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In the context of geoscience and mineral exploration, accurate characterization
of subsurface structures and their spatial variability is crucial for resource
evaluation and geoenergy applications, such as hydrocarbon extraction and
CO2 storage in deep geological formations. When generating geological
facies conditioned on observed data, samples corresponding to all possible
spatial configurations are not generally available in the training set. This
challenge becomes even greater when dealing with non-stationary fields
that exhibit spatially varying statistical properties, which is common in mineral
deposits and geological formations. Our study investigates the application of
Generative Adversarial Networks (GANs) to generate non-stationary channelized
patterns and examines the model’s ability to generalize to unseen spatial
configurations not present in the training set. The developed method,
based on spatial-conditioning, enables effective learning of the correlation
between spatial conditioning data (e.g., non-stationary soft maps) and the
generated realizations, without requiring additional loss terms or solving
optimization problems for each new data. The models can be trained on
both 2D and 3D samples, making them particularly valuable for modeling
complex geological structures in mineral deposits. Our results on real and
synthetic datasets demonstrate the ability to generate geologically-plausible
realizations beyond the training samples with strong correlation to target
map. These results underscore the potential of advanced AI techniques
to enhance decision-making and operational efficiency in geoenergy
projects.

KEYWORDS

generative adversarial networks (GANs), non-stationary, multipoint geostatistics, soft
conditioning data, geostatistical simulation

1 Introduction

The generation of stochastic fields has many applications in geosciences and reservoir
management. Modeling these fields at the reservoir scale is an essential step in addressing
uncertainty quantification or inverse problems in the subsurface. One of the classical
approaches is the Multiple Point Statistics (MPS) algorithms (Strebelle, 2002) that were
designed for geo-statistical simulation based on spatial patterns in a training image. Many
variants of MPS have been developed over time, such as direct sampling techniques
(Mariethoz et al., 2010) and cross-correlation based methods (Tahmasebi and Sahimi,
2013). The trained non-parametric model can be used to generate realizations constrained
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to well and seismic data (Hashemi et al., 2014; Rezaee and Marcotte,
2017; Arpat and Caers, 2007; Tahmasebi et al., 2014). While
MPS methods can reconstruct high-dimensional samples from
low-dimensional inputs, as demonstrated by (Comunian et al.,
2012; Chen et al., 2018; Wang et al., 2022; Guo et al., 2024),
they suffer from limitations such as limited variability Emery
and Lantuéjoul (2014) and inability to model complex non-
stationary patterns (Zhang T. et al., 2019).

Following the success of deep learning in computer vision,
recent published work has considered deep generative models such
as Generative Adversarial Networks (GANs) (Goodfellow et al.,
2014) for generation of stochastic fields. A key advantage of
GAN-based approaches over Multiple Point Statistics (MPS) lies
in their ability to generate samples with diverse spatial patterns
and high-quality reproductions due to the adversarial learning
strategy. GANs have been applied to a wide range of geoengineering
challenges, including reconstructing the 3D structure of porous
media (Mosser et al., 2017), parametrizing high-dimensional spatial
permeability fields in the subsurface (Chan and Elsheikh, 2020),
and performing geostatistical inversion on both 2D and 3D
categorical datasets (Laloy et al., 2018).

GANs have also been used to generate geological realizations
conditioned on hard data (e.g., point measurements at wells)
and soft data (e.g., probability maps). Approaches for generation
of conditioned stochastic realizations could be classified into
two categories: post-GANs and concurrent-GANs. In post-GANs
approaches, a new optimization problem is solved after training
GANs where the latent vector is searched to find realizations that
match the target data. For example, the gradient descent method
was used in (Dupont et al., 2018; Zhang T. et al., 2019), a Markov
chain Monte Carlo sampling algorithm was used (Nesvold and
Mukerji, 2019; Laloy et al., 2018), and Chan and Elsheikh (2019)
trained an inference network to map the normally distributed
outputs to a distribution of latent vectors that satisfies the required
conditions. The main drawback of using post-GANs approaches
is the additional cost needed to solve the second optimization
problem, which can often be expensive. In addition, we would
need to solve different problems for every new observed data
(e.g., new condition).

In concurrent-GANs approaches, the training of GANs is
modified to pass the conditional data to the GANs generator
network. After training, the trained generator can then simulate
realizations based on the input data without the need to solve
another optimization problem. Abdellatif et al. (2022) introduced
conditional GANs to generate unrepresented global proportions
of geological facies. Cycle-consistent GANs (Zhu et al., 2017)
have been used for domain mapping, for example, mapping
between physical parameters and model state variables (Sun,
2018) and mapping between seismic data and geological model
(Mosser et al., 2018). A GAN model with a U-net architecture
(Ronneberger et al., 2015) was used to map high-dimensional input
to CO2 saturation maps (Zhong et al., 2019). However, the one-to-
onemapping using Cycle-GANs orU-net architecture is not suitable
for generating multiple stochastic facies conditioned on a single
observed data.

Song et al. (2021b) used condition-based loss functions to
condition facies on hard data and global features, and they later
extended the method for spatial probability maps (Song et al.,

2021a). Pix2pix method (Isola et al., 2017) has been used for
geophysical conditioning by adding additional losses for seismic
and well log conditions (Pan et al., 2021). However, condition-
based losses require designing manual functions that compute the
consistency between the generated samples and target conditions
(e.g., computing facies frequency for the generated realizations to
mimic real probability maps (Song et al., 2021a)).The design of such
function is arbitrary and this is conceptually different than GANs,
where the learning is done implicitly from the training data by joint
training of both the generator and the discriminator which tells
what is good versus bad samples. Moreover, including additional
losses in GANs relies on careful weighting between the conditions
losses and the original loss in GANs which requires extensive hyper-
parameters search (e.g., see Figure 6 in (Song et al., 2021b)).

In this work, we propose a concurrent-GANs approach for
generating geological realizations conditioned on spatial maps that
describe the distribution of facies proportions across the spatial
domain. Notably, this method achieves effective conditioning
without relying on explicit condition-based losses. Our approach
demonstrates the ability to generate new realizations that align
with spatial maps not seen during training, a critical capability
for applications where the characteristics of real reservoirs deviate
significantly from those of the training data. To incorporate a
specific spatial configuration, we employed conditional GANs
(cGANs) (Mirza and Osindero, 2014), using spatial maps as
input conditions for the neural networks. By integrating the
SPADE algorithm (Park et al., 2019), we enabled the generator
to dynamically adapt its layers based on the spatial conditioning
maps, allowing the GANs to implicitly learn the correlation
between the input maps and the generated realizations. The training
framework solves a single optimization problem, eliminating
the need for designing condition-consistency loss functions or
conducting extensive hyperparameter searches for balancing
weights. Experimental results on 2D and 3D datasets demonstrate a
strong correlation between the generated realizations and the target
spatial maps, while also highlighting themodel’s ability to generalize
to unseen spatial configurations.

The rest of the paper is organized as follows: in Section 2, we
discuss the algorithm of conditional GANs used in our experiments
and we present the training datasets and the implementation details.
In Section 3, the results of the experiments are shown. Finally,
conclusions are provided in Section 4.

2 Methods

Generative adversarial networks (GANs) (Goodfellow et al.,
2014) are trained to learn the underlying distribution of training
samples. It consists of two convolutional neural networks: a
generator G and a discriminator D. The generator maps a random
noise z to a realization G(z) while the discriminator takes samples
from the real and the generated sets and is optimized to output
the probability of the samples being real (i.e., not generated by
the generator). The generator is then optimized such that the
generated samples have high probabilityD(G(z)). The two networks
are trained in an adversarial setting defined by the objective function
V(G,D) in Equation 1:

Frontiers in Earth Science 02 frontiersin.org

https://doi.org/10.3389/feart.2025.1545002
https://www.frontiersin.org/journals/earth-science
https://www.frontiersin.org


Abdellatif et al. 10.3389/feart.2025.1545002

FIGURE 1
Generator architecture: the stochastic input z is projected through a series of layers to generate an output image, while a conditioning map is
introduced at each layer to modulate spatial features adaptively. This modulation is achieved using Spatially-Adaptive Normalization (SPADE) layers,
which inject spatially varying information into the generator, ensuring that the output retains structure and fine-grained details. (Park et al., 2019).

FIGURE 2
Discriminator architecture: the conditioning map is passed to convolutional layers and the resulting features are concatenated with the input image
features (i.e., blue and green features). The discriminator output is the conditional probability of x being real given its corresponding map M.

min
G

max
D

V (G,D) = 𝔼x∼px [log D (x)] +𝔼z∼pz [log (1−D (G (z)))] . (1)

Given a spatial map M that describes the spatial distribution
of a geological facies (e.g., channels), we can direct the generated
samples to match a particular spatial map M by using a conditional
GANs (Mirza and Osindero, 2014) method, where the condition M
is passed to both the generator networkG anddiscriminator network
D during training. Similar to the concurrent-GANs methods, after
training we can generate multiple realizations conditioned on M
by simply passing M and different latent z vectors to the generator
without solving a new optimization problem. The discriminator
will then output a conditional probability of the sample being real
given its input map. The objective function of conditional GANs is
defined in Equation 2:

min
G

max
D

V (G,D) = 𝔼x∼px [log D (x|M)] +𝔼z∼pz [log (1−D (G (z,M) |M))] .
(2)

To accommodate the spatial nature of the map, we follow the
spatially adaptive de-normalization (SPADE) conditioning method
developed in (Park et al., 2019), where a segmentation mask
modulates the generator layers to generate natural images based
on the mask. In our work, we replace the categorical mask with
a continuous map that represents the spatial proportions of the
channels, thesemaps are calculated for each sample prior to training.
The SPADE method operates as follows: for each layer i and channel
c in the generator, the activation hi,c,x,y (hi,c,x,y,z in the case of 3D
samples), i.e., the feature produced by a neuron in generator layer
i, is normalized using the mean μi,c and standard deviation σi,c
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FIGURE 3
Representative samples from the 2D datasets used for training GAN models: (a) synthetic dataset and (b) real dataset. All images used to train the 2D
models are of size 64×64. (a) Artificial dataset of 3 different facies. (b) Binary masks of the Brahmaputra river.

FIGURE 4
Samples from the 3D training dataset, all images used to train the 3D models are of size 64×64×32.

computed over both batch instances and channel spatial locations.
The result is then spatially de-normalized, i.e., adjusted per spatial
position, using parameters γ and β, which are learnable functions
of M. The calculation of the SPADE algorithm for the 2D case
is shown in Equation 3:

ĥi,c,x,y (M) = γi,c,x,y (M)
hi,c,x,y − μi,c

σi,c
+ βi,c,x,y (M) ,M ∈ ℝ

H×W, (3)

where the learnable parameters γ and β are obtained using two
successive convolutional layers, separated by a ReLU activation
function, directly applied to the map M and H×W is the grid
dimension at which the channels proportions are calculated.

The spatial proportions of the generated facies can be adjusted
by modifying M, which in turn modulates the generator activations
through the parameters γ and β. Since each layer of the generator

operates at a different resolution, the map M is dynamically
downsampled (or upsampled if M has a lower resolution) to align
with the resolution of the featuremaps at each layer.When extending
this approach to 3D samples, proportion maps are calculated
across all three spatial dimensions. The 3D feature modulation
is shown in Equation 4:

ĥi,c,x,y,z (M) = γi,c,x,y,z (M)
hi,c,x,y,z − μi,c

σi,c
+ βi,c,x,y,z (M) , M ∈ ℝ

H×W×D. (4)

In the discriminator, features extracted from the map M
using convolutional layers are concatenated with spatial features
computed from the input image at an intermediate layer of the
network. The intermediate layer is selected so that its resolution
matches that of M.
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FIGURE 5
Generated non-stationary realizations on the synthetic dataset: the input conditioning maps are in the leftmost columns, the middle columns are the
generated samples and the per-pixel mean maps are in the rightmost columns. The last four rows shows generated samples with maps not seen
during training.

2.1 Implementation details

The generator and discriminator networks are built upon the
ResNet architecture (He et al., 2016), following a design approach
similar to (Gulrajani et al., 2017). The generator begins by mapping
a 128-dimensional noise vector to a hidden representation using
a multilayer perceptron (MLP). This hidden representation is
then reshaped to dimensions (512, 4, 4), followed by a series of
upsampling layers that progressively increase the spatial resolution
while reducing the number of feature channels. Conversely, the
discriminator performs downsampling operations, halving the
spatial resolution and doubling the number of feature channels

at each layer. The final output of the discriminator is a single
scalar value, representing the probability of the input image
being real. We apply spectral normalization to the discriminator’s
weights (Miyato et al., 2018) and the self-attention mechanism
(Zhang H. et al., 2019) in both the generator and discriminator
at an intermediate layer of resolution 32× 32. For all experiments,
the models are trained using the Adam optimizer with fixed
learning rate of 0.0002 for both networks and a batch-size of
32. The latent vector z is sampled from a multivariate standard
normal distribution of dimension 128. The final checkpoint used is
based on an exponential moving average of the generator weights
with a decaying factor of 0.999 following (Brock et al., 2018).
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FIGURE 6
Generated non-stationary realizations on the real masks of the Brahmaputra river: the input conditioning maps are in the leftmost columns, the middle
columns are the generated samples and the per-pixel mean maps are in the rightmost columns. The last three rows shows generated samples with
maps not seen during training.

When updating the generator we used −𝔼z∼pz[log (D(G(z)))] as
proposed by Goodfellow et al. (2014).

For the 3D model, 3D convolutions, 3D batch-normalization
and 3D up-sampling operations are adapted from the PyTorch
framework. In this case, the starting vector z is reshaped to 4×
4× 2 and passed to the generator to form 64× 64× 32 3D images.
To handle the size of the 3D samples, our models are trained on
four parallel GPUs of GeForce RTX 3090. The architectures of the
generator and discriminator networks are depicted in Figures 1, 2,
respectively, for simplicity, we removed the self-attention blocks and
showed only the 2D models.

2.2 Datasets

In our experiments, we evaluate our models on three datasets:
a) a 2D synthetic dataset of three facies: channels, levees and
background b) a 2D dataset of masks of the Brahmaputra
river with binary facies: channels and background and c) a 3D
synthetic dataset of binary facies: channels and background.
Samples from the 2D datasets are shown in Figure 3. The
non-stationarity in the datasets are due to the variations
in the channels proportions across the spatial domain,
we describe the 2D datasets and the preprocessing steps
below.
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FIGURE 7
Conditional generated 3D samples. In each row, the first column shows the 3D target map M and the remaining columns show the generated 3D
realization using different random z and the same M. As shown the trained model were able to generate stochastic realizations that matches the
target map.

Samples of the first dataset (a) are generated using a geo-
modelling tool that mimics depositional environment formation
based on random walks (Massonnat, 2019). Horizontal and vertical
flipping are performed to increase the sample size from 2,000 to
8,000, this also adds an additional spatial configuration in the
training set (i.e., large channel proportion on the right side and low
on the left side).TheBrahmaputra rivermask, dataset (b), is based on
the data from Schwenk et al. (2020). The large mask of size 13091×
11680 is cropped to patches of size 256× 256 with a stride of 64
then the cropped images are rotated such that they have vertical
alignment with the central line of the large mask. The central line is
computed using RivGraph library (Schwenk et al., 2020). Horizontal
and vertical flipping are performed to increase the variations in the
training set (increasing sample size from 1788 to 7152). All images
of the 2D two datasets are resized to 64× 64 resolution to match the
networks input.

For each sample in the training set, the channel proportions
map M is calculated at a resolution of 4× 4 for the 2D samples
and M ∈ 4× 4× 2 for the 3D samples. Although they could be
calculated at higher resolutions, we chose to mimic the low
resolutions usually obtained from seismic surveys. After training,
M can be arbitrary selected to mimic the non-stationarity (e.g.,
p ≥ 0.4 is a high proportion and p ≤ 0.16 is a low proportion).
While the 4× 4 grids in our study are abstracted for experimental
purposes, they are intended to demonstrate the flexibility of
the proposed method to handle diverse input scenarios. In
practical geological characterization, the conditioning maps used
in this study can be derived or approximated from various data
sources. For example, in subsurface modeling, these maps can be
constructed from seismic inversion results, which provide spatial
distributions of geological properties at different resolutions.
Conditioning the generative model on the coarse-scale maps
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FIGURE 8
Conditional generated 3D samples with target 3D maps: The first two columns represent the two layers of the 4×4×2 target maps, providing the
conditioning input. The remaining columns display the corresponding generated 3D sample at different cross-sections, specifically at the first, eighth,
16th, and 24th slices. This visualization highlights how the generated samples align with the spatial structure dictated by the target maps.

can be used for data assimilation problem of well and flow
data as in Fossum et al. (2024).

The 3D dataset (c) is based on data from Sun et al. (2023)
and has been used to compare different GANs models (Sun et al.,
2021). The original dataset is composed of 25 3D images, of size
256× 256× 640, produced using FLUMY™ computer simulation
program and grouped into five groups with different avulsion rates.
We selected samples from only the first two groups with low
avulsion rates and performed cropping on each image such that the
cropped images are of size 64× 64× 32. We use the 3-facies dataset
and converted all images to be binary by merging the point bar
and channels facies. Finally, flipping is performed to increase the
diversity within the dataset. Samples from the dataset are depicted in
Figure 4.

3 Results and discussion

Results on the 2D synthetic dataset and the Brahmaputra river
masks are shown in Figures 5, 6, respectively. The leftmost column
shows the conditioning maps M, the middle columns are the
corresponding generated images G(z,M) and rightmost column
shows the mean per pixel maps calculated over 2,000 generated
samples. For each row, we used the same conditioning map and
different z vectors.

In Figure 7, we present the 3D conditional results: in each
row, the first column shows the target conditional map M and the
remaining columns show three different generated 3D realizations
xi = G(zi,M), where each realization is generated with a different
zi and the same map M. From these results, it is clear that our
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FIGURE 9
A 4×4 grid of cross-plots correlating generated channel proportions with target proportions for individual sections of 4×4 conditioning maps. Each
subplot isolates a specific grid section, systematically varying its target proportion while holding others constant. Blue markers denote values within the
training data distribution, while red markers represent extrapolated proportions outside this range, illustrating the model’s capacity to generalize
beyond observed data.

3D models have learnt a disentangled representation between the z
vector which drives the stochastic variation and M which forces the
generated samples to respect the given channel distribution.

In Figure 8, we presentmore results of the 3Dmodels at different
cross sections. The first two columns show the two sections of the
4× 4× 2 3D map which describes the target channel proportions for
the 64× 64× 32 images across the three dimensions. The remaining
columns show generated 2D slices at different cross sections, namely
the first, eighth, 16th and 24th. These results demonstrate that the
3D generated samples are spatially-correlated with the target maps

in the three dimensions. We note here that although we show results
as 2D slices, the 3D images are generated by a single-pass to the
generator.

The results clearly demonstrate that the models successfully
generalized to spatial configurations not present in the training
datasets. Visually, the generated samples exhibit geological
plausibility; for instance, channel connectivity is preserved across
both datasets. Furthermore, in the case of the first dataset, the
models consistently generated levees surrounding the channels,
regardless of the channels’ locations. This indicates that the models
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FIGURE 10
A 4×4 grid of cross-plots correlating generated channel proportions with target proportions for individual sections of 4×4 conditioning maps. Each
subplot isolates a specific grid section, systematically varying its target proportion while holding others constant. All points are blue, as the training
proportions cover the entire range [0,1].

did not simply memorize the training data but instead learned the
underlying spatial relationships and patterns effectively.

3.1 Correlation analysis

To quantify the correlation between the target proportion maps
and the corresponding generated samples, Figures 9, 10 display
4× 4 cross-plots. Each plot corresponds to one section of the 4×
4 grid in the conditioning map M. These cross-plots visualize
the relationship between the target proportions (x-axis) and the

generated proportions (y-axis) for each section, highlighting the
model’s ability to replicate local statistics.

The results demonstrate a strong correlation between the target
and generated proportions, with R2 values approaching 1. This
indicates that the model effectively captures the target statistics
within each section. Moreover, the model shows the capacity to
extrapolate to unseen ranges of proportions. In Figure 9, red dots
represent target proportions that lie outside the range observed in
the training set, while blue dots represent those within the seen
range. The real dataset (Figure 10) spans the entire range [0,1],
resulting in all points being blue.
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FIGURE 11
Comparison of two-point probability functions for synthetic and real 2D datasets across distinct grid sections. Subplots (a, b) correspond to synthetic
data, while (c, d) represent real binary masks. Dashed lines denote training sample functions at proportions P = {20%,40%,60%,80%}; solid lines show
generated samples. The results highlight the alignment between generated and training samples and demonstrate the model’s generalization ability,
particularly for unrepresented conditions.

The generalization capability of the GANs can be understood
from two perspectives.

1. Local Generalization: The model can generalize to unseen
proportionswithin individual sections of the grid, as illustrated
by the red dots in Figure 9.

2. Global Generalization: The model can generate realistic
samples for unseen non-stationary configurations
across the entire image, as demonstrated in
Figures 5, 6.

The two-point probability function quantifies the likelihood that
two points, separated by a specified distance, belong to the same
channel facies. This measure helps evaluate the spatial continuity
and geological consistency of generated samples. In Figure 11, the
function is calculated for two specific sectionswithin the 4× 4 grid of
the 2Ddatasets: the top-left section and the section in the second row

and second column. The analysis is performed under four different
conditions to compare the generated samples with the training
data. Figures 11a, b present the results for the synthetic dataset,
while Figures 11c, d show the results for the real binary masks
dataset. Solid lines represent the functions calculated for generated
samples, and dashed lines represent those for the corresponding
training samples. The results reveal a strong alignment between the
generated and training samples, particularly at smaller distances,
highlighting the model’s ability to preserve spatial continuity. For
unrepresented conditions (e.g., 80% in Figure 11a and 60% and
80% in Figure 11d), the generated functions still follow the general
trend of the training data, demonstrating the model’s generalization
capacity. At larger distances, some deviations are observed, which
may be attributed to the model’s adjustments at boundaries to
ensure geological consistency, resulting in differences from the
training samples.
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FIGURE 12
Saturation statistics of a uniform flow on training and generated samples at t = 0.5 PVI. (a) Statistics on real (i.e.,training) samples. (b) Statistics on
generated samples.

FIGURE 13
Comparison between training and generated saturation histograms. The histograms display the distribution of saturation values at the spatial location
in the domain where the saturation variance is highest, highlighting the range and frequency of saturation fluctuations at that point.
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FIGURE 14
Production Statistics Comparison Between Training and Generated Data (a) Mean production profiles for uniform flow, comparing training data (solid
line) and GAN-generated samples (dashed line). (b) Variance distributions of production curves across both datasets. (c) Frequency distribution of water
breakthrough times, quantified in pore volume injected (PVI), highlighting discrepancies in temporal dynamics.

3.2 2D flow simulation

To further assess the trained models, a uniform flow simulation
is performed on the training samples shown on left side of Figure 3
and the corresponding generated samples shown on the top row in
Figure 5. We consider the problem of a uniform flow where water is
injected in order to displace contaminate in a subsurface reservoir.
Flow is injected at the left side boundary and produced from the
right side boundary and no-flow boundary conditions are imposed
on the top and bottom sides. The problem formulation and settings
are identical to those presented by Chan and Elsheikh (2020).

We performed a total of 4,000 flow simulations, 2,000
corresponding to the training samples and 2,000 simulations on the
GANs generated samples. Flow statistics of the saturation map at t =
0.5 PVI are shown in Figure 12 for the real and generated samples.
As shown, statistics from generated realizations are very similar
to the statistics from the training samples. Saturation histograms

calculated at the point where the saturation has the highest variance
are shown in Figure 13, where the two histograms from the training
and generated samples match very well.

Production curves statistics are shown in Figure 14, where we
calculated the mean and the variance of the production curves at
different times. We have also plotted the histogram of the water
breakthrough time (i.e., the time where the injected clean water level
reaches the production well with a 1% threshold). As we can see, the
calculated statistics on the generated realizations showed very good
agreement with the ones on the training samples which reflect the
capabilities of the GANs models.

4 Conclusion

This study demonstrates that GAN-based methods can
effectively generate non-stationary stochastic realizations of
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geological facies—models that are essential for advanced reservoir
characterization in geoenergy applications. The conditioning
algorithm allows the model to learn spatial correlations between
target maps and generated realizations without solving optimization
problems for new observed data or using arbitrary loss functions.
Our models consistently produce geologically plausible 2D and
3D realizations, even for spatial configurations not encountered
during training, using both synthetic and real geological datasets.
This capability is particularly valuable for modeling complex
mineral deposits where understanding spatial variability is crucial
for resource estimation and development planning. The method’s
ability to handle non-stationary fields makes it especially suitable
for characterizing heterogeneous geological formations typical in
economic geology applications such as hydrocarbon extraction.
Future work might include generating non-stationary data from
stationary training sets and extending the generated field of view to
infinite dimensions.
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