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In underground engineering, precise analysis of structural discontinuities
is critical for understanding the rock fracture mechanisms subjected to
shear and tensile loading. This study presents an automatic method for
identifying structural planes based on 3D point cloud data of sandstone.
The methodology integrates K-nearest neighbor (KNN) search and random
sample consensus (RANSAC) algorithms to compute normal vectors, followed
by mean shift clustering for preliminary grouping and Euclidean clustering
for discontinuity orientation. Key parameters (dip angle, trend, and area) of
dominant discontinuities are systematically extracted and quantified. In order to
verify the accuracy of the method, two engineering cases (regular hexahedron
and rock slope) are selected for analysis. The results show that this method has
high consistency in dip angle and trend extraction, which can automatically
extract small-scale structural planes in complex rock strata and accurately
calculate their area which is superior to traditional methods in terms of accuracy
and robustness. The parameter selection (bandwidth = 0.4, distance threshold
= 0.3, and screening threshold = 200) balances computational efficiency
and precision, reducing over-segmentation while preserving critical structural
details. The research results can provide theoretical guidance for engineering
fields such as slope stability evaluation and crack propagation simulation.
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1 Introduction

Natural rock masses contain joints of varying sizes, and their shear strength is generally
lower than that of intact rock masses (Lin et al., 2021; Liu et al., 2022). Tensile and shear
instability of joints are the primary causes of rock mass failure (Lin et al., 2021; Rao,
2020). The surface morphology of discontinuities significantly influences the strength and
deformation characteristics of joints (Sun et al., 2020; Liu et al., 2020). Consequently, precise
measurement and analysis of parameters related to discontinuities serve as the fundamental
basis for the investigation of joint mechanics and deformation characteristics (Yang and
Qiao, 2018).

The main measurement techniques consist of contact technologies, such as scanning
lines, window sampling, and non-contact methods. While conventional contact methods
are straightforward, they depend on manual work and are significantly affected by
the terrain and environmental conditions. This leads to inefficiencies and human
errors, which restrict the ability to conduct thorough analyses (Wang et al., 2023;
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Liu et al., 2024). With advancements in surveying and mapping
technology, new non-contact methods such as laser radar,
digital photogrammetry (Zaczek Peplinska and Kowalska, 2022;
Hudson et al., 2020), and UAV photogrammetry can rapidly
generate high-quality 3D point cloud data (Jiang et al., 2021),
eliminate subjective factors associated with manual measurement,
and offer more objective and accurate data acquisition techniques
(Kong et al., 2021; Wu et al., 2023).

Currently, numerous scholars have investigated the
identification and measurement of discontinuities in point cloud
data, developing various semi-automatic and automatic extraction
methods (Chen et al., 2024; Ge et al., 2022), primarily focusing
on plane fitting, region growing, and unsupervised clustering
(Temur et al., 2024). Model fitting methods, such as random
sample consensus and the Hough transform, are among the earliest
detection techniques (Xu et al., 2023). However, because of the
intricate nature of rock surfaces, these techniques are likely to
produce false planes and excessive segmentation (Xue et al., 2023).
Improving the precision of the algorithms is essential. The region-
growing technique that relies on variations in normal vectors can
successfully detect discontinuities in multiple directions (Zhu et al.,
2024; Ge et al., 2022); however, its success largely hinges on choosing
initial seed points. Poor choices can result in segmentation mistakes
or missed areas (Yu et al., 2022; Walicka and Pfeifer, 2022).

Point cloud data often show variations and fragmentation
due to the curvature and roughness of rock surfaces (Ma et al.,
2024; Bendezu, 2021). As a result, detecting discontinuities
requires the use of multiple algorithms to tackle complex local
features and improve segmentation accuracy (Wang et al., 2024;
Liu et al., 2023).Themean shift and Euclidean clustering algorithms
are particularly effective (Yong et al., 2024). The mean shift
algorithm identifies clustering centers adaptively (Yi et al., 2023;
Zhang et al., 2022), making it well-suited for handling point
cloud data with irregular shapes (Tang et al., 2022). On the other
hand, the Euclidean clustering algorithm efficiently distinguishes
separate discontinuities by measuring distances between points
(Tang et al., 2023; Gu et al., 2024). This combination can improve
the accuracy of discontinuity detection in rock masses of different
sizes, especially in planar areas. However, identifying low-density
and small-area planes continues to be challenging and may lead to
over-segmentation.

This study presents a method for identifying and screening
discontinuous surfaces using point cloud data. Parameters such
as bandwidth, distance threshold, and screening threshold are
chosen to enhance recognition accuracy, and the impact of various
parameters on the extraction results of a discontinuous point
cloud dataset is examined. A general recommendation for selecting
thresholds is provided, and the method successfully identifies the
dip angle and occurrence trends of the dominant discontinuous set.
The proposed approach’s effectiveness is validated by analyzing two
examples: regular hexahedrons and rock slopes.

2 Methodology

Section morphology analysis focuses on recognizing and
extracting information from rock structural planes. This study
employs spatial coordinate data from point clouds to determine the

coplanarity of the point cloud. Parameters of the structural planes,
including dip angle and inclination, are derived through plane fitting
techniques.

2.1 Structural plane identification

This study employs mean shift and distance-based clustering
to recognize discontinuities in point cloud data. Discontinuous
surfaces have distinct scale and orientation features and can be
represented as planes with angular edges. As a result, the normal
vectors of points on the same discontinuous surface tend to be
similar, while those at edge points show considerable differences.
Using the computed normal vectors, point cloud data is organized
through mean shift clustering, and then Euclidean clustering is
applied to detect the discontinuous surfaces. Detailed steps are
depicted in Figure 1.

2.1.1 Point cloud voxel processing
The initial point cloud data collected through 3D laser

scanning is cleaned of noise and converted into a voxel format to
improve processing speed and simplify algorithm implementation.
This approach dramatically decreases the amount of point cloud
data, enhances computational efficiency, and preserves essential
geometric characteristics by dividing the three-dimensional space
into consistent voxel grids. After voxelization processing, the
data maintain original accuracy and exhibit enhanced regularity,
facilitating the removal of noise and outliers and improving analysis
precision. Figure 2 shows the comparison effect before and after
point cloud voxelization.

2.1.2 Point cloud normal vector calculation
This research combines the K-nearest neighbor search (KNN)

methodwith the random sample consensus (RANSAC) algorithm to
improve the precision and reliability of normal vector computations
for point cloud data.The process of calculating normal vectors starts
by randomly choosing a point p from the point cloud to serve as
the center and setting a parameter K to indicate the number of
neighboring points.TheKNN algorithm is then used to calculate the
distances between point p and other points, with the closest K points
creating the neighborhood point set N(p). This approach ensures
that the chosen neighborhood points accurately reflect the spatial
characteristics, which are essential for the following normal vector
calculations.

The point ‘p' refers to an arbitrary point selected from the point
cloud data, serving as the center for subsequent calculations. The
neighborhood point set ‘N(p)' is a collection of the K nearest points
around p, determined by theKNN search. Specifically, for each point
p (xp,yp,zp), the distance to all other points q (xq, yq, zq) in the point
cloud can be calculated by Equation 1:

Distance(p,q) = √(xq‐xp)
2 + (yq‐yp)

2 + (zq‐zp)
2 (1)

The K points with the smallest distances are identified as
the neighborhood N(p), forming a local cluster of points that
approximate the spatial characteristics surrounding p.

After obtaining the neighborhood point set, the RANSAC
algorithm is applied to perform plane fitting. Specifically, three
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FIGURE 1
Discontinuous plane identification steps.

FIGURE 2
Point cloud voxel processing; (A) Spatial point cloud, (B) Voxelized point cloud.

points are randomly chosen from N(p) to construct a plane model,
represented by the Equation 2:

Ax+By+Cz+D = 0 (2)

Here, the normal vector (A, B, C) defines the plane’s orientation.
The distance d from each neighborhood point to the plane can be
calculated by Equation 3:

d =
|Ax0 +By0 +Cz0+D|

√A2 +B2 +C2
(3)

The coordinates of a neighborhood point are represented as
(x0, y0, z0). To assess the quality of the plane model, a threshold
ε is used to differentiate between inliers and outliers. This process
is repeated several times to improve the reliability of the normal
vector estimation, keeping track of the number of inliers in each
iteration.Themodel with themost inliers is chosen as the final plane
model, and the associated normal vector (A, B, C) is determined. To
maintain consistency, the outer normal vector is selected so that part
of the fitting plane extends outward from the center point, ensuring
that C is greater than 0.
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FIGURE 3
Normal vector calculation diagram.

The combination of KNN and RANSAC greatly improves
the accuracy and reliability of normal vector estimation. The
point set obtained from KNN offers a variety of candidate
samples for RANSAC, which enhances the initial point selection
process. Furthermore, KNN’s quick neighborhood search lowers
the computational demands of RANSAC. Consequently, this
approach enables dependable normal vector estimation in
point cloud data. Figure 3 is a point cloud normal vector
calculation diagram.

2.1.3 Point cloud data clustering
The mean shift clustering algorithm initiates by selecting a

random point from the point cloud as a starting point and
identifying all points within a predefined distance. Figure 4 shows its
working process. It computes the average coordinates of the selected
points, uses this position to reselect points within the same distance,
and iterates the process. By iteratively performing these steps, the
algorithm navigates through the point cloud to locate the centroid of
the densest point cluster. Unlike other clustering algorithms, mean
shift leverages local point connectivity to converge toward cluster
centroids. A key advantage of this algorithm is that it does not
require a predefined number of clusters and demonstrates resilience
to noise in the data.

The point cloud data is grouped using the mean shift algorithm,
which involves the following steps:

Step 1: Define the bandwidth parameter h to determine the
mean shift window size, typically ranging from 0.1 to 1
based on data characteristics.

Step 2: For each point p ∈ P (point cloud data set), identify
its neighborhood point set N(p) within the bandwidth
h range and calculate the mean shift vector to guide p
toward a high-density region. The mean shift vector can
be calculated by Equation 4:

MeanShift(p) =
∑

q∈N(p)
K( p−q

h
) ⋅ q

∑
q∈N(p)

K( p−q
h
)

(4)

where K is a Gaussian kernel function, and q represents a
neighborhood point.

Step 3: Update the position of p using the mean shift vector
and repeat Step 2 until the movement of p is less than
a predefined threshold ε, the whole process can be
determined by Equation 5:

∥ pnew − pold ∥< ϵ (5)

At this stage, p is considered converged.

Step 4: According to the position of the point after convergence,
the similar points are clustered into the same class.
By clustering the final position of each point, the final
clustering result Q = {(p1, p2, …)} is obtained.

2.1.4 Discontinuous surface identification and
screening

Mean shift clustering produces density-based results that
highlight clustering trends and enable preliminary rough
classification but operate as anunsupervisedmethod. Figure 5 shows
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FIGURE 4
Mean shift clustering diagram; (A) Out-of-order point cloud, (B) Window drift, (C) Clustering out-of-order point cloud using MS (three more significant
points are density centers).

FIGURE 5
Euclidean distance clustering diagram.

the Euclidean distance clustering diagram. However, this approach
can lead to fragmented results with excessive clustering centers.
Integrating mean shift clustering results with Euclidean clustering
enables merging small clusters, noise elimination, and structural
simplification by adjusting cluster centers (Lab represents different
point cloud sets). The clustering can be refined and validated by
setting an appropriate distance threshold, allowing occurrence
information extraction for each discontinuity.

The refinement process consists of the following steps: Step 1:
Choose a specific point in the space and find its k nearest neighbors
through a k nearest neighbor search. Step 2: If the distance from a
point to the center point is less than a predetermined threshold d,
that point is added to set B. Step 3: Select points in set B that differ
from point A and repeat steps 1 and 2 until no new points are added
to set B. To accurately identify primary discontinuity surfaces and
remove fragmented or irregular non-primary surfaces, a screening
threshold m is established. Point sets with fewer points than m are
categorized as non-primary discontinuity surfaces and are excluded
from information extraction and statistical analysis, while thosewith
more than m points are deemed effective discontinuity surfaces.

2.2 Analysis of influencing factors

Sandstone samples were created as standard cylinders for direct
shear and Brazilian splitting tests, measuring 50 mm in diameter
and 100mm and 25 mm in height, respectively. After compression
and shearing, the specimens were broken into upper and lower
parts. The upper part was chosen for further analysis, and a
three-dimensional topography device produced high-density point
cloud data via non-contact scanning to obtain sectional details.
CloudCompare software was utilized to visualize the scanned
images and store the point cloud data, achieving a recorded
density of 2,400/mm2. The Brazilian splitting shear section of the
specimen is shown in Figure 6A, and the tensile failure interface
is shown in Figure 6B.

The point cloud data from the Brazilian splitting test
were analyzed to evaluate factors influencing the recognition
of discontinuous surfaces. Three parameters were manually
configured: bandwidth (h), distance threshold (d), and screening
threshold (m).

Frontiers in Earth Science 05 frontiersin.org

https://doi.org/10.3389/feart.2025.1550986
https://www.frontiersin.org/journals/earth-science
https://www.frontiersin.org


Zhu et al. 10.3389/feart.2025.1550986

FIGURE 6
Three-dimensional morphology of specimen fractures after (A) shearing and (B) tension.

2.2.1 Bandwidth h
Based on Brazilian splitting test results, themean shift clustering

algorithm was employed to identify discontinuities in the point
cloud data. Different bandwidth parameters (h = 0.2, 0.4, 0.6,
0.8) were evaluated to determine their effect on identifying
discontinuities.The findings are illustrated in Figure 7.With h = 0.2,
six sets of discontinuities were detected. The clustering outcomes
were sensitive to minor discontinuities and provided detailed
distributions, but there was evidence of overfitting. In contrast,
with h = 0.6 and h = 0.8, only three and two discontinuous sets
were identified, respectively. While the main structural planes were
preserved, some finer details were lost due to overly coarse results.

After thorough analysis, a bandwidth parameter of h =
0.4 produced four distinct sets, leading to more balanced and
sensible clustering outcomes. This setting accurately represented
the distribution patterns of significant discontinuous surfaces,
prevented excessive segmentation of minor discontinuities, and
successfully balanced the overall structure with local details,
matching real-world conditions effectively. Therefore, h = 0.4 was
chosen as the ideal bandwidth parameter.

2.2.2 Distance threshold d
The recognition results of the mean shift clustering algorithm

with h = 0.4 were processed using Euclidean clustering, with the
distance threshold d adjusted to 0.1, 0.2, 0.3, and 0.4. The results of
discontinuous surface recognition are illustrated in Figure 8.

As illustrated in Figure 8, for d = 0.1 and 0.2, the distributions
of dip angles and inclination values are more varied, showing
notable differences among groups, which suggests a retention of
more localized characteristics. In the case of d = 0.3, four distinct sets
of discontinuities were found, with a reasonable merging of similar
structural planes. The dip angle and inclination values obtained
showed good concentration and balance. In contrast, for d = 0.4,
the clustering results leaned towards global trends, resulting in the
loss of somefiner details. After comparing the recognition outcomes,
d = 0.3 was the best parameter. At this value, the four identified

discontinuity sets strike a balance between overall structure and
local features, aligning with real-world conditions and accurately
representing the spatial distribution of discontinuities.

2.2.3 Screening threshold m
The effect of varying the screening thresholdm was observed to

analyze its impact on screening results.Threshold values ofm = 100,
200, 300, and 400 were evaluated.

Figure 9 shows the influence of different screening thresholds
(m = 100, 200, 300, 400) on discontinuity recognition results and
changes in the stereographic projection of the lower hemisphere. It
can be seen from the diagram that when the screening thresholdm is
100, the number of structural planes is higher, indicating that more
structural planes are retained.These structural planes include small-
scale noise and detail discontinuities. Secondly, the cloud image
represents the density distribution of each region. The darker the
color, the higher the density. At low thresholds, the distribution
of high-density regions in the figure is more dispersed, indicating
that these regions contain a large number of local details and
discontinuities. At this time, the change of density is more complex,
indicating that many small-scale structural planes are gathered
together, resulting in local details and noise being preserved. As the
screening threshold gradually increases (m = 400), the number of
structural planes decreases, and the density distribution becomes
more concentrated. This indicates that a higher screening threshold
excludes minor local details that may contain noise and only retains
a larger area of the main discontinuities.

In this discontinuity recognition process,m=200was selected as
the final screening threshold for its balance between overall trends
and local detail retention. Specifically, at m = 200, the number of
discontinuities reduces to 281, significantly lower than at m = 100,
effectively filtering out small-scale noise and secondary structural
planes. The projection illustrates a clear and concentrated high-
density discontinuity area with reduced noise interference, yielding
more concise and reliable results for subsequent analysis.
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FIGURE 7
The influence of different bandwidths on the recognition results of discontinuities, (A) h = 0.2, (B) h = 0.4, (C) h = 0.6, (D) h = 0.8.

2.3 Discontinuous surface information
extraction

2.3.1 Extraction of dip angle tendency of
discontinuous surface

After dividing the structural plane by clustering twice, the plane
fitting can be carried out by the least square method, and the plane
equation ax + by + c = z can be obtained, which can be expressed in
matrix form as Equation 6:

[x y 1]
[[[[

[

a

b

c

]]]]

]

= z (6)

Let the coordinates of n points on the structural plane be (x1,
y1, z1), (x2, y2, z2), (xn, yn, zn), then the above equation can be
expressed as Equation 7:

[[[[[[[

[

x1 y1 1

x2 y2 1

⋮ ⋮ ⋮

xn yn 1

]]]]]]]

]

[[[[

[

a

b

c

]]]]

]

=

[[[[[[[

[

z1
z2
⋮

zn

]]]]]]]

]

(7)

Let:

A =
[[[[

[

a

b

c

]]]]

]

,x =

[[[[[[[[[[

[

x1 y1 1

x2 y2 1

⋮ ⋮ ⋮

⋮ ⋮ ⋮

xn yn 1

]]]]]]]]]]

]

,z =

[[[[[[[[[[

[

z1
z2
⋮

⋮

zn

]]]]]]]]]]

]

(8)

Then the vector A is found by Equation 8, so that ∥ Ax−z ∥
obtains the minimum value, that is, the plane equation and its
normal vector are obtained by fitting.
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FIGURE 8
The influence of different distance thresholds d on the recognition results of discontinuities; (A) d = 0.1, (B) d = 0.2, (C) d = 0.3, (D) d = 0.4.

If we consider the unit normal vector of the rockmass structural
plane as (a, b, c), the three-dimensional laser scanner is only able
to scan the visible surface, which means c must be greater than
0. Therefore, (a, b, c) represents the unit outward normal vector
of the fracture structural plane. In the geodetic coordinate system,
we define the positive Y-axis as north, the positive X-axis as east,
and the positive Z-axis as upward. Using the following formula, the
strike α and dip angle β of rock mass structural plane in the geodetic
coordinate system are determined by Equation 9:

{{{{{{{{{{
{{{{{{{{{{
{

β = arccos(c)

ifa ≥ 0,b ≥ 0,α = arcsin(a/ sinβ)

ifa < 0,b > 0,α = 360− arcsin(−a/ sinβ)

ifa < 0,b < 0,α = 180− arcsin(a/ sinβ)

ifa > 0,b < 0,α = 180+ arcsin(−a/ sinβ)

(9)

2.3.2 Discontinuous surface area information
extraction

This paper employs a grid-filling technique to determine the
area of the structural plane based on the plane fitting outcomes
from the point cloud data. The fitted plane is divided into uniform
grids, each with an area of one unit. A grid is deemed effective if its
number of points surpasses a specified threshold; if not, it is labeled
ineffective. The area of the structural plane is calculated by tallying
the effective grids.

2.4 Discontinuous surface recognition
results

According to the analysis presented in Section 2.2 and the
point cloud data from the direct shear and Brazilian splitting tests,
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FIGURE 9
Statistical analysis of the influence of different screening thresholds m on the number of discontinuous surfaces.

discontinuous surfaces were detected using parameters h = 0.4,
d = 0.3, and m = 200. Figure 10 shows that four primary sets
of discontinuities were found in both tests, with distinct colors
effectively illustrating the spatial distribution of these surfaces.
In the direct shear test, the distribution of discontinuous sets
appears more random and denser, indicating a complex path of
fracture propagation under shear forces characterized by fractures
in multiple directions. Conversely, the Brazilian splitting test shows
a distribution of discontinuous sets that is more directional, with
cracks propagating along the principal stress direction. This pattern
indicates a greater likelihood of penetrating fractures occurring
under tensile conditions.

Figure 11 illustrates the occurrence data for the sandstone
section. The findings from the identification of discontinuous
surfaces indicate that the occurrence data from the direct shear
test is primarily found in areas with lower dip angles, with
average occurrences of 196.1°∠0.1°, 281.8°∠25.3°, 107.7°∠25.2°,
and 192.7°∠25.7°. This suggests that shear forces lead to a
more concentrated distribution of dip angles for discontinuous
surfaces, highlighting the direction and pattern of shear fractures.
In contrast, the occurrence of discontinuities observed in the
Brazilian splitting test spans a broader range of dip angles,
with average occurrences of 23.9°∠2.1°, 118.7°∠60.79°, 2.4°∠72.7°,
and 246.9°∠71.4°. This indicates that under tensile forces, the
section is primarily influenced by discontinuities with steeper
dip angles. The variation in occurrence distribution underscores

how different loading methods affect the fracture behavior of the
sandstone section.

2.5 Regular hexahedron verification

CloudCompare software was used to create point cloud data for
a regular hexahedron, which has a side length of 1 cm and consists
of 10,000 points on each face. The proposed algorithm was applied
with a parameter k = 3, dividing the hexahedron into three groups.
By setting d = 1, the six surfaces were successfully identified, with
planes with the same normal vector being assigned the same color.
Since the regular hexahedron has no non-primary discontinuities,
screening was unnecessary.

Assuming the positive x-axis points east, the positive y-axis
points north, and the z-axis points upward, the six planes of the cube
were calculated to be at angles of 0°∠0°, 0°∠180°, 90°∠90°, 90°∠180°,
90°∠270°, and 90°∠360°. The area of each of the six planes is 1 m2.
The recognition and extraction results effectively demonstrate the
proposed algorithm’s accuracy.

3 Application analysis of rock slope

The previous section used the hexahedron with known
parameters to verify the algorithm’s accuracy. This section collects
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FIGURE 10
Sandstone section discontinuity identification results (A) Brazil splitting and (B) Direct shear test identification results.

FIGURE 11
Sandstone section occurrence information stereo projection, (A) Brazil splitting, and (B) Direct shear test identification results.

the point cloud data of the rock slope on-site for analysis to illustrate
the algorithm’s applicability.

3.1 Rock point cloud data acquisition

Terrestrial laser scanning (TLS) mainly involves a laser
rangefinder and an anglemeasurement system.The laser rangefinder
is responsible formeasuring distances, while the anglemeasurement
system captures the angles of the laser in both horizontal and
vertical planes. The scanner’s motor methodically scans the target

area line-by-line and column-by-column to create a dense point
cloud. This point cloud data is made up of spatial points, and
after a rigid transformation, the relative positions of the points
and the overall shape of the point cloud remain consistent. This
research employs the MapTek I-Site 8820 for field data collection,
which features a scanning field angle of 360° horizontally and
160° vertically, a measurement accuracy of ±6 mm, a maximum
scanning distance of 2000 m, and an effective scanning range
of 600 m (for objects with reflectivity over 10%) to 1,600 m (for
objects with reflectivity over 80%). Figure 12A, B show the scanner
in action in the field and the process of calculating the local
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FIGURE 12
Data acquisition based on TLS (A) TLS work (B) Convert point cloud to geodetic coordinate system (C) Point cloud data.

coordinate system (x′, y′, z′) for each point. The high-resolution
point cloud obtained is connected to geodetic coordinates (x, y, z)
through the local coordinate system, with the rock point cloud data
depicted in Figure 12C.

3.2 Grouping results of different methods

The connection between parameter selection and the
identification of rock discontinuities makes it challenging to
automate the outcomes of various segmentation algorithms
fully. qFacet is a widely utilized open-source algorithm for
analyzing point cloud data related to rock masses, so we have
chosen it as a benchmark to evaluate the effectiveness of our
proposed method.

The qFacet algorithm operates as a plug-in module within
Cloudcompare. It divides the original point cloud data into distinct
sub-units for plane fitting and combines these plane objects into
polygonal discontinuities based on a flatness threshold. By adjusting
the parameters, the boundaries of the discontinuous surfaces are
modified around the segmentation points, producing recognition
results for the discontinuous surfaces and calculating attitude
information, such as dip angle tendencies.

Our proposed method set the thresholds to h = 0.4, d = 0.3,
and m = 200. For the qFacet algorithm, the minimum number of
points required on each discontinuous surface is set to 200, with
a minimum side length of 0.05 and a maximum distance of 0.2.
The field point cloud data collected is manually segmented into two
regions of interest (ROI): region I and region II. The results of the
discontinuous set extraction from both our method and the qFacet
method are illustrated in Figure 13.

3.3 Discontinuity identification and
measurement accuracy comparison

To assess the accuracy of the method presented in this paper,
we extract information about each discontinuous set from the
recognition results in the region I, as illustrated in Figure 14A.
Different colors indicate various discontinuous sets, showcasing the
distribution of rock discontinuities. Following the approach outlined
in Section 2.3.1, we provide area statistics for the discontinuous
surfaces after each screening group. In Figure 14C, the horizontal
axis represents the area intervals, while the vertical axis shows
the frequency percentage. The statistical analysis revealed a total
of 415 discontinuous surfaces. Set 1 comprised 65 surfaces with
a maximum area of 0.39 m2, while Set 4 consisted of a vertical
discontinuous set with 113 surfaces. Set 3 was divided into 124
discontinuous surfaces, with a dip angle similar to the original slope.
The largest group, set 2, included 113 discontinuous surfaces, with a
maximum area of 0.57 m2.

Table 1 presents a comparison between the results of
discontinuous surface recognition achieved by the method in
Region I and those obtained through manual recognition. Initially,
a representative rock layer or discontinuous surface is selected for
manual dip angle measurement to avoid damaging the rock surface.
A geological compass is placed flat on the rock surface to ensure
proper contact and prevent tilt or misalignment. The inclination
refers to the angle of the rock surface in relation to the horizontal
plane, typically read on the compass dial, which ranges from 0°
(horizontal) to 90° (vertical). The tendency indicates the direction
of the intersection between the rock layer and the horizontal
plane, measured clockwise from north, ranging from 0° to 360°.
After completing the measurements, the inclination and tendency
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FIGURE 13
Discontinuous surface identification results using two methods; (A) The method proposed in this paper, (B) The qFacet method.

data are recorded and taken multiple times to ensure precision.
The results show that the difference between the discontinuity
occurrence identified by this method and the manual identification
is within 1.5°.

Region II, which exhibits a higher degree of weathering, is
chosen for comparison to assess the effectiveness of the method
presented in this paper. The point cloud data from Region II
displays more intricate spatial distribution and discontinuous
surface features, allowing for a more thorough evaluation of the
method’s performance in complex scenarios. The area distribution
of the four sets of discontinuities follows a lognormal distribution. In
the recognition results for the discontinuous sets in Region II, three
representative discontinuous surfaces from each set are selected,
totaling 12 surfaces. A comparison with the extraction results from
the qFacetmethod is conducted, focusing on the dip angle and trend.
The findings in Table 2 indicate a strong alignment between this
method and qFacet in terms of dip angle and trend extraction. The
maximum errors in the inclination angles for the 12 discontinuities
are 1.6° and 1.3°, respectively, demonstrating the method’s high
accuracy and reliability in extracting the inclination angles of the
discontinuities. Additionally, this confirms the method’s robustness.

4 Discussion

Point cloud data is vast, and its processing requires significant
computational resources and time, which is a major drawback. To
address this issue, the algorithm presented in this paper aims to
streamline the process and enhance calculation speed while keeping
the error margin within 5%. Although down-sampling can decrease
the number of points, it also results in some loss of information and
accuracy. Further research is needed to minimize information loss
during down-sampling.

The analysis of various influencing factors reveals that h, d, and
m significantly impact the recognition outcomes of discontinuous
surfaces. The algorithm can effectively detect the discontinuous

surfaces within rock masses by fine-tuning these parameters. The
choice of parameters is closely linked to the geometry of the object
and the density of the point cloud, meaning there is no one-
size-fits-all parameter. However, based on how threshold selection
affects recognition results, recommendations for parameter choices
under varying conditions can be made. The bandwidth h should
be selected from a range of 0–1.0, starting at 0.2 and increasing
incrementally, with the h value yielding the best grouping result
being chosen. The distance threshold d indicates the maximum
allowable distance between points and should exceed the spacing
of the point cloud, with its selection depending on the density
of the point cloud in different scenarios; in this study, d = 0.3 is
identified as the optimal distance threshold.The screening threshold
m sets theminimumnumber of nodes for the discontinuous surface,
influencing the fragmentation of the surface and the accuracy of
its identification. During actual scanning, selecting a representative
small-scale area to minimize the number of point cloud data
nodes is advisable. Applying the proposed algorithm to intelligently
identify the discontinuity surface, swiftly obtain recognition
results under various parameters, and compare these with actual
measurements. This analysis will help select the most appropriate
parameters, which can be applied to extensive point cloud data
processing.

5 Conclusion

This study proposes a discontinuous surface recognition
method based on point cloud data and verifies its applicability
under various fracture modes through experimental analysis. The
method demonstrates high precision, broad applicability, and robust
performance in identifying and extracting rock sections’ occurrence,
area, and surface morphology, as validated by hexahedron and field
data analysis. The specific conclusions are summarized as follows:

(1) Combining the KNN and RANSAC algorithms improves
both the speed and accuracy of normal vector calculations.
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FIGURE 14
Region I Discontinuous set extraction results (A) each group of discontinuous set details (B) discontinuous set m = 200 screening results (C) area
statistics.

TABLE 1 Comparison of discontinuous surface measurement results between this method and the manual method.

Discontinuity set Point count Average orientation (dip/dip direction)

This paper Compass Error degrees

Group 1 27,759 31.2°∠18.3° 31°∠18.7° 0.2°∠0.4°

Group 2 51,370 69.5°∠187.4° 69.9°∠186.9° 0.4°∠0.5°

Group 3 32,689 50.1°∠330.5° 49.2°∠329.7° 0.9°∠0.8°

Group 4 57,371 81.8°∠312.2° 80.5°∠311.8° 1.3°∠0.4°

The point cloud data is organized by integrating mean shift
clustering with Euclidean distance clustering. The parameters
for h, d, and m are established, effectively facilitating the
identification and screening of discontinuities. Additionally,

a method for extracting the occurrence and area of these
discontinuities has been proposed.

(2) The analysis of point cloud data from the direct shear and
Brazilian splitting tests indicates that different loading methods
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TABLE 2 The method in this paper is compared with the discontinuous surface measurement results of qFacet.

Discontinuity set Point count Average orientation

This paper qFacet Error degrees

Group (1) J1 36.8°∠16.8° 37.5°∠16.2° 0.7°∠0.6°

Group (1) J2 33.5°∠57.6° 33.1°∠58.4° 0.4°∠0.8°

Group (1) J3 49.2°∠28.1° 47.9°∠27.3° 1.3°∠0.8°

Group (2) J4 75.2°∠192.3° 75.8°∠191.7° 0.6°∠0.6°

Group (2) J5 70.0°∠191.4° 69.6°∠191.6° 0.4°∠0.2°

Group (2) J6 80.4°∠189.0° 81.1°∠189.3° 0.7°∠0.3°

Group (3) J7 84.0°∠331.3° 85.4°∠332.3° 1.4°∠1.0°

Group (3) J8 75.3°∠320.2° 76.5°∠321.3° 1.2°∠1.3°

Group (3) J9 83.9°∠318.5° 84.3°∠317.5° 0.4°∠1.0°

Group (4) J10 73.5°∠288.9° 74.3°∠287.6° 0.8°∠1.3°

Group (4) J11 70.8°∠290.2° 69.2°∠289.4° 1.6°∠0.6°

Group (4) J12 70.5°∠259.6° 71.3°∠258.9° 0.8°∠0.7°

significantly influence the distribution and occurrence of
discontinuities. In the direct shear test, the distribution of
discontinuities is relatively concentrated, with a small dip
angle, demonstrating a clear directional pattern that reflects
the regularity of shear fractures. Conversely, in the Brazilian
splitting test, the distribution of discontinuities is more complex
and random, with discontinuities exhibiting larger dip angles
being predominant. This reveals the multi-directional fracture
characteristics that occur under tensile forces.

(3) The discontinuity identification method proposed in this
paper was validated using both regular hexahedron data
and field data, demonstrating its high precision and broad
applicability. In the hexahedron validation, the algorithm
successfully identified six faces and extracted occurrence and
area information that aligns with theoretical expectations.
In the field data validation, comparison results with the
qFacet algorithm indicate that the proposed method exhibits
high consistency in dip angle and trend extraction, with
a minimal error margin (≤1.5°). Notably, the proposed
method in complex rock formations effectively identifies
small-scale discontinuities and accurately calculates their
areas, confirming its reliability and robustness in practical
applications.
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