
TYPE Original Research
PUBLISHED 01 April 2025
DOI 10.3389/feart.2025.1548557

OPEN ACCESS

EDITED BY

Shailesh Kumar Singh,
National Institute of Water and Atmospheric
Research (NIWA), New Zealand

REVIEWED BY

Guy Jean-Pierre Schumann,
University of Bristol, United Kingdom
Channa Nilanga Rajanayaka,
National Institute of Water and Atmospheric
Research (NIWA), New Zealand

*CORRESPONDENCE

S. Hammoudeh,
s.hammoudeh@fz-juelich.de

RECEIVED 19 December 2024
ACCEPTED 19 March 2025
PUBLISHED 01 April 2025

CITATION

Hammoudeh S, Goergen K, Belleflamme A,
Giles JA, Trömel S and Kollet S (2025)
Evaluating precipitation products for water
resources hydrologic modeling over
Germany.
Front. Earth Sci. 13:1548557.
doi: 10.3389/feart.2025.1548557

COPYRIGHT

© 2025 Hammoudeh, Goergen, Belleflamme,
Giles, Trömel and Kollet. This is an
open-access article distributed under the
terms of the Creative Commons Attribution
License (CC BY). The use, distribution or
reproduction in other forums is permitted,
provided the original author(s) and the
copyright owner(s) are credited and that the
original publication in this journal is cited, in
accordance with accepted academic practice.
No use, distribution or reproduction is
permitted which does not comply with
these terms.

Evaluating precipitation products
for water resources hydrologic
modeling over Germany

S. Hammoudeh1,2*, K. Goergen1,2, A. Belleflamme1,2, J. A. Giles3,
S. Trömel3,4 and S. Kollet1,2

1Institute of Bio- and Geosciences (IBG-3, Agrosphere), Forschungszentrum Jülich (FZJ), Jülich,
Germany, 2Centre for High-Performance Scientific Computing in Terrestrial Systems (HPSC TerrSys),
Geoverbund ABC/J, Jülich, Germany, 3Meteorology Section, Institute of Geosciences, University of
Bonn, Bonn, Germany, 4Laboratory for Clouds and Precipitation Exploration, Geoverbund ABC/J,
Bonn, Germany

Accurate precipitation data are crucial for many sectors and applications,
like managing water resources, for agriculture, or assessing the risks of
hydrometeorological extreme events like floods and droughts, which are
expected to further increase with climate change. This study compares
the spatial and temporal characteristics of ten state-of-the-art, commonly
used precipitation datasets, with each other and against reference in situ
precipitation gauge observations from the European Climate Assessment &
Dataset (ECA&D) over Germany. The objectives are to evaluate whether bias
adjustment is needed for the European Centre for Medium-Range Weather
Forecasts (ECMWF) High Resolution (HRES) meteorological forecasting dataset,
which is used in near real-time water resources modeling with the ParFlow
integrated hydrologicmodel, and if so, to assesswhether any of the observation-
based comparison datasets might be suitable for this bias adjustment. Results
show that HRES and Reanalysis v5 (ERA5) capture spatial patterns well, albeit
with deficits in reproducing extremes, and over- and underestimation at low
and high altitudes, respectively. COSMO-REAnalysis (COSMO-REA6) captures
the spatial precipitation patterns less effectively but outperforms HRES and
ERA5 in reproducing extreme events. HYRAS-DE-PRE (HYRAS), Radar Online
Adjustment (RADOLAN), and Radarklimatologie (RADKLIM) perform very well,
showing strong spatial accuracy and potential for bias adjustment, though
their limited spatial coverage potentially restricts their use across all river
catchments affecting Germany. The Operational Program of the Exchange of
Weather Radar Information (OPERA) tends to underestimate mean precipitation
quantities and extreme events. Integrated Multi-satellite Retrievals for Global
Precipitation Measurement (IMERG) Final shows an improvement over IMERG-
Late. EUropean RADar CLIMatology (EURADCLIM) outperforms OPERA due to
gauge adjustments. The methodology and findings from this study may also
be applicable to similar evaluations in other regions, and may help in the
selection of precipitation datasets, e.g., for hydrological model forcing or for
bias adjustments.
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1 Introduction

As a primary component of the Earth’s hydrological cycle,
precipitation plays a central role in many environmental processes
and human activities. Access to accurate precipitation data is vital
for many sectors and uses, including water resources management,
agriculture (Araghi et al., 2021), or the analysis of extreme events,
such as floods and droughts (Zhong et al., 2019; Hinge et al.,
2022), to name a few. Under an intensifying hydrological cycle,
climate change is projected to increase both the likelihood and the
severity of such extreme events (Huntington, 2006; Caretta et al.,
2022). However, the significant spatial and temporal variability of
precipitation challenges the development of accurate datasets at the
required resolution.

In recent decades, the demand for regional climate information
in Europe has increased (Strandberg and Lind, 2021). This demand
led to the development of national and regional atmospheric models
like Germany’s COnsortium for Small-Scale MOdelling (COSMO)
(Baldauf et al., 2011) and ICON (Zängl et al., 2015; Pham et al.,
2021), the United Kingdom’s Unified Model (Davies et al., 2005),
AROME-France (Seity et al., 2011), or HARMONIE–AROME
(widely used in Denmark, Finland, Iceland, Ireland, Lithuania,
and Sweden) (Bengtsson et al., 2017). These models are critical
for numerical weather prediction (NWP) and regional climate
scenarios and also provide information on the terrestrial water
cycle. Hydrological models have also advanced into highly versatile
tools, supporting water resource management and river discharge
forecasting (Keller et al., 2023). Examples include the Global Flood
Awareness System for long-term flood forecasting (Alfieri et al.,
2013), or Deltares’ Global River Flood andDrought Forecast Service
providing 16-day forecasts (Werner et al., 2013). Specifically for
drought monitoring, systems have been deployed such as the
German Drought Monitor (Zink et al., 2016) or the Czech and Swiss
drought monitors (Trnka et al., 2020; Zappa et al., 2014).

Another hydrological simulation experiment of particular
interest in this study involves high-resolution hindcasts and
experimental water resources forecasts using the integrated physics-
based ParFlow hydrological model including the Common Land
Model (Belleflamme et al., 2023; Kuffour et al., 2020; Kollet and
Maxwell, 2006; Maxwell et al., 2016) by the authors. The model
domain covers part of central Europe, centered on Germany,
at 611 m spatial resolution (see Figure 1, hereafter identified as
“DE06”). These forecasts are run daily at an hourly time step
with a 10-day lead time. The ParFlow/CLM, DE06 setup is
extensively described in Belleflamme et al. (2023). Within the DE06

Abbreviations: AMSL, Above Mean Sea Level; COSMO, Consortium for
Small-Scale Modelling; CRMSE, Centered Root Mean Squared Error; CWD,
Consecutive Wet Days; DWD, German Weather Service; ECA&D, European
Climate Assessment and Dataset; ECMWF, European Centre for Medium-
Range Weather Forecasts; ETCCDI, Joint Expert Team on Climate Change
Detection and Indices; EURADCLIM, European RADar CLIMatology; HRES,
High Resolution; IFS, Integrated Forecasting System; IMERG, Integrated
Multi-satellite Retrievals for Global Precipitation Measurement; IMERG-F,
IMERG FINAL; IMERG-L, IMERG LATE; K-S, Kolmogorov-Smirnov; KNMI,
Royal Netherlands Meteorological Institute; NWP, Numerical Weather
PredictionModel; OPERA, Operational Program for the Exchange ofWeather
Radar Information; RADKLIM, Radarklimatologie; RADOLAN, Radar Online
Adjustment; SDII, Simple Daily Intensity Index; Reanalysis v5, ERA5; STD,
Standard Deviation.

forecast ensemble, the deterministic ParFlow runs, that provide
the initial conditions for the subsequent forecast cycle, are driven
by the European Centre for Medium-Range Weather Forecasts
(ECMWF) High Resolution (HRES) NWP gridded near surface
atmospheric fields. While the difference between precipitation
and evapotranspiration (P-ET) is the main source-sink term of
hydrological models, precipitation plays a particularly crucial role
as the primary driver. It is therefore of great interest to evaluate
the quality of the precipitation forcing data used in the DE06
ParFlow simulations driven by HRES, and to assess whether there
are suitable datasets for bias adjustment.This is the mainmotivation
for this study.

Readily available gridded precipitation products include
spatially interpolated in situ observations, radar- and satellite-
based remote sensing products (Alfieri et al., 2022; Huang et al.,
2019; Sokol et al., 2021), NWPs or reanalyses that assimilate
observations (Bandhauer et al., 2022). Despite great effort and
progress in the accuracy of NWPs, the simulation and derivation
of precipitation is still a challenge due to its high spatial and
temporal variability (Bauer et al., 2015). Precipitation data from
these models are often bias adjusted in hydrological modeling
chains (Maraun, 2016). Two main methods for bias adjustment are
commonly employed.Thefirstmethod relies on average adjustments
derived from an extended historical period, eliminating the need
for near real-time data. The second method adjusts precipitation
based on observations from recent days, aligning outputs more
closely with current conditions and requiring real-time data to
achieve precision (Patakchi Yousefi et al., 2024). To implement
these adjustments, various techniques have been applied, including
quantile mapping, delta method, logistic regression, Bayesianmodel
averaging, and more recently, machine learning methods such as
artificial neural networks and convolutional neural networks, albeit
these techniques require reliable reference datasets (Cane et al.,
2013; Fuentes-Barrios and Sierra-Lorenzo, 2021; Jabbari and Bae,
2018; Kumar et al., 2021; Li et al., 2023; Patakchi Yousefi and
Kollet, 2023; Pourmokhtarian et al., 2016; Roulin and Vannitsem,
2012). Integrating these adjustments into hydrological modeling
contributes to a more credible representation of the subsurface
water budget, establishing a robust initial state from which forecasts
can be launched (Chevuturi et al., 2023).

Over the past decade, various precipitation products have been
evaluated for their suitability in hydrologicalmodeling. For example,
22 precipitation products were evaluated globally by Beck et al.
(2017), 17 were evaluated over West Africa by Dembélé et al.
(2020) and nine were assessed in the Iowa-Cedar River Basin by
Wu et al. (2017). In Europe also, various precipitation datasets have
been evaluated. Lockhoff et al. (2019) analyzed a mix of different
types of datasets, including gauge-based (e.g., E-OBS), satellite (e.g.,
CMORPH), and reanalysis (e.g., COSMO-REAnalysis referred to as
HERZ in their study), against high-density rain gauge observations
in western and central Europe. Their findings indicate that the
quality of these datasets depends on the region, season, and specific
precipitation characteristics examined. Similarly, Kidd et al. (2012)
compared different satellite datasets (e.g., CMORPH; PERSIANN)
alongside precipitation fromNWPof ECMWF in northwest Europe.
Ramsauer et al. (2018) found that gridded Integrated Multi-satellite
Retrievals for Global Precipitation Measurement (IMERG) Final
V05 data product overestimates precipitation compared to the Radar
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FIGURE 1
Spatial distribution of available ECA&D stations and data availability within the ParFlow hydrological model DE06 domain. (A) Spatial distribution of
stations with available data showing the long-term mean annual precipitation sums (2014–2022); (B) percentage of available daily data after applying
Filter 1, which preserves as much valid data as possible, with altitude grouped into three ranges: Low Alt (<200 m AMSL), Med. Alt. (200m–800 m
AMSL), and High Alt (>800 m AMSL). These ranges are represented by three distinct gray colors; (C) percentage of available daily data after applying the
more strict Filter 2 (see Section 2.2.1).

Online Adjustment (RADOLAN) RW data product over Germany,
especially in winter, and that there are shortcomings to correctly
represent precipitation in areas of complex topography. Bogerd et al.
(2021) compared the IMERG Late Run V06B data product over the
Netherlands against a gauge-adjusted radar precipitation product
and found similar biases as those described by Ramsauer et al.
(2018). Notably, Europe has the second fewest IMERG validation
studies among all continents (Pradhan et al., 2022). Kreklow et al.
(2020) compared the meteorological radar RADOLAN RW and its
climatological product, the Radarklimatologie (RADKLIM), against
precipitation gauge data overGermany during 2006–2017 and found
that both products tend to underestimate total precipitation sums
in general and especially high intensity rainfall. While RADOLAN
exhibits range-dependent attenuation, resulting in lower values
with increasing distance from the radar, RADKLIM demonstrates
improvements in correcting radar artifacts, winter precipitation, and
orographic effects, showing no range dependency. Despite these
efforts, RADKLIM underestimates mean annual precipitation more
than RADOLAN for the years before 2017 (Kreklow et al. (2020).
However, both datasets reduce their biases to similar values by the
end of the analyzed period. To our knowledge, a comprehensive
intercomparison study of recent precipitation products over central
Europe is still lacking.

This study therefore evaluates the spatial and temporal
characteristics of ten state-of-the-art, commonly used precipitation
datasets from distinct data sources and based on a range of
methodologies. These datasets are compared with each other and
benchmarked to reference in situ precipitation gauge observations
from the European Climate Assessment & Dataset (ECA&D) over
Germany. Besides this evaluation, the objectives are to (i) assess
whether the ECMWF HRES meteorological forecasting dataset,
in use with the DE06 ParFlow near real-time water resources
forecasts (Belleflamme et al., 2023), requires a bias adjustment, and

(ii) in light of the precipitation dataset’s characteristics, determine
their suitability for this purpose, considering their near real-time
availability with respect to DE06 ParFlow’s forecasting cycle.

Section 2 gives a brief overview of the data products assessed
in this study and the preprocessing steps. A benchmarking of
each dataset against in situ reference observations is presented
in Section 3.1. An assessment of HRES precipitation, its fidelity,
and the suitability of the comparison datasets for bias adjustment
is presented in Section 3.2. Limitations and constraints of the
study are found in Section 3.3. Section 4 includes a summary
and conclusion.

2 Datasets and methodology

2.1 Datasets

Categorized by data type, this section provides an
introduction to the ten datasets considered in our
evaluation, see the Supplementary Table S1 for a condensed dataset
overview, including data sources. The precipitation dataset selection
criteria resulted in a diverse set of commonly used datasets.
With respect to availability and usability, data has to be readily
available and provided as free products. As geometric properties,
we include point-based station observations as well as gridded
data of different resolutions. The gridded data are of different
types: interpolated in situ, radar, and satellite-based observations,
or from NWP models and reanalysis. For temporal availability,
we distinguish between near real-time and non-real-time. The
resulting dataset range ensures a comprehensive evaluation that
may inform on datasets applicability in various contexts. The 24 h
total precipitation (including snowfall) is the only variable analyzed
in this study.
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2.1.1 In-situ precipitation gauge reference
observations

The European Climate Assessment and Dataset (ECA&D),
a database of daily meteorological station observations
(Klein Tank et al., 2003), serves as the reference dataset in this
study. The station-based dataset is specifically chosen due to the
high density of monitoring stations in Germany, within the DE06
domain. Given the importance of accurate spatial representation, we
avoid using gridded in situ datasets as reference.While such datasets
would provide valuable information, its interpolationmethodmight
introduce inaccuracies, especially in regions with sparse or uneven
station coverage. By selecting the ECA&Ddataset, we ensure that the
reference data reflects the most reliable and precise ground-based
observations, offering a more accurate basis for evaluating the other
datasets in this study. ECA&D is provided by the Royal Netherlands
Meteorological Institute (KNMI) and contains daily values of up to
12 observed meteorological variables for a total of 26,440 stations
across 65 countries in Europe and the Mediterranean, some dating
back to before 1900 (Van den Besselaar et al., 2015). The ECA&D
data has been extensively pre-processed and quality controlled
(Royal Netherlands Meterological Institute, 2021). The spatial
distribution of ECA&D stations with available data within the DE06
model domain is shown in Figure 1A. Over Germany, the ECA&D
data is based on the rain gauge network of the German Weather
Service (DWD).Notably, the data underwent post-processing (Filter
1, Filter 2), explained in detail in Section 2.2.1. The mean annual
precipitation sum from 2014 to 2022 over all ECA&D stations in
Germany is 764 mm/year. Precipitation in Germany varies both
spatially and seasonally, with higher amounts in the central and
southern mountainous regions due to prevailing westerly and
southwesterly winds of oceanic origin with orographic precipitation
along themidmountain ranges.The eastern parts receive less rainfall
under a more continental climate (UBA, 2019). While summers in
Germany are usually wetter than winters, they also show higher
evaporation rates. Consequently, rivers often experience lower
runoff in summer compared to winter (Kahlenborn et al., 2021).

2.1.2 Atmospheric model outputs
The ECMWF atmospheric model high-resolution 10-day

forecast (HRES) from the Integrated Forecasting System (IFS) at
about 9 km horizontal resolution (Owens andHewson, 2018) serves
as the baseline atmospheric forcing data at hourly intervals for the
ParFlow DE06 hydrological forecasts. In this study, total hourly
precipitation for the first 24 h from daily HRES 12 UTC forecast
runs, concatenated into a time series, is evaluated.

The Reanalysis v5 (ERA5) atmospheric global reanalysis dataset,
produced by ECMWF using the IFS model with data assimilation
(Hersbach et al., 2020), is widely utilized across various applications.
It serves, e.g., both as a driving and validation dataset for regional
climate models (e.g., Varga and Breuer, 2020) and as input for
global hydrological models (e.g., Müller Schmied et al., 2021).
Consequently, we include in our evaluation ERA5’s total hourly
precipitation at a 31 km horizontal resolution, obtained from the
Copernicus Climate Data Store. ERA5 is continuously updated with
preliminary data available within 5 days.

Since higher resolution atmosphericmodels have added value in
reproducing precipitation amounts, intensities, diurnal cycles and
spatial patterns (e.g., Loken et al., 2017; Ban et al., 2021), hourly

precipitation from the COSMO-REAnalysis dataset for Europe at
a resolution of 6 km (Bollmeyer et al., 2015) is considered in this
study as well. COSMO-REA6 is based on the COSMO limited-area
model (LAM) (Schättler et al., 2021), the former operational NWP
system of the DWD, and run over the European model domain.

2.1.3 Gridded precipitation observations
The HYRAS-DE-PRE v3.0 (Rauthe et al., 2013) is a high-

resolution dataset and processing methodology, providing
daily precipitation at 1 km resolution for Germany and
overlapping major river basins. It has been developed for
hydrological and hydrometeorological applications by DWD
and the Federal Institute of Hydrology. HYRAS is based on a
sophisticated spatial interpolation of extensively pre-processed
precipitation gauge observations (Rauthe et al., 2013), i.e., it
shares many of the observations with ECA&D. HYRAS has
served as the modeling basis for the climate impact assessment
of Germany (Kahlenborn et al., 2021).

2.1.4 Radar products
Radar data are usually available at high temporal and spatial

resolutions in near real-time. RADOLAN RW is a gauge-adjusted
fully pre-processed precipitation dataset provided by DWD at
1 km spatial and 1 h temporal resolution based on a network of
17 operational C-band weather radars covering entire Germany.
RADOLAN is used by German water management authorities
for flood risk management and other hydrometeorological
applications (Weigl, 2017).

The RADKLIM data product, a climatological version of
the RADOLAN dataset, features gauge-adjusted data that have
undergone offline climatological corrections to address issues such
as spokes and clutter (Auerswald et al., 2019). The dataset starts
in 2001 and shows improvements in capturing short-lived extreme
precipitation. It provides a reference for climate model evaluation,
specifies damage potential to infrastructure and supports adaptation
measures and civil protection (Winterrath et al., 2017).

Since the DE06 model domain includes Germany and adjacent
river catchments (Figure 1), the spatial coverage provided by
RADOLAN and RADKLIM is not sufficient. Therefore, the
European radar composites produced by the Operational Program
of the Exchange of Weather Radar Information (OPERA) are
additionally included in this evaluation study. OPERA nowadays
includes 150 radars across 30 member countries (Park et al., 2019)
in a unified data product.The composite provides a 2 km spatial and
hourly accumulation, updated every 15 min (Saltikoff et al., 2019).

Similar to RADKLIM, the EUropean RADar CLIMatology
(EURADCLIM) is a climatological, gauge-adjusted version
of OPERA. EURADCLIM applies additional algorithms to
homogenize the data, including statistical clutter filters, cloud-
type product integration to exclude non-precipitating areas, and
annual clutter masks to replace erroneous radar accumulations with
interpolated values (Overeem et al., 2023). It maintains a similar
resolution to OPERA and includes a dataset with 24 h precipitation
accumulations (Overeem et al., 2023).

2.1.5 Satellite data products
Satellite data products provide essential coverage by filling

the gaps left by ground-based measurements (Liu et al., 2007).
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IMERG V07 is a global, half-hourly dataset with a spatial resolution
of 10 km. This product integrates precipitation-relevant passive
microwave satellite retrievals together with microwave-calibrated
infrared satellite estimates and precipitation gauge analyses to create
a comprehensive merged dataset (Huffman et al., 2020).

IMERG provides three datasets: The near real-time IMERG-
Early (IMERG-E), available 4 hours after the observation, the
near real-time IMERG-Late (IMERG-L), available 14 h after
the observation, and the IMERG-Final (IMERG-F), updated
approximately 3 months after the observation. The primary
difference between IMERG-E and IMERG-L is that IMERG-E
relies solely on extrapolation, whereas IMERG-L incorporates both
extrapolation and interpolation. In all three datasets, gauge analysis
plays a key role in determining final values for areas with reliable
gauge coverage (Huffman et al., 2023). In this study, IMERG-L
and IMERG-F are evaluated. IMERG is particularly valuable in
regions with limited ground-based data. IMERG precipitation
data is, e.g., integrated into the Drought Severity Evaluation
Tool used for drought management in the Navajo Nation in the
United States (McCullum et al., 2021).

2.2 Methodology

2.2.1 Data pre-processing
Because of data availability, our study encompasses a 9-year

time span from 2014 to 2022. The datasets are considered as readily
available precipitation data products, which are used without any
additional processing or quality control, except adjustments for
the different temporal resolutions of the datasets and the filtering
process, which are explained below.

Our analysis is performed on a per-station basis and without
regridding to a common reference grid. Instead, for each ECA&D
station location within the ParFlow DE06 model domain, the
temporally aggregated (to daily sums) time series from each gridded
dataset are extracted from the nearest neighbor grid point in order
to set up our DE06 domain data collective.

As mentioned above, the ECA&D reference dataset has a daily
resolution. For the stations included in the study (see Figure 1B), a
day is defined from 6UTC to 6UTCof the following day. Despite the
fact that ParFlow DE06 is run with an hourly atmospheric forcing,
the daily resolution of ECA&D determines the temporal scale of
this study’s evaluation. After downloading all datasets from their
respective sources, the first step is to align each dataset with the 6
UTC-6 UTC day definition of ECA&D within the DE06 domain
to ensure consistency. Defining a day from 6 UTC to 6 UTC is
possible as, aside from daily HYRAS data (also from 6 UTC to
6 UTC), HRES, ERA5, COSMO-REA6, RADOLAN, RADKLIM,
and EURADCLIM have hourly resolutions, while IMERG-F and
IMERG-L even have half-hourly resolutions. Finally, OPERA is
available at quarter-hourly resolution. All datasets are read and
stored in one single matrix, more precisely a NumPy array, for
further processing.

For the HRES forecast dataset, the 12 UTC hourly forecast
is selected for this evaluation because it is also used as the
atmospheric boundary condition in the DE06 simulations. So, to
create temporally consistent 24 h HRES precipitation sums, the first
6 hours of a given day (i.e., 6–12 UTC) are extracted from the

previous day’s 12 UTC forecast, while the following 18 h (i.e., 12–6
UTC) are extracted from the same day’s forecast.

All datasets are aggregated to 24 h precipitation sums in mm, so
they are consistent with the temporal resolution and day definition
of the ECA&D reference. On a per-dataset basis, a day is flagged as
missing, if any time step within the 24 h is missing.

To overcome the typical overestimation of very low precipitation
amounts of atmosphericmodels, commonly referred to as the drizzle
bias (Dai, 2006), a threshold of 0.1 mm/h is applied to HRES, ERA5,
and COSMO-REA6 as suggested by Dai et al. (2007). Consequently,
precipitation amounts less than 0.1 mm/h per grid cell are set to
zero precipitation before calculating the daily sums of these datasets.
This adjustment helps prevent the artificial inflation of precipitation
sums, particularly for low-intensity events, thereby improving the
accuracy of monthly, seasonal, and annual precipitation totals. Over
thewhole period, this correction reduces the precipitation by amean
of 0 mm/year for HRES (where the drizzle effect is not visible at any
station), ERA5 73 mm/year, and 28 mm/year for COSMO-REA6. In
addition, we consider a day as missing when any dataset exceeds
a precipitation value of 400 mm/day. This threshold is set based
on the observed highest daily precipitation sum of 312 mm/day
in the historical rain gauge records of DWD for Germany (DWD,
2016), ensuring that extreme erroneous values do not distort overall
precipitation sums and leading to more reliable estimates across all
time scales. Following this criteria, we removed a total of 846 days
from the OPERA dataset spread over 305 stations.

The datasets vary in spatial and temporal coverage. To ensure
a fair and statistically sound intercomparison, we apply a selective
filtering of the data method. If only those days with a valid
precipitation value in all datasets are considered (this is the
initial criteria), it would result in excessive reduction of data
for the comparison (see Supplementary Figure S1). Additionally,
inconsistencies in data availability can affect the reliability of the
comparison.

To address this, a filter referred to as “Filter 1” is implemented.
This approach systematically checks each day for valid data in
each dataset and removes any day that lacks valid data from all
datasets to maintain consistency across all datasets. It excludes
however: (i) COSMO-REA6, in the timespan from 2019 to 2022
as it does not cover it at all, (ii) OPERA from 2014 to 2018,
and EURADCLIM from 2014 to 2018 and in 2020, where they
have numerous missing days (due to radar coverage limitations),
and (iii) RADKLIM throughout the whole time span as for some
extracted station time series are subjected to many missing days
due to frequent sub-daily gaps. So, to overcome this issue for
RADKLIM, if more than 10% of the days of a given year are
missing for a specific station, the whole year is excluded for
that station. However, if there are missing days in other datasets
(e.g., ECA&D, RADOLAN), those days are then also removed
from these four datasets (COSMO-REA6, OPERA, EURADCLIM,
RADKLIM), as illustrated in Figure 2A. Since HYRAS, RADOLAN,
and RADKLIM cover only Germany, stations outside Germany
are automatically excluded from the analysis when applying the
aforementioned criteria. The results from “Filter 1” are illustrated
in Figure 1B. For the ECA&D stations outside of Germany, the
resulting temporal data coverage after filtering is consequently 0%,
within Germany it is mostly close to 100%. Because of the overall
high data availability, no additional temporal coverage threshold
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FIGURE 2
Schematic representation of the data filtering workflow applied to the datasets for one selected station, illustrating a temporal subset of the period 2014
to 2022. For each dataset, data availability is marked in green (available) and gaps in red (missing). (A) “Filter 1” is applied to minimize data loss when
using the initial criteria but not taking into account the big gaps in datasets COSMO-REA6, RADKLIM, OPERA, and EURADCLIM (B) “Filter 2” is applied to
retain only days that meet the initial criteria in all datasets, resulting in a much reduced dataset represented by more gray boxes (excluded days).

per time interval is needed. For more details on missing days for
each dataset, see Supplementary Figure S1. The application of this
filtering leads to a total of 3524 ECA&D station locations within
Germany usable for our analysis from 2014 to 2022.

To analyze the impact of the dataset length on the evaluation of
extreme precipitation in Section 3.1, we also evaluate the alternative
method of considering only days with a valid precipitation value
in all datasets, mentioned above and referred to as “Filter 2” (see
Figure 2B). If any dataset for any day at any station location has
missing data, this day will be set to “missing” in all datasets for the
respective station, which reduces the temporal coverage (Figure 1C).
This more severe filter therefore represents a smaller sample size,
resulting in a database covering only up to 60% of the total time span
but ensuring the exact temporal alignment of all datasets.

2.2.2 Evaluation metrics
In order to characterize relevant precipitation properties such as

amount, frequency, spatial distribution, and intensity, the evaluation
is split into three parts.

In the first step, the seasonal (DJF, MAM, JJA, SON) and
annual relative spatial biases are calculated. They are defined as
the average relative differences expressed as (((dataset_i-ECA&D_
i)/ECA&D_i)∗100) between the total precipitation sums of the time
series of a dataset and the ECA&D reference time series, calculated
for each season and year across the ten evaluation datasets. In
addition, the ECA&D sites are grouped into three altitude ranges:
below 200 mAboveMean Sea Level (AMSL) (low altitude), between
200m and 800 m AMSL (medium altitude), and above 800 m
AMSL (high altitude). Of the 3524 used ECA&D station sites
under consideration, 1519, 1901 and 104 are in the low-, medium-,
and high-altitude class, respectively (see Figure 1B for the altitude

classification). For each comparison, the Kolmogorov-Smirnov (K-
S) non-parametric statistical test is applied to evaluate whether the
empirical distributions from the evaluation datasets and the ECA&D
reference are derived from the sameunderlying distribution.The test
is conducted at a specified significance level of α = 0.05, where the
rejection of the null hypothesis implies that the distributions differ
significantly. The distributions are based on the daily time series for
each ECA&D station, grouped by altitude range and meteorological
season. If the K-S test shows a disagreement for more than 10% of
the stations, we assume a statistically significant disagreement for the
respective comparison, which may be considered a strict threshold.

In the second step, the spatial and temporal variability is assessed
with Taylor diagrams (Taylor, 2001). These diagrams provide
information on (i) the variability, measured as the relative standard
deviations (STD dataset/STD ECA&D), (ii) the correlation between
each dataset and ECA&D, and (iii) the centered, i.e., normalized,
rootmean squared error (CRMSE), which represents the RMSE after
removing the differences in the dataset means. For the spatial Taylor
diagrams, multi-year seasonal mean precipitation for all stations is
used, while for the whole period, it considers precipitation data for
all stations without seasonal aggregation. In contrast, the temporal
Taylor diagram for the whole period usemonthly precipitation sums
averaged over the domain.

In the third step, the datasets are evaluated with respect
to widely used descriptive precipitation indices from the
CLIVAR/CCl/JCOMM Joint Expert Team on Climate Change
Detection and Indices (ETCCDI) (Peterson, 2005). Using the
commonly used definition of wet day as precipitation ≥1 mm/day,
the following indices are considered: (A) Wet days frequency,
defined as the percentage of wet days, (B) the highest number
of Consecutive Wet Days (CWD) per year, (C) the Simple Daily
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Intensity Index (SDII), which is the average precipitation at wet
days, (D) R10mm, the percentage of days with heavy precipitation
(precipitation ≥10 mm/day), (E) R20mm, the percentage of days
with very heavy precipitation (precipitation ≥20 mm/day), and
(F) Rx1day, the maximum amount of precipitation in 1 day. As
mentioned earlier, a day in our analysis is defined as the 24 h time
span from 6 UTC to 6 UTC on the following day. The indices are
represented as violin plots of the empirical distributions for all
stations (no altitudinal ranges) and datasets. The distributions are
constructed from the 3524 indices, each calculated per ECA&D
station location from the respective time series from 2014 to 2022.
According to the filtering applied, each time series has a unique
sample size.

3 Results and discussion

3.1 Benchmarking precipitation datasets
against the ECA&D in situ reference dataset

In this section, we present a comprehensive evaluation of the
datasets for the period 2014 to 2022. The analysis includes spatial
relative biases, an assessment of their seasonal spatial/temporal
variability through the use of Taylor diagrams, and the evaluation
of some common precipitation indices (see Sec. 2.2.2).

3.1.1 Atmospheric model outputs
HRES and ERA5, which are both produced by different

versions of the IFS model using different data in the assimilation,
show comparable biases. However, ERA5 has slightly higher bias
percentages, whether positive or negative (Figure 3). Both datasets
tend to overestimate precipitation at low and medium altitudes for
all seasons, with a systematically larger overestimation in spring.
An underestimation is prevalent at higher altitudes. For HRES,
the mean relative bias of the annual sums in all cases falls within
the range of −10%–10%. The overestimation of ERA5 agrees with
the findings by Bandhauer et al. (2022), who evaluated ERA5
against regional precipitation gauge datasets. Significant differences
(K-S test) between ECA&D, HRES, and ERA5 (“X” in Figure 3),
respectively, are found mostly in spring and for most summers.
In contrast, COSMO-REA6 shows a different bias pattern with
a tendency towards wetter winters and springs at medium to
high altitudes, an underestimation at low altitudes, as well as an
underestimation during summer precipitation at higher altitudes.
Unlike HRES and ERA5, COSMO-REA6 shows no significant
differences compared to ECA&D.

The Taylor diagrams in Figures 4A–D, show that the spatial
variability is underestimated in HRES and ERA5, especially
in winter and autumn, while their performance improves in
spring and summer. COSMO-REA6 shows a similar behavior of
underestimation in all seasons except for spring. In terms of
spatial correlation, the three datasets achieve values above 0.5, with
the highest performance seen in spring and summer, where all
datasets exceed a correlation coefficient of 0.8. Compared to HRES
and ERA5, COSMO-REA6 underperforms in all seasons. When
investigating the spatial variability of the whole period, it appears
that the three datasets underestimate the variability, with a spatial
correlation between 0.7 and 0.8 (Figure 4E). The three datasets have

good performance in terms of temporal variability (Figure 4F); the
temporal correlation exceeds 0.9 with relatively low CRMSE.

Figure 5A illustrates the percentage of wet days, showing the
distribution of ECA&D stations based on the proportion of wet
days they experience. HRES and ERA5 have an 8% higher median
compared to ECA&D, indicating an overestimated frequency of
wet days, with the highest density of stations having about 38%
wet days. This also explains the positive bias that is observed
in Figure 3 and is consistent with the results of previous studies
by Rodwell et al. (2011) and Lavers et al. (2022). They attribute
the positive bias in HRES and ERA5 to an overestimation of
precipitation on typically dry days. In contrast, COSMO-REA6
shows results that are more similar to ECA&D. Its median
closely matches ECA&D, indicating a comparable representation
of wet days. However, its distribution is narrower, indicating less
spatial variability compared to ECA&D. Notably, COSMO-REA6
provides a better representation of wet day frequencies when
compared to ERA5, which has a coarser spatial resolution. This is
consistent with Wahl et al. (2017) and aligns with findings in the
precipitation representation in convection permitting RCMs, such
as, in Ban et al. (2021). CWD in Figure 5B illustrates how well
the datasets capture the duration of wet periods. Here, HRES and
ERA5 show an overestimation as indicated by their higher medians
and the presence of multiple secondary maxima further supporting
the overestimation. Consistent with Figure 5A and the general
overestimation as seen in Figure 3; Supplementary Figure S2, there
is more widespread precipitation. This results in a higher number
of ECA&D sites where HRES and ERA5 show long-lasting
precipitation. COSMO-REA6 shows a similar distribution to
ECA&D, but tends to slightly overestimate CWD. With respect
to precipitation intensity in Figure 5C, HRES and ERA5 tend
to slightly underestimate SDII overall. When considering their
performance in terms of percentage of wet days (Figure 5A),
HRES and ERA5 tend to overestimate low-intensity precipitation
events compared to high-intensity ones. This is a well-known
behavior of convection-parametrized atmosphericmodels (Vergara-
Temprado et al., 2020), which is improved with the COSMO-REA6
dataset. For R10mm in Figure 5D, HRES, ERA5, and COSMO-
REA6 show spatial distributions that closely match ECA&D. For
R20mm (Figure 5E), only COSMO-REA6 shows similar patterns to
ECA&D, while HRES and ERA5 fail to capture days with very high
precipitation. This issue has also been highlighted by Forbes et al.
(2015), who assessed the improvements in IFS forecasts, and by
Schauwecker et al. (2021) evaluating the representation of heavy
precipitation events in IFS forecasts for Switzerland.This can explain
the underestimation of precipitation in complex, heterogeneous,
mountainous terrain (Figure 3; Supplementary Figures S2, 3). The
comparison of maximum daily precipitation (Figure 5F) shows
that COSMO-REA6 manages to capture extreme events. In
contrast, HRES and ERA5 generally underestimate maximum daily
precipitation, a pattern also observed by Lavers et al. (2022) for
ERA5. When observing the two sides of the violin plots, it is clear
that the length of the analyzed time series (“Filter 1” vs. “Filter 2”)
has minimal impact on the empirical distribution, as shown by the
similar spread of values on both sides.

The choice between HRES, ERA5, and COSMO-REA6 depends
on the application. HRES, as an operational high-resolution forecast
dataset, is best suited for near real-time hydrological forecasting and
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FIGURE 3
Spatial mean of seasonal (DJF, MAM, JJA, SON) and annual relative precipitation biases [%] per dataset, year, and altitudinal range (low,
medium, high, see Figure 1B). Each cell represents the spatial mean of the relative bias of the total seasonal or annual precipitation sum between an
evaluation dataset and the ECA&D reference for all ECA&D sites within each altitudinal range within Germany. Gray cells: Excluded due to insufficient
data availability for a given year or season. The X markers indicate that more than 10% of the sites show a statistically significant different distribution of
daily precipitation amounts compared to ECA&D according to the K-S test with an alpha level of α = 0.05; annual precipitation is excluded from this test.

short-termdecision-making like the aforementionedParFlowDE06.
ERA5 with its long historical record is considered a valuable dataset
for long-term hydrological modeling, where capturing climatic
trends and long-term variability is essential. Given that COSMO-
REA6 exhibits better agreement with ECA&D in wet day frequency
and heavy precipitation representation, it may be a more suitable
dataset for applications related to extreme events.

3.1.2 Gridded precipitation observations
HYRAS has consistently small biases, typically between −10%

and 10% across all altitudes and years (Figure 3). This low relative
bias is expected as HYRAS is based on the same precipitation gauge
network thatmakes up the ECA&Ddataset over Germany.However,
the precipitation gauges used for HYRAS undergo a different pre-
processing and quality control procedure at DWD (Rauthe et al.,
2013).This includes examining time series for outliers at each station
using the interquartile-adjusted method (Eischeid et al., 1995).

Similar to the atmospheric model datasets, the spatial variability
for HYRAS is underestimated in winter, spring, and autumn
(Figures 4A, B, D), while it shows close variability to ECA&D in
summer (Figure 4C). HYRAS shows high spatial correlation with
ECA&D scoring at least 0.7, while scoring the highest in summer.
The CRMSE varies between 0 and approximately 0.4, indicating
relatively low errors in spatial variability. For the spatial variability
for the whole period, it shows an underestimation (Figure 4E). As
for the temporal variability (Figure 4F), it shows good performance
in terms of the three statistics measures. HYRAS demonstrates good

performance in terms of the six extreme precipitation indices, as
illustrated in Figure 5.

HYRAS, with its consistently strong agreement with ECA&D,
is particularly well-suited for non near real-time hydrological
applications that require high resolutions for small-scale studies
in Germany.

3.1.3 Radar products
As observed in Figure 3 and despite gauge-adjustment,

RADOLAN RW shows biases of up to −25% for the seasonal
and annual sums. This aligns with a general precipitation
underestimation, that is especially pronounced at high altitudes
during winter. Only during summer there is a tendency towards
a slight overestimation, mostly below 10%. The general features
characteristic of RADOLAN are retained in the RADKLIM radar
climatology, but the more extensive processing of RADKLIM
results in biases reduced by 5%–10%. Our findings align with
Kreklow et al. (2020) by confirming a persistent underestimation
in RADOLAN RW, particularly in winter, while also highlighting
the improvements in RADKLIM. Significant differences (“X” in
Figure 3) between the two datasets, and ECA&D mainly occur
during winter. OPERA mainly underestimates precipitation in
winter and overestimates it in summer, and it is more variable
in spring and autumn. Over Germany, this dataset is based on
the same radar observations as RADOLAN, but with a different
processing (Saltikoff et al., 2019). This is further supported by
findings from Overeem et al. (2024), which indicate that OPERA
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FIGURE 4
Taylor diagrams summarizing each dataset’s performance in comparison to ECA&D, in respect of spatial variability (relative standard deviation), spatial
correlation coefficient, and spatial CRMSE of multi-year seasonal precipitation for all 3524 stations in (A) winter, (B) spring, (C) summer, and (D) autumn
from 2014 to 2022; (E) the spatial variability (relative standard deviation), spatial correlation coefficient, and spatial CRMSE of monthly precipitation
sums averaged across Germany; and (F) the temporal variability (relative standard deviation), temporal correlation coefficient and temporal CRMSE of
monthly precipitation sums averaged across Germany.
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FIGURE 5
Violin plots of the distribution of six ETCCDI precipitation indices over
ECA&D stations in Germany for the period from 2014 to 2022: (A)
Percentage of wet days; (B) maximum number of consecutive wet
days (CWD); (C) simple daily intensity index (SDII); (D) percentage of
heavy precipitation days (>10mm/day) (R10mm); (E) percentage of
very heavy precipitation days (>20 mm/day) (R20mm); (F) highest
1-day precipitation amount (Rx1day). The two sides of each plot
represent the two data filtering methods; left/blue: distribution after
applying “Filter 1” (Figure 1B; Figure 2A); right/orange: distribution after
applying “Filter 2”, considering a consistent overlap of all datasets,
resulting in a smaller sample size (Figure 1C; Figure 2B). Horizontal
dashed lines: ECA&D reference data median from the two data
samples. Horizontal black solid lines per distribution: Lower and upper
quartile, and median.

underestimates daily precipitation. The underestimation is largely
attributed to beam overshooting, where the radar beam misses the
lower portions of lower atmospheric layers, resulting in incomplete
observation, particularly during winter (Saltikoff et al., 2019).
In contrast, EURADCLIM generally overestimates precipitation,

but with a slight tendency to underestimate at higher altitudes.
Compared to OPERA, EURADCLIM seems to be wetter but
with lower relative bias values due to the gauge adjustment.
Overeem et al. (2023) further confirm that EURADCLIM
consistently records higher precipitation amounts than OPERA.
The OPERA and EURADCLIM data products have the advantage
of covering a large portion of Europe, which makes them potentially
usable with the DE06 ParFlow model domain. All OPERA and
EURADCLIM comparisons show significant differences at more
than 10% of the ECA&D sites. The years 2014–2018, and for
EURADCLIM also 2020, are not considered, as they exhibit many
missing data (see Supplementary Figure S1). Significant differences
between RADOLAN and RADKLIM compared to ECA&D
are primarily observed during winter. In contrast, comparisons
involving OPERA and EURADCLIM show significant differences
at more than 10% of the ECA&D sites in all seasons.

From Figures 4A–D, RADOLAN, RADKLIM, and
EURADCLIM perform well in capturing spatial patterns, especially
in spring and summer. As for the spatial correlation, RADOLAN,
RADKLIM, and EURADCLIM achieve values above 0.6. They score
highest in summer, with values above 0.9, followed by spring, with
values above 0.7. On the other hand, OPERA shows less spatial
variability in all seasons. Figure 4E represents spatial variability for
the whole period; RADOLAN and RADKLIM have a correlation
between 0.7 and 0.8, while OPERA has a correlation of 0.6. All
three datasets underestimate variability with CRMSE from 0.6 to
0.8. On the other hand, EURADCLIM shows a higher correlation
with around 0.95, with overestimation in the variability and with
CRMSE less than 0.4. As for the temporal variability (Figure 4F), the
correlation for RADOLAN and RADKLIM lies between 0.95 and
0.99, with variability similar to ECA&D. OPERA and EURADCLIM
show lower correlation between 0.7 and 0.9 with underestimation
of the variability and higher CRMSE in comparison to RADOLAN
and RADKLIM.

RADOLAN and RADKLIM generally perform well compared
to ECA&D, with regards to the percentage of wet days (Figure 5A).
Their median is within the interquartile range of ECA&D. OPERA
has a slightly broader distribution compared to ECA&D, with
more pronounced tails, indicating greater spatial variability
and a higher frequency of extreme values, i.e., stations where
OPERA has a very high number of wet days. Also, the median
is slightly higher than ECA&D, indicating that it tends to
have more wet days. EURADCLIM tends to overestimate the
frequency of wet days more than OPERA, with all its values
higher than the ECA&D median. Figure 5B shows that RADOLAN
and RADKLIM generally agree with ECA&D, with all having
similar medians. However, RADOLAN and RADKLIM tend
to slightly underestimate higher CWD values. In contrast,
OPERA overestimates CWD, with a higher density indicating less
variability compared to ECA&D, while EURADCLIM shows an
even greater overestimation. Similar to CWD, RADOLAN and
RADKLIM show a distribution of SDII (Figure 5C) similar to
ECA&D, indicating a consistent representation of precipitation
intensity. OPERA tends to underestimate SDII, with almost all
stations lying below the ECA&D median. EURADCLIM shows an
improvement over OPERA, but still underestimates SDII. Results
for R10mm and R20mm in Figures 5D, E respectively, indicate
that RADOLAN, RADKLIM, and EURADCLIM show spatial
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distributions that closely match ECA&D. EURADCLIM’s results
are also confirmed by Overeem et al. (2023). In contrast, OPERA
tends to underestimate in most cases, despite indicating a high
frequency of wet days. RADOLAN and RADKLIM manage to
capture extreme events (Figure 5F). In contrast, OPERA consistently
underestimates Rx1day, while EURADCLIM shows results closer to
ECA&D, although it still shows underestimation with Filter 1.

Given its relatively low biases and strong agreement with
ECA&D, RADOLAN is well-suited for near real-time hydrological
forecasting in Germany. Its high spatial resolution and frequent
updates make it valuable for applications requiring timely
precipitation input. RADKLIM, while not a real-time dataset,
provides a high-quality long-term radar-based precipitation
climatology, making it more suitable for historical hydrological
analyses, trend assessments, and model validation. On the
other hand, OPERA and EURADCLIM, with their broader
European coverage, present an advantage for transboundary
hydrological studies.

3.1.4 Satellite data products
IMERG-L generally tends to underestimate precipitation in

winter and spring and overestimate it in summer and autumn for
most years (Figure 3). The underestimation is more pronounced
at higher elevations in all seasons. As expected, the IMERG-F
product shows a similar bias pattern as IMERG-L but with smaller
magnitudes due to the time interpolation, gauge adjustment, and
climatological adjustment (Foelsche et al., 2017). The systematic
underestimation of precipitation inmountainous regions such as the
Alps, and secondary mountains like the Harz, the Thuringian forest,
and the Black Forest is due to the inability of the satellites to detect
orographic and light precipitation. Ramsauer et al. (2018) highlight
that satellite-based precipitation estimates often struggle in complex
terrain, leading to underestimations. Similarly, Navarro et al. (2019)
report that IMERG-F underestimates precipitation in mountainous
areas, including the Alps and Scandinavian mountains. As a result,
significantly differing time series (“X” in Figure 3) occur in all
seasons but mainly in winter and autumn.

Figures 4A–D illustrates that both IMERGproducts consistently
underestimate spatial variability across all seasons. While IMERG-F
shows a modest improvement over IMERG-L, their spatial patterns
remain largely similar. Spatial correlation ranges from0.4 to 0.9, with
the lowest values observed in autumn. As it appears in Figure 4F,
both products overestimate the temporal variability. IMERG-F
demonstrates improvement in terms of correlation and CRMSE
compared to IMERG-L.

For the percentage of wet days (Figure 5A), both IMERG-L and
IMERG-F generally underestimate the frequency, showing fewerwet
days than ECA&D.This underestimation is also seen for consecutive
wet days (CWD) in Figure 5B, where values aremainly concentrated
around the median, reflecting a tendency to underestimate the
duration of wet periods. In terms of precipitation intensity (SDII)
in Figure 5C, IMERG-L, despite underestimating the frequency of
wet days, tends to overestimate precipitation intensity, with values
typically above the ECA&D median. IMERG-F mirrors IMERG-
L’s pattern here, also showing an overestimation of SDII. For the
R10mm index (Figure 5D), IMERG-L and IMERG-F both tend
to overestimate the number of days with precipitation amounts
above 10mm. Similarly, when examining R20mm (Figure 5E),

IMERG-L and -F both show an overestimation, but to a lesser
extent for IMERG-F, which is consistent with SDII (Figure 5C).
They have a tendency for shorter, less widespread, more heavy
precipitation events. Finally, in the assessment of maximum daily
precipitation (Figure 5F), IMERG-L tends to overestimate extreme
values, while IMERG-F shows a slight improvement.

Given their global coverage and satellite-based nature, IMERG-L
and IMERG-F are particularly valuable for hydrological applications
in data-scarce regions or for large-scale modeling efforts.

3.2 HRES precipitation fidelity in the DE06
domain data collective

After having analyzed the performance of each dataset, in this
section we will discuss the suitability of HRES for hydrological
forcing (3.2.1) and whether bias adjustment using the other datasets
from the DE06 domain data collective is possible (3.2.2).

3.2.1 HRES in relation to ECA&D and its suitability
for hydrological model forcing

Asmentioned in the introduction, an objective of this evaluation
is to assess howwell the daily HRES precipitation compares to in situ
observations. Although hourly HRES forecasts are the atmospheric
drivers of experimental ParFlow integrated hydrological model
forecasts (Belleflamme et al., 2023), the daily comparison is justified.
The DE06 forecasts have a water resources focus, where short-term
sub-daily precipitation events are less critical than in high-resolution
flood forecasting. It is important to note that this study deliberately
refrains from investigating the HRES forecast skill beyond the first
24 h, this is beyond the scope of this study. The first 24 h determine
the evolution of the terrestrial water cycle in the ParFlow DE06
forecast runs until the initialization of the next 10-day forecast
cycle after 24 h.

Our analysis reveals that HRES performs as well as, or even
better than reanalyses and gridded observational datasets that
rely on in situ, radar, or satellite data. These results confirm
our confidence in using HRES as a forcing dataset for our
hydrological monitoring and forecasting system. HRES proves to
be a suitable atmospheric forcing dataset for ParFlow DE06 long-
term simulations, meeting the requirements of a central European
spatial coverage, near real-time availability, and sub-daily temporal
resolution (though this aspect is not assessed here). However, while
HRES appears adequate for water resource simulations without bias
adjustment, we consider the dataset less suitable for studies focusing
on the impacts of extreme precipitation events.

3.2.2 Suitability of data collective for bias
adjustment over DE06 domain

The ERA5 reanalysis shows evaluation results very similar to
the HRES forecast. Both datasets are produced by the same model,
albeit by very different model versions (Cycle 47r3 with HRES
vs. Cycle 41r2 with ERA5), using different assimilation schemes,
and spatial resolutions (9 km vs. 31 km). Despite its comparable
performance to HRES, ERA5 is not available in near real-time,
making it unsuitable for near real-time bias adjustment. COSMO-
REA6 underperforms in capturing spatial patterns (Figure 4) and
in terms of temporal variability (Figure 4E). However, compared
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to HRES, COSMO-REA6 demonstrates a better ability to capture
extreme events (Figures 5D, E). It is also important to note that
COSMO-REA6 has been discontinued due to the termination of
ERA-Interim that is used as boundary conditions (DWD, 2020). It
will be replaced by the new COSMO-REG2 product.

The HYRAS and ECA&D datasets show strong similarity, as
both are based on the same DWD precipitation gauge network,
with minor differences due to quality control and interpolation
methods. Similarly, the RADOLAN and RADKLIM datasets align
well with ECA&D, though RADOLAN tends to underestimate
precipitation in autumn and winter. RADKLIM improves upon
RADOLAN, reducing differences. However, HYRAS, RADOLAN,
and RADKLIM are all limited to a Germany-only coverage,
with HYRAS and RADKLIM further constrained by later data
availability.

On the other hand, OPERA and EURADCLIM’s coverage
includes the whole DE06 domain, with the major river catchments
relevant for Germany. However, OPERA shows a general
underestimation. While EURADCLIM, as a gauge adjusted
OPERA variant, shows improvement in capturing the spatial
patterns and extreme events with respect to ECA&D, it shows
a large overestimation of weak precipitation events. Although
EURADCLIM provides valuable Europe-wide coverage, it does
not match the precision of national gauge-adjusted datasets like
RADKLIM (as also noted by its developers, Overeem et al., 2023)
and is not available in near real-time. These factors limit the
suitability for bias adjustment in hydrological forecasting.

The IMERG-L dataset exhibits large over- and underestimations
in the annual and seasonal precipitation amounts. The spatial
pattern improves during summer for both IMERG-L and IMERG-
F, while a weakness remains in the mountainous regions (Figure 3).
In general, IMERG-L and -F seem to be producing too intense
heavy, and short-lived precipitation events, which may explain
the overestimation of temporal variability compared to ECA&D.
IMERG-F shows clear improvements over IMERG-L, especially
for low and medium altitudes. The developers recommend using
IMERG-F for analysis (Huffman et al., 2023), and in this study
IMERG-L is also examined as it is a near real-time dataset. However,
due to their precipitation biases, neither IMERG-L nor IMERG-F is
suitable for the bias adjustment.

In summary, as the comparison datasets are either (i) not
available in near real-time, or (ii) show worse comparison results
than HRES, or (iii) have a too limited spatial extent, none of these
datasets seems to be suitable for bias adjustment within the ParFlow
DE06 forecasting cycle.

3.3 Evaluation limitations and dataset
constraints

One of the main limitations of this study is its geographical
focus on Germany only. While the DE06 domain extends beyond
Germany to include neighboring countries and entire river
catchments (see Figure 1), the reference dataset (ECA&D)has sparse
station coverage within the domain, with limited data availability of
stations outside of Germany, except for theNetherlands. In addition,
datasets like HYRAS, RADOLAN, and RADKLIM are restricted to
Germany, further limiting the scope of the study. Nevertheless, even

the evaluation of the datasets only within Germany contributes to
the understanding of the overall performance of the datasets.

Another limitation is the temporal resolution of the analysis.
This study primarily focuses on the daily characteristics of the
datasets, without including sub-daily data. While sub-daily data
could provide more detailed insights into precipitation patterns and
season-dependent diurnal cycles, the reference dataset (ECA&D) is
available only at a daily resolution. Moreover, the HYRAS dataset
is also restricted to daily resolution. This limitation prevents a
thorough assessment of the datasets' ability to replicate short-term
precipitation events or capture diurnal cycles, which could impact
the understanding of extreme weather events and higher-resolution
variability across the DE06 domain.

Furthermore, this study does not evaluate the selected
datasets within hydrological models, which limits conclusions
about their direct applicability for hydrological simulations and
forecasting. Additionally, the datasets were not used for bias
adjustment, meaning their potential role in correcting biases in
other applications remains unexplored.

Lastly, the evaluation could be expanded by incorporating
additional precipitation datasets. Including more datasets from
different sources and with different resolutions could provide a
more comprehensive assessment of precipitation variability across
data products.

4 Summary and conclusion

Accurate precipitation data is crucial for hydrological
simulations, including water resource management purposes. In
this study, we evaluate the characteristics of different, widely
used precipitation data products over Germany with a dense
precipitation gauge network. We also examine the performance
of HRES precipitation as the first order atmospheric driver of
experimental ParFlow integrated hydrological model monitoring
system (Belleflamme et al., 2023). Finally, we evaluate the suitability
of the DE06 data collective datasets for bias adjustment of HRES. It
is important to note that we do not provide further explanations
for each dataset’s characteristics as this is beyond the scope of
the study and reasons may be manifold, such as parameterization
schemes and setup of the atmospheric models, retrieval algorithms
with the radar and satellite data, etc. The goal is to assess
existing datasets as such. Also, the data quality of the ECA&D
reference dataset may need to be considered, as the precipitation
data from ECA&D is not undergoing a wind correction, hence
there might be a typical undercatch of up to 20% precipitation
(Richter, 1995; Sevruk, 1985).

Based on the results and as shown in the summary table (Table 1),
we conclude first of all that HRES is an appropriate atmospheric
forcing dataset for our ParFlow DE06 monitoring system, given
the requirements of a central European spatial coverage, near
real-time availability, and sub-daily temporal resolution. Without
bias adjustment; it seems suitable for water resource simulation,
but less suitable for studies focusing on the impacts of extreme
precipitation events.

IMERG-L and OPERA would also fulfill the aforementioned
requirements and might be combined in a hindcast atmospheric
forcing dataset, albeit the biases with respect to ECA&D are
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TABLE 1 Summary table of the evaluation of HRES and the other datasets for the period 2014 to 2022, including the spatial and temporal performance
of the datasets and the precipitation indices.

Dataset Multi-
year bias
mean
[%]

Taylor
diagrama

(spatial
distance)

Taylor
diagramb

(temporal
distance)

Wet day
[%]

(median)

CWD
[day]

(median)

SDII
[mm]

(median)

R10mm
[%]

(median)

R20mm
[%]

(median)

Rx1day
[mm]

(median)

ECA&D
(ref)

31 10 5.7 5 1 62

HRES 6 0.7 0.2 38 13 5.1 4 0.6 45.7

ERA5 8 0.7 0.2 38 13 5.1 5 0.6 45

COSMO-
REA6

−7 0.7 0.3 32 11 5.5 4 1 57.6

HYRAS −1 0.6 0.1 33 10 5.5 5 1 58.2

RADOLAN −5 0.7 0.3 31 9 5.6 5 1 58.2

RADKLIM −5 0.7 0.2 32 10 5.6 5 1 56

OPERA −15 0.8 0.5 35 12 4.1 3 0.4 47.3

EURADCLIM 7 0.3 0.7 41 13 5.1 5 1 46.3

IMERG-L 10 0.8 0.8 30 10 6.7 6 2 65.4

IMERG-F 10 0.8 0.3 31 9 6.5 6 2 56.8

aThe Taylor Diagram is calculated based on the monthly sums for the whole period (2014–2022).
bThe Taylor Diagram is calculated based on the monthly sums for the whole period (2014–2022).

considered too large. If a bias adjustment is to be derived without
the need for a real-time capability, then COSMO-REA6 (and
potentially its successor) would be a promising choice. IMERG-F
and EURADCLIM may also be used, but do not clearly outperform
HRES yet. However, upcoming updates are expected to further
improve data fidelity.

For a model domain strictly limited to Germany, RADOLAN
presents a viable option for near real-time applications, while
HYRAS (if sub-daily resolution is not required) and RADKLIM
seem at this point in time very suitable choices for non-
real-time cases. Therefore, in a follow-up study, we plan
to use one of them with the machine-learning-based bias
adjustment method of Patakchi Yousefi and Kollet (2023) to
derive a correction over Germany. The adjustment learned
by the method over Germany could be propagated to the
neighboring regions to reach a full coverage of DE06 for the
bias adjustment.

Overall, the results of this study emphasize the critical
importance of selecting the most appropriate precipitation datasets,
whether as a primary driver or for bias adjustment of the first-
order precipitation input in hydrological models, in this case
ParFlow DE06. Given that no single dataset outperforms all
others in every aspect, the findings provide guidance for choosing
the best datasets tailored to specific applications. Additionally,
our study highlights the need for further collaboration on
improving precipitation datasets and their integration into real-time
water resource management systems. By leveraging high-quality

datasets and the latest bias adjustment methods, the accuracy of
hydrological forecasts could be improved, empowering potential
stakeholders such as water managers to make more informed
decisions. This, in turn, supports better water management and
the development of sustainable water use practices, especially in
the face of changing climatic conditions with water safety and
security concerns.
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