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Introduction: During tunnel boring machine (TBM) shield tunneling in clayey
strata, the excavated soil consolidates on the cutter head or cutting tools,
forming mud cakes that significantly impact the efficiency of shield tunneling.

Methods: To predict mud cakes during shield tunneling, four distinct supervised
machine learningmodels, including logistic regression, support vector machine,
random forest, and BP neural network were employed. The optimal predictive
model for mud cake formation was determined by assessing the precision,
recall, and F1 scores of the models. Further analysis of feature dependencies
and shapley additive explanations (SHAP) is conducted to pinpoint the critical
risk factors associated with mud cake formation.

Results: The results indicate that among the four supervised machine learning
models, the random forest model exhibited the best performance in predicting
mud cake formation during shield tunneling, with an F1 score as high as 0.9934.
Feature dependencies and SHAP information showed that the shield tunneling
chamber temperature and average excavation speed had the most significant
impact on mud cake formation, serving as crucial factors in determining
mud cake formation. The rear earth pressure of the screw conveyor and
the cutterhead penetration depth followed, constituting important elements
in mud cake formation. The introduction of the interpretable method SHAP
for analyzing the relationships between various factors extends beyond
simple linear relationships, allowing for the examination of nonlinear patterns
among factors.

KEYWORDS
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1 Introduction

China is one of the countries with the largest distribution of karst in the world
(Yang et al., 2020). Due to the long-term dissolution of surface water and groundwater
on soluble rocks, karst caves, grooves and other unique karst landforms have been formed
(Zhang et al., 2018; Ou et al., 2024).With the acceleration of urbanization and the increasing
demand for transportation, the rational development and utilization of urban underground
space have become key to alleviating urban traffic pressure. Due to its high safety level
and excavation efficiency, the TBM shield tunneling method has become the preferred
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construction method for urban subway tunnels (Ou et al., 2025).
However, caves are often filled with clayey soil in some karst areas.
When the shield passes through soil layers with a high clay mineral
content and weathered rock layers, the soil is prone to adhere to
the surface of cutterheads and cutters made of metal, which forms
mud cakes on the surface under the thrust of the shield. In milder
cases, this will cause the cutter to lose its cutting ability, affecting
the efficiency of shield tunneling.More severe consequences include
surface subsidence, which endangers the safety of buildings and
personnel. The shield mud cake formation is, in essence, the process
of continuous soil compression and consolidation. In the early
stage, the mud cake has a relatively low strength and is easier to
handle. When the formation is complete, it may cause damage
to the shield cutter, lower the efficiency of shield tunneling, and
become much harder to treat (Langmaack and Lee, 2016; Yang et al.,
2023). Therefore, early prediction of mud cakes is a prerequisite
for ensuring safe and efficient shield tunneling and is also a hot
topic actively studied by scholars. Some investigations indirectly
determined the formation of shield mud cakes by monitoring the
temperature or main tunneling parameters of shield tunneling
(Zumsteg et al., 2016; Li et al., 2022). However, these methods failed
to achieve early-stage prediction. Benefiting from the applications
of emerging technologies such as machine learning and image
recognition in civil engineering (Jin et al., 2022; Gao et al., 2021;
Liu et al., 2020; Suwansawat and Einstein, 2006; Kohestani et al.,
2017; Mahmoodzadeh et al., 2021), some studies developed early
warning and monitoring systems for mud cake monitoring and
identification. For instance, Fu et al. (2021) developed an early
warning and monitoring system based on the Internet of Things
technology, which monitored the temperature of TBM cutters in
real time to identify the formation of mud cakes, thereby improving
the shield machine’s operating efficiency and reducing construction
risks. Zhai et al. (2022) analyzed the influencing factors of mud
cake formation based on machine learning, established a mud
cake prediction and early warning model, and developed a real-
time mud cake early warning system. Most existing studies on
the formation and prevention of mud cakes rely on traditional
theories (Li et al., 2022), such as the summary of construction site
experience, while the analysis of mud cake formation based on
emerging machine learning technologies is still in its infancy and
lacks methods with model interpretability (Kang and Chois, 2020).
Beyond the model prediction accuracy, the reason for generating
such prediction data also requires in-depth understanding since
reasonable interpretability conclusions can help technicians apply
the model more confidently and enhance generalization. Some
commonly used model interpretability tools include permutation
importance, SHAP, local interpretable model-agnostic explanations
(LIME), and partial dependence plot (PDP).

This study targets one section of the Fuzhou Metro Binhai
Express where a TBM shield passes through clayey strata in China.
Based on the tunneling parameters before and after in-chamber
processing of shield mud cakes, the model prediction results are
analyzed using the SHAP analysis tool. The effects on a shield
mud cake dataset of four supervised machine learning models, i.e.,
logistic regression, support vector machine (SVM), random forest
(RF), and back propagation (BP) neural network, are compared.
The optimum prediction model is selected for further feature
dependency and SHAP analysis to identify key risk factors for

mud cake formation. A mud cake formation prediction model is
established to provide a reliable theoretical judgment basis for mud
cake prevention in shield tunneling.

2 Project background and data
preparation

2.1 Project background

As an essential intercity rail transit line in Fujian Province in
China, the Fuzhou Metro Binhai Express connects the railways,
Changle airport, and the urban rail transit network. As an inter-city
railway tunnel project from Fuzhou to Changle Airport, the shield
passes through dense ground structures multiple times along the
route. The ground construction environment is complex, and the
strata are diverse. The excavation diameter of the shield tunnel in
this section is 8.6 m, and the tunnel cover soil has a thickness of
8.8–15.3 m. The shield tunneling section of this project is located
in an alluvial plain with marine-terrigenous facies. The site surface
is mostly covered by sand filling layers. The geology along the line
is complex and diverse, mainly composed of silty clay and muddy
fine sand, with a high content of clay particles. The shield section
primarily passes through the strata of mucky soil, muddy fine sand,
silty clay, and strongly weathered silty sand. The overlying soil is
dominated by soft soil, such as shallow silt and fill.The compositions
of soil mechanics particles in the strata are displayed in Table 1.
Considering the high content of clay particles, an earth pressure
balance (EPB) shield machine was used for excavation construction.
The cutterheads and cutters often exhibit mud cakes during the
construction process, greatly reducing the excavation efficiency.
Moreover, multiple pressurized in-chamber mud cake treatment
increase the risk of the project.

2.2 Data preparation

The original data before and after cutterhead mud cake treatment
from three shield tunneling sections were selected for analysis, with a
total of 4,525 samples. Based on the existing research results about the
influencing factors of shield mud cakes (Alberto-Hernandez et al.,
2018; Zumsteg et al., 2016), characteristic factors related to the
formation of shield mud cakes were screened. Each sample included
ten numerical features, namely, total thrust of the propulsion cylinder,
torque of the screw machine, front soil pressure of screw conveyor,
rear soil pressure of screw conveyor, temperature of the sealed cabin,
cutterhead torque, average driving speed, temperature of the motor
cooling water, gear oil temperature, and cutterhead penetration. In
addition, a binary label was used to indicate whether a mud cake was
produced, where 0 indicated no presence ofmud cake and 1 indicated
thegenerationofmudcakes.Sortingandanalysisof theoriginaldataset
finds 3,710 entries labeled as a normal class and 815 items labeled as
mud cakes. Randomly divide the original 4,525 pieces of data into
training and testing sets in an 8:2 ratio, with 3,620 data points in the
training set and 905 in the testing set. The schematic diagram of the
prediction model is presented in Figure 1.

Statistical analysis of the shield tunneling parameters before
and after mud cake treatment was performed. Measurement data
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TABLE 1 Soil mechanics parameters of strata.

Stratum Compositions of stratum particles (μm)

0–10 (%) 10–20 (%) 20–45 (%) 45–74 (%) 74–200 (%) 200–460 (%)

Mucky soil 8.33 10.61 18.49 24.62 35.18 2.77

Silt 8.56 13.34 21.75 30.75 24.09 1.51

Muddy fine sand 4.77 7.43 11.45 24.32 35.22 16.81

Silty clay 6.88 9.50 15.24 21.43 46.02 0.93

FIGURE 1
Schematic diagram of the prediction model.

that conformed to a normal distribution was expressed as mean ±
standard deviation (x± s), and the t-test was adopted for comparison
among groups. Non-normally distributed measurement data was
represented by itsmedian [M(P20, P80)], and the non-parametric test
was used for comparison among groups. Count data was expressed
by the number of cases and percentage (%). Comparison between
categorical data adopted the χ2 test. The test level was α = 0.05, and
P < 0.05 indicated a statistically significant difference.

3 Establishment and evaluation of
machine learning model

This study adopted the tools of Python 3.10 and Sklearn
to establish the four different supervised machine learning
models, i.e., logistic regression (Bisong et al., 2019), SVM
(Cervantes et al., 2020), RF (Denisko and Hoffman, 2018), and
BP neural network (Rumelhart et al., 1986), thereby evaluating the
prediction accuracy of each model on the data validation set.

3.1 Logistic regression

As one of the most classic machine learning models, logistic
regression is widely used in binary classification problems. It

has advantages such as low computational complexity, rapid
learning and prediction, and easy model interpretation, and its
analysis model is:

Z =W0 +W1X1 +W2X2 +⋯+WnXn (1)

F(z) = 1
1+ e−z

(2)

In Equation 1, X1, X2 … represent the features, while W1, W2
… represent the corresponding weights. Equation 2 is called the
Sigmoid function, which features a monotonic increase, and its
inverse function is also a monotonic increasing function. It is often
used as a threshold function for neural networks, mapping variables
to [0,1], and can be used for binary classification, which has good
compatibility with logistic regression. When analyzing, substitute
the calculated result Z from Equation 1 into Equation 2 to achieve
data classification, where the output of Z is in the range of [0,1].

3.2 Support vector machine (SVM)

As a classic binary machine learning method, SVM can handle
high-dimensional and nonlinear data well. It can obtain the
optimum hyperplane in the sample feature space that separates all
data points and maximizes their distance to it. Nonlinear SVM can
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FIGURE 2
Operating principle diagram of SVM.

solve nonlinear problems by introducing kernel functions to map
data onto higher dimensional spaces. The operating principle of
SVM is displayed in Figure 2.

The left and right samples closest to the red solid line at
the center in Figure 2 are support vectors, and the goal of SVM is
to maximize the distances from the support vectors to the center
red line. SVM uses the hinge loss function (HingeLoss) as the
objective function for optimizing the model, where f (x) represents
the predicted results of SVM. The formula for calculating the hinge
loss function is:

HingeLoss(y, f(x)) =
∞

∑
0
[1− y∗ ( f(x)))]+ = |z|+ (3)

Equation 3 indicates that when z is greater than 0, the function
has a value of 0. When z is smaller than 0, the function equals z.

3.3 Random forest (RF)

As an ensemble learning algorithm, RF is a widely used classifier
in machine learning and has the advantages of anti-overfitting, anti-
data noise, and high accuracy. Its core idea is to summarize the
classification results of all independent small classifiers, namely,
decision trees, and set the category with the most classification
results as the final classification result, as displayed in Figure 3. Each
decision tree adopts the Bootstrap class analysis method, which
randomly selects a fixed number of samples from the training set
with replacement and then takes them as the training set.

The core idea of RF classification decision-making can be
represented by

RF(X) = ArgMax(Ti(X)) (4)

In Equation 4, Ti(x) denotes the prediction result of the i-th tree
in the forest for the sample with input X; RF(X) represents the
statistical analysis of all decision tree results where the highest result
is taken as the final classification result of the entire RF for the
sample with input X. Meanwhile, the Gini index is used as the basis
for decision tree bifurcation to ensure higher dataset accuracy after

each bifurcation. The formulas for the Gini index and RF algorithm
bifurcation basis are

Gini(D) = 1‐
y

∑
k=0

P2
k (5)

Gini_Index(D,x) =
n

∑
v=0

Dv

D
Gini(D) (6)

ArgminGini_Index(D,x) (7)

In Equation 5, Gini(D) represents the overall Gini index of
dataset D. In this example, k takes the value of 2, representing a
normal label and a label that displays the presence of mud cakes. Pk
represents the probability of class k, which is the proportion of class k
in the overall sample D. In Equation 6, Gini_Index (D,x) represents
the Gini index after selecting feature x as the basis for bifurcation,
Dv denotes the size of the dataset obtained by using feature x as the
basis for bifurcation. Finally, according to Equation 7, the working
condition with the smallest Gini index is taken as the basis for the
bifurcation of each decision tree.

3.4 BP neural network

BP neural network is a supervised machine learning algorithm,
the core idea of which is the forward propagation of data and the
backward propagation of errors. It continuously adjusts the weight
of each feature through gradient descent to improvemodel accuracy.
Its outstanding advantages are its strong nonlinear mapping
capability and flexible network structure. The forward propagation
structure of the BP neural network is presented in Figure 4.

This study is based on the neural network module of PyTorch.
The input feature X has 10 dimensions, the output category Y
includes 2 classes, and the hidden layer has a total of 13 neurons
(Karsoliya, 2012). The rectified linear unit (ReLU) function is used
as the activation function, the cross entropy loss is used as the loss
function, the learning rate is set to 0.01, and the model is trained
1,000 times. As shown in Figure 5, overfitting does not occur.

The cross entropy loss function is used in machine learning to
show the difference between the real sample label and the predicted
probability, which is expressed by

L = − 1
n
∑
x
|ylogx+ (1− y) log (1− x)| (8)

In Equation 8, y represents the true label type, and x represents the
predicted probability in the range of [0,1].

3.5 Model evaluation metrics

3.5.1 F1 Score
The F1 score is an accuracy metric used in statistics to

measure the results of binary classification problems, considering
the precision and recall of the model. The F1 score is in the range
of [0,1]. The closer it is to 1, the higher the prediction accuracy. The
F1 score is calculated by

F1 = 2× Precision · recall
Precision+ recall

(9)
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FIGURE 3
Structural diagram of the core idea of RF.

FIGURE 4
Forward propagation structure diagram of BP neural network.

Precision = TP
TP+ FP

(10)

Recall = TP
TP+ FN

(11)

In Equation 9, Precision represents the proportion of true
positive cases among the samples predicted as positive by themodel,
Recall represents the proportion of samples correctly predicted

as positive by the model to all true positive cases. In Equation
10, TP represents true cases (the number of samples correctly
predicted as positive by the model), FP represents false positive
cases (the number of samples incorrectly predicted as positive by
the model). In Equation 11, FN represents false negative cases
(the number of samples incorrectly predicted as negative by the
model).
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FIGURE 5
Variation graph of training loss using the cross entropy loss function.

Taking the shield mud cake category as an example, Precision
represents the proportion of samples that truly belong to the mud
cake category among all the samples predicted by the model as
mud cakes, andRecall represents the proportion of samples correctly
predicted by the model as mud cakes among all samples that truly
belong to the mud cake category.

3.5.2 Shapley additive explanations (SHAP)
SHAP is a game theory-inspired method for explaining the

predictions of machine learning models. It was first proposed by
Lundberg and Lee (2017). Its essence is the average marginal
contribution of feature values in all possible alliances, which can
reflect the influence of each feature in the sample. As a powerful
model interpretability method, SHAP can transform the results
calculated by the model into a more easily understandable one,
which helps interpret the model. The SHAP value of each feature
reflects its contribution to the final model prediction result; the
larger the SHAP value, the greater the contribution.

ϕi = ∑
S∈N

|S|!(n− |S| − 1)!
n!

[v(SU {i}) ‐v(S)] (12)

where n denotes the total number of features, ϕi denotes the
contribution of feature i to prediction, and S denotes all subsets that
use feature i. Therefore, |S|!(n−|S|−1)!

n!
in Equation 12 represents the

weight of subset S, and v(S) represents the prediction for S.

4 Experimental analysis

4.1 Overall experimental analysis

Using the metrics module in Sklearn, the statistics for the
prediction accuracy of the four machine learning models are
produced, as shown in Table 2, where the recall and precision
of normal and mud cake categories are compared. The final
experimental analysis results are shown in Figure 6.

According to Table 2 and Figure 6, the overall accuracy of the
four models is above 90%. Among them, the RF algorithm performs

the best, showing the highest prediction accuracy on the dataset,
especially in terms of recall and precision of the normal category.
The precision and recall of SVM and logistic regression in the mud
cake category are significantly lower than those of the RF model and
the BP neural network. Specifically, the recall of logistic regression in
themud cake category is 26% lower than that in the normal category,
and a gap of over 7% in precision also appears. Similar phenomena
also occur in SVM, where the recall of the mud cake category is
25% lower than that of the normal category, and there is a 13%
difference in precision. The analysis results are consistent with the
results obtained by Zhai et al (2022).

4.2 Model interpretability analysis

After model evaluation, the best prediction model for mud cake
formation, i.e., RF, is selected for further analysis. Figure 7 displays
the SHAP value feature importance map, the overall sample heat
map, and the overall sample swarm plot of the RF model. In the
heat map, the horizontal axis represents the specific samples, while
the vertical axis represents the SHAP value of each feature. The
importance of features decreases from top to bottom, with red
indicating a positive impact on mud cake formation and blue the
opposite.The swarm plot presents each sample in the form of points,
and the importance of each feature for mud cake formation also
decreases from top to bottom.

As shown in Figure 7, according to the SHAP value, the features
in terms of importance are ranked as follows: temperature of the
sealed cabin, average driving speed, cutterhead penetration, soil
pressure behind the screw machine, soil pressure before the screw
machine, cutterhead torque, temperature of themotor coolingwater,
gear oil temperature, total thrust of the propulsion cylinder, and
torque of the screw machine. The temperature of the sealed cabin
is the most important factor for the final judgment of the model
since its increase facilitates the solidification of soils, such as crushed
rock and soil, and their adherence to the cutter and cutterhead,
increasing the probability of shieldmud cake formation.The average
driving speed of shield tunneling also plays an essential role in
the final model prediction result. As can be seen from the overall
feature distribution map in Figure 7, the average driving speed
is positively correlated with mud cake formation. In the overall
sample swarm plot in Figure 7C, a higher average driving speed
corresponds to easier mud cake formation. This is mainly because
as the shield tunneling speed increases, the shear rate generated by
cutterhead rotation also increases. This increase in shear force will
increase the contact area and adhesive force between soil particles,
thereby increasing the probability of mud cake formation at the
cutterhead. In addition, as the average driving speed increases, the
soil is subjected to a large shear force, resulting in soil fluidization
and a corresponding decrease in soil pressure. As for the feature
of soil pressure behind the screw machine, its decrease increases
the risk of mud cake formation. The factor that follows in terms
of the influence on the final model judgment is the cutterhead
penetration. With the increase of penetration, the compression and
friction conditions for forming the cutterhead mud cake become
more mature, so the formation probability increases. One reason
is the increased contact area between the cutterhead and the soil.
Meanwhile, the damage to soil particles increases the soil porosity,
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TABLE 2 Statistics of prediction accuracy for the four machine learning models.

Category F1 score Normal precision Normal recall Mud cake precision Mud cake recall

Logistic regression 0.9151 0.9301 0.9711 0.8571 0.7039

SVM 0.9038 0.9290 0.9559 0.7975 0.7039

RF 0.9934 0.9945 0.9972 0.9887 0.9777

BP neural network 0.9712 0.9808 0.9835 0.9322 0.9218

FIGURE 6
Statistical bar charts of prediction accuracy for the four machine learning models.

which promotes the entry of water into the soil and facilitates the
generation of the cutterhead mud cake.

Besides these four most influential features, other factors have
no decisive impact on the formation of mud cakes, most of which
have a relatively small absolute SHAP value. For instance, the total
thrust of the propulsion cylinder is nearly positively correlated with
the probability of mud cake formation, but it is not a decisive factor.
The same rule also applies to the soil pressure in front of the screw
machine. As shown in Figure 8, the higher the soil pressure before
the screw machine, the lower the risk of mud cake formation. This is
mainly because the increase of this feature constrains the movement
of soil particles and thus reduces the formation of mud cakes.
Meanwhile, influenced by the soil moisture content, the increase in
soil pressure before the screwmachine will remove some water from
the soil, indirectly reducing the risk of mud cake formation.

Figure 8 shows the contribution and influence direction
(positive or negative) and the predicted value of each feature in
the selected individual sample for mud cake formation, which

can be used to determine the risk of mud cake formation in
this sample. The base value represents the average of all model
training samples, while f(x) represents the predicted risk of mud
cake formation for a given sample. An f(x) below the sample
average indicates a decreased mud cake formation risk, and an
f(x) above average signifies an increased risk. The size of each arrow
corresponds to a weight, indicating the level of impact of the feature
on the prediction result. The red features and red arrows indicate
a positive contribution to the formation of mud cakes, while the
blue ones correspond to a negative contribution. The value of the
weight characterizes the impact of the feature on sample prediction
results.

Specifically, the average value of the overall sample set is
0.1752, as shown in Figure 8. In the first normal sample, the main
influencing factors that turn the model prediction value from the
base value to 0 include the temperature of the sealed cabin, the
average driving speed, and the soil pressure after the screw machine.
For a randomly selected mud cake sample, the main influencing
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FIGURE 7
Analysis of various features of the RF model using the SHAP method. (A) Feature importance map in terms of SHAP value, (B) Overall sample heat map,
(C) Overall sample swarm plot.

factors that change the predicted value from the baseline to 1 are
the temperature of the sealed cabin, the soil pressure behind the
screw machine, and the penetration. These results mean that the

temperature of the sealed cabin, the average driving speed, the soil
pressure behind the screw machine, and the penetration are the
primary influencing factors for the generation of shield mud cakes,
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FIGURE 8
The overall heat map of mud cake and normal categories.

FIGURE 9
Feature dependence analysis on average driving speed.

which is consistent with the prediction results based on the SHAP
value feature importance analysis shown in Figure 7.

4.3 Feature dependency analysis

As mentioned earlier, the temperature of the sealed cabin has a
direct linear impact on the formation of mud cakes; the higher the
temperature, the greater the risk of cutterhead mud cake formation.
The second most important feature is the average driving speed,
which does not show a clear gradient change pattern with mud cake
formation. This is also true for the feature of soil pressure behind
the screw machine. Therefore, it is necessary to conduct a feature
dependency analysis for these two features. The analysis cloud maps
are shown in Figures 9, 10, respectively.

Figures 9, 10 visualize the curve distribution relationships
between the two features and the SHAP value. The left vertical
axis represents the SHAP value of the feature, and each sample
corresponds to a feature point in the figure. The color changing

FIGURE 10
Feature dependence analysis on soil pressure after the screw machine.

from blue to red indicates that the feature size gradually increases.
According to the feature dependency analysis on the average driving
speed in Figure 9, when the average driving speed of the shield
machine is slower than 20 mm/min, the SHAPvalue ofmost samples
is greater than 0. However, when the average driving speed is
between 20 and 40 mm/min, the SHAP value is smaller than 0,
indicating that the shield cutterhead is not prone to mud cakes.
However, when the driving speed increases to above 40 mm/min,
the SHAP value jumps to above 0, indicating a significant increase
in the probability of mud cake formation within this speed range.
A similar distribution pattern of feature points also appears for
the feature of penetration. As known from the swarm plot in
Figure 7C, the variations of the penetration and driving speed are
consistent, both showing a linear pattern. This relationship can be
explained by Equation 13.

Penetration = Drivingspeed/Cutterheadrotationspeed (13)

Figure 10 shows the SHAP value variations of soil pressure
behind the screw machine. The overall distribution of the curve
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FIGURE 11
Relationship between the average driving speed and the soil pressure
behind the screw machine.

demonstrates that as the soil pressure behind the screw machine
increases, the SHAP value also increases. The feature distribution
pattern reveals that the SHAP value is mostly smaller than 0
when the soil pressure behind the screw machine is in the range
of 0–400 kPa. However, when this pressure is between 400 and
600 kPa, the SHAP value suddenly increases, peaking for some
samples, which indicates that the soil pressure behind the screw
machine has a positive effect on mud cake formation. When this
pressure rises to above 600 kPa, the overall SHAP value is still
greater than 0, though the absolute value is less than that in the
range of 400–600 kPa. This indicates a pattern of first increasing and
then decreasing effect for mud cake formation as the soil pressure
behind the screwmachine increases, which reaches themaximum at
400–500 kPa.

Figure 11 shows the distribution relationship between the
average driving speed of the shield machine and the soil pressure
behind the screw machine. According to Figures 9, 10, a nonlinear
relationship exists between the average driving speed or the soil
pressure behind the screw machine and the formation of shield
mud cakes, but there is no relevant data to indicate the existence
of an intrinsic relationship between these two features. Therefore, it
is necessary to consider the curve distribution shown in Figure 11
to analyze the intrinsic relationship between the two. As can
be seen from Figure 11, no intuitive relationship between the two
features is present. However, when the soil pressure behind the
screw machine is high, the SHAP value of the corresponding
average driving speed is small. This may be because the excavated
soil soil is squeezed around the screw machine during shield
tunneling. When the shield tunneling speed is low, the soil soil
will stay inside the screw machine for a relatively long time,
which will lead to an increase in soil pressure behind the screw
machine.

5 Conclusion and outlook

This study is conducted based on the original excavation
parameters of a double shield tunneling machine passing through

the viscous strata in a section of the Fuzhou Metro Binhai
Express before and after in-cabin shield mud cake treatment.
By comparing four different supervised machine learning models
(logistic regression, SVM, RF, and BP neural network), the best
prediction model for mud cake formation, RF, is selected. Further
feature dependence and SHAP analyses for the RF algorithm are
conducted to identify key risk factors for mud cake formation,
and the risk prediction model for mud cake formation is
established. The research results have some guiding significance
for preventing mud cake formation in shield cutterheads and
controlling shield tunneling parameters.Themain conclusions are as
follows:

(1) Among the four supervised machine learning models, the
RF model has good adaptability and the highest accuracy
in predicting the formation of shield mud cakes. The high
precision and recall metrics in normal and mud cake classes
verify the robustness of the RF model.

(2) Among the ten listed features that affect the formation of
mud cakes, the sealed cabin temperature and the average
driving speed of the shield machine have the strongest impact
on the formation of mud cakes, which are deemed the key
factors in mud cake formation, followed by the soil pressure
behind the screw machine and cutterhead penetration.
It is recommended to monitor the real-time temperature
of in-cabin soils during shield tunneling and dynamically
adjust the tunneling speed to reduce the risk of mud cake
formation.

(3) The interpretability method SHAP is introduced to analyze the
relationships, linear or nonlinear, between the various factors.
For example, the average driving speed is a key factor that has a
nonlinear relationship withmud cake formation.This provides
a new approach for preventing mud cake formation in shield
tunneling by adjusting the driving speed.

There are two limitations to this study. (1) Only ten strongly
related parameters are considered, so more features need to
be integrated in the future to establish a more comprehensive
analysis model of mud cake formation. (2) There are only
4,525 samples in the dataset, so more experimental samples
need to be collected to complete a more accurate prediction
model.
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