respectively display the model cross-sections of horizontal wells encountering
the fault core and the damage zone in a fault-controlled tight sandstone reservoir. (C, D) show the actual production data and the results of numerical
simulation fitting for these two wells in the oil field from 2014 to the present.

or disconnection between units. This segmentation aligns with the
actual observed production dynamics in the oilfield.

In addition, high initial and stable long-termproductionobserved
in the fault core at well JH17P13 suggests a strong correlation
between high permeability zones and enhanced oil recovery potential
(Figure 16C). In contrast, the moderate and rapidly declining
production in the damaged zone at well JH17P16 reflects a less
favorablepermeabilityprofile (Figure 16D).Thisdifferencealignswith
thegeneratedmodel’spermeabilitydistributions,showingsignificantly
higher permeability in the fault core than in the damage zone
and bedrock. The model achieves over 85% accuracy in matching
actual production data, validating its ability to capture the complex,

heterogeneous nature of fault-controlled tight sandstone reservoirs.
This detailed understanding supports optimized extraction strategies
andunderscores the critical roleof accurate fault zone characterization
in tight sandstone reservoirs development.

8 Summary and conclusion

Geological modeling enables represent reservoir spatial
distribution, making it essential for oil and gas field development.
For unconventional fault-controlled tight sandstone reservoirs, oil
and gas are primarily stored in fault zones with higher porosity
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and permeability, rather than in surrounding tight sandstone.
Effective static models for this type reservoir requires featuring
a vertical banded structure with orderly arranged fault cores and
damage zones.

Here, we proposed a workflow for modeling these reservoirs
combining DNNs, the PR model, and the DS algorithm. DNNs
fit the relationship between conventional logging and FD derived
from image log interpretation, providingwell fracture interpretation
reservoir modeling. The PR model then integrates geological
genesis and geophysical data, retaining common features while
minimizing errors from single sources.This achieves a multi-source
information-driven approach effectively reduces model uncertainty.
Using the 3-D geological model based on DS, oil production
history matching achieved a fit rate over 85%. Wells intersecting
fault cores showed high initial production with sustained output
and high cumulative production, while wells in damage zones
had moderate initial production, rapid decline, and moderate
cumulative production. Validated through numerical simulation,
the model can guide future development plans, proving its practical
effectiveness.

This workflow can be further improved by optimizing MPG
simulation tasks, which are time-consuming and face non-
stationarity problem, especially for the 3-D fault-controlled tight
sandstone reservoir simulation. Generative method like variational
autoencoders (VAEs; Kingma and Welling, 2014), generative
adversarial networks (GANs; Goodfellow et al., 2014) or flow-based
models (Rezende and Mohamed, 2016) can replace MPG, as they
have been wildly used in reconstructing and simulating complex
geological bodies like as delta reservoir (Zhang W. et al., 2021), karst
cave reservoir (e.g., Song et al., 2022a), andmud drapes inside fluvial
point bar reservoirs (Hu et al., 2024). Additionally, probability map
can be incorporated into generative models (Song et al., 2022b),
allowing our multi-source PR fusion probability map to reduce
result uncertainty.

This workflow offers a novel approach for characterizing and
developing complex fault-controlled tight sandstone reservoirs, with
broad application potential and valuable guidance for reservoir
development.
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