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Urbanisation has led to drastic changes in urban landscape patterns, which,
in turn, have altered urban hydrological processes and surface runoff, causing
urban waterlogging and significantly affecting water supply. Thus, identifying
the characteristics of urban landscape patterns and re-vealing how they impact
surface runoff can provide a scientific basis for landscape optimisation and
regulation, promoting urban ecological security and sustainable development.
This study constructs a Source-Sink Runoff Landscape Index (SSRLI), and it
utilises the Storm Water Management Model (SWMM) to simulate the spatial
distribution characteristics of surface runoff in the central urban area of Chengdu
under different rainfall scenarios, exploring the relationship between landscape
patterns and surface runoff. The results indicate:① In 2022, the landscape types
in the central urban area of Chengdu were mainly farmland, forestland, and
impervious surfaces, accounting for 83.27% of the total study area.② As rainfall
intensity increased, the average rainfall-runoff conversion rate increased from
0.263 to 0.599. The impact of urban green spaces on surface runoff exhibited
nonlinear characteristics. When the proportion of green spaces reached 32.5%,
their effectiveness in reducing surface runoff improved significantly. ③ When
the proportion of urban green spaces was less than 20%, it positively correlated
with runoff depth; above 20%, the correlation became negative, especially after
40%, where rainfall had a lesser impact. When the proportions of farmland
and forestland were low, their effectiveness in reducing runoff decreased with
increasing rainfall intensity. Similarly, the impact of impervious surfaces also
diminished with increasing rainfall intensity. ④ The SSRLI demonstrated good
applicability in predicting changes in surface runoff, showing a significant
positive correlation with runoff depth. This correlation gradually weakened as
rainfall intensity increased. In summary, this study provides insights into the
intricate relationship between urban landscape patterns and surface runoff,
emphasizing the importance of green spaces in mitigating urban flooding and
promoting sustainable urban development.

KEYWORDS

landscape patterns, surface runoff, Chengdu city centre, urban waterlogging, SWMM
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1 Introduction

Global warming has accelerated evaporation on ocean and land surfaces, intensifying
the water cycle and increasing the frequency of extreme precipitation events (IPCC, 2013;
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Alexander et al., 2010). At the same time, the rapidity of urbanization
has intensified the changes in urban landscapes. In particular,
significant occupation of high-permeability surfaces such as lakes,
green spaces, and farmlands has led to a notable decline in the
water conservation function of ecosystems and surface permeability,
causing a sharp increase in surface runoff during heavy rainfalls
and thereby contributing to the increased frequency and scale
of urban waterlogging (Bautista et al., 2007; Christopher et al.,
2018). Over the past two decades, global urban waterlogging
incidents have increased by approximately 2.4 times, affecting
approximately 1.65 million people annually with losses of life
or property, posing significant challenges to urban health and
sustainable development (Meng et al., 2025; Ahmed et al., 2018).
In this context, how to regulate surface runoff by optimizing
urban landscape patterns has become a key issue in sustainable
urban management.

Urban surface runoff is closely related to waterlogging.
Currently, models such as SWAT (Soil and Water Assessment
Tool), SWMM (Storm Water Management Model), MIKE SHE
(Systeme Hydrologique Européen), and InfoWorks are commonly
used for simulating and analyzing surface runoff. For example,
SWMM, with its high spatial resolution, open-source flexibility,
and detailed characterization of urban drainage systems, is widely
used for dynamic simulation of runoff at the urban and community
scales (Gu et al., 2022; Gironás et al., 2010; Jang et al., 2007). Randall
et al. applied the SWMM model to planning and managing sponge
cities (Randall et al., 2019). Chen et al. combined the SWAT model
with remote sensing detection of vegetation phenology to improve
the process of eco-hydrological modelling (Chen et al., 2023).
Ramteke et al. used the MIKE SHE model to assess the impact
of climate change on watershed hydrology (Ramteke et al., 2020).
Wang et al. applied the InfoWorks ICM (integrated catchment
modelling) to analyse the spatial variability of multi-scale urban
waterlogging disasters (Wang et al., 2022). However, most existing
studies focus on the calibration of individual model parameters
or the evaluation of the effectiveness of engineering measures,
and the analysis of the coupling mechanisms between landscape
patterns and hydrological processes is still insufficient. Although
traditional models can depict the impact of the physical properties
of the underlying surface (such as permeability and slope),
they struggle to quantify the nonlinear effects of landscape
spatial configuration (such as patch connectivity and source-sink
relationships) on runoff. This leads to limited simulation accuracy
under different rainfall scenarios and restricts the specificity of
landscape optimization strategies (Hernández-Sosa et al., 2025;
Kang and Yue, 2016).

In the practice of runoff control, permeable pavement and
bioretention cells, which are types of low-impact development
(LID) facilities, have been proven to be effective in intercepting
rainwater (Burns et al., 2012; Ahiablame and Shakya, 2016).
However, recent studies have found that the effectiveness of LID
facilities is limited by their discrete layout and limited storage
capacity, and they are prone to functional saturation during extreme
rainfall events (Dadrasajirlou et al., 2023; Chen et al., 2021).
Therefore, scholars have begun to focus on the overall optimization
of landscape patterns. Yu et al. believe that constructing a ‘high-
low-high’ impervious surface connectivity layout can reduce the
impact of urban development on surface runoff (Yu H. et al., 2019).

Zhang et al. and Yang et al. found a significant correlation between
the green space landscape pat-tern and surface runoff and that the
clustering pattern of green spaces reduces runoff (Zhang et al., 2015;
Yang et al., 2023). Despite this, existing landscape indices (such
as aggregation and fragmentation) are primarily designed from an
ecological perspective, lacking a spatially explicit representation
of hydrolofical source-sink processes, making it difficult to reveal
the mechanisms of water exchange between landscape units
(Chen et al., 2006; Wang L. et al., 2023). Furthermore, most studies
focus only on specific return period rainfall events and have
not systematically assessed the differences in runoff responses of
landscape patterns under varying rainfall intensities, which limits
the climate adaptability of control strategies.

To address the aforementioned research gaps, this study initially
constructs the Source-Sink Runoff Landscape Index (SSRLI) based
on the source-sink landscape theory. By integrating spatial weight
factors and runoff surface processes, it overcomes the shortcomings
of traditional indices in characterizing the spatial heterogeneity
of runoff processes. Subsequently, the SSRLI is coupled with the
SWMMmodel to conduct multi-scenario rainfall simulations in the
central urban area of Chengdu, quantitatively analyzing the dynamic
impact mechanism of landscape pattern changes on surface runoff.
This research aims to enhance the understanding of landscape
pattern characteristics and their effects, with the expectation of
providing a scientific basis for urban landscape planning and water
resource management and regulation.

2 Study site

The study site lies in the central urban area of Chengdu
(30°25′—31°00′N, 103°30′—104°30′E), with a total urban area of
3639.81 km2 (including a built-up area of 1063.7 km2), accounting
for 25.39% of the total area of Chengdu City. It encompasses 12
administrative districts and 2 economic functional zones (Figure 1).
The area has an elevation ranging from 434 to 1048 m, with a
slight tilt from northwest to southeast. It belongs to the subtropical
humid climate sub-region, with an annual average temperature
of approximately 17.3°C and an annual average precipitation of
1124.6 mm,mainly concentrated from June to September.The study
area boasts diverse soil types (primarily paddy soil and purple soil),
densely covered with a river network and numerous water systems,
with a total water resource volume of approximately 9 billion m3.

3 Materials and methods

3.1 Data sources and processing

3.1.1 Elevation data
The elevation data originate from the Geospatial Data Cloud

(https://www.gscloud.cn/). The spatial resolution is 30 m. The slope
of the study area was extracted using spatial analysis tools, and the
surface roughness was calculated.

3.1.2 Remote sensing image data
SPOT-5 (Satellite pour L’Observation de la Terre) high-

resolution remote sensing images from 2022 were used to extract
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FIGURE 1
Location map of the study area.

landscape types, mainly panchromatic band (0.49–0.69 μm, 2.5 m),
green band (0.49–0.6 μm, 10 m), red band (0.61–0.68 μm, 10 m),
near-infrared band (0.78–0.89 μm, 10 m), and shortwave infrared
band (1.58–1.78 μm, 20 m). After preprocessing the images, a
deep learning method was adopted to interpret the images and
extract six landscape types: urban green space, cultivated land,
forest land, impervious surface, bare land, and water area. The
accuracy of the interpretation results was verified to be 86.28%,
which meets the requirements of this study (Ma et al., 2016;
Zhu et al., 2017).

3.1.3 Soil data
The soil data was sourced from the Harmonized World Soil

Database (HWSD) and downloaded from the National Tibetan
Plateau Data Centre (http://data.tpdc.ac.cn/). The resolution of
the data was 1000 m. Based on soil texture, the soil infiltration
capacity in the central urban area of Chengdu was analyzed, and
the soil permeability was classified into five categories: strong
permeability, relatively strong permeability, medium permeability,
slightly permeable, and impermeable.

3.1.4 Normalized difference vegetation index
(NDVI) data

The NDVI data were calculated using Landsat imagery
based on the Google Earth Engine platform, with a resolution
of 30 m.

3.2 Study methods

3.2.1 SWMM construction
The SWMM is a stormwater and flood management model

developed by the United States Environmental Protection Agency.
As a dynamic rainfall-runoff simulation model, it is used primarily
to simulate urban rainfall events (Li et al., 2023; Liao et al.,
2023). This paper utilized the SWMM to simulate the hydrological
processes in the central urban area of Chengdu. The simulation was
achieved based on sub-catchment areas and primarily involved the
runoff generation on the surface. The runoff generation in the sub-
catchment area of the SWMM included the runoff from permeable
areas, impermeable areas with depression storage, and impermeable
areas without depression storage (Zhang et al., 2023).

The sub-catchment area is the smallest hydrological response
unit in the model. Based on the distribution of rivers and major
drainage networks, the entire study area was divided into 1,160
sub-catchment areas, with 762 generalized pipe sections and 700
catchment nodes. Based onDEM(Digital ElevationModel) and land
use information, deterministic parameters (such as sub-catchment
area, characteristic width, average slope, and imperviousness ratio)
were calculated. Uncertain parameters (such as depression storage
for impervious and pervious surfaces) were determined through the
SWMM User Manual, existing research, and the actual conditions
of the study area (Zhang et al., 2022). The Horton in-filtration
method was adopted for calculating rainwater infiltration, and the
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FIGURE 2
Rainfall process lines of different situations. Notes: MR—Moderate
Rain; HR—Heavy Rain; RS—Rainstorm; TR—Torrential Rain;
CSR—Catastrophic Rainstorm.

dynamic wave was selected as the routing model due to its ability to
handle complex network configurations and various flow conditions
(Chen et al., 2022). For details, see Supplementary Appendix S1.

3.2.2 Design of rainfall scenarios
The revised rainfall intensity formula for the central urban

area of Chengdu, provided by the Chengdu Municipal Engineering
Design and Research Institute and the Chengdu Meteorological
Observatory, was adopted (Equation 1):

i =
44.594(1+ 0.651 lgP)

(t+ 27.346)0.953[(lgP)
−0.017]

(1)

where: i is the design rainfall intensity, unit: millimetre per minute
(mm/min); P is the return period, unit: year (a); t is the rainfall
duration, unit: minute (min).

According to the classification standard of rainfall intensity
issued by the China Meteorological Administration (total
precipitation in 12 h), five levels of rainfall intensity were
selected: moderate rain (5.0–14.9 mm), heavy rain (15.0–29.9 mm),
rainstorm (30.0–69.9 mm), torrential rain (70–139.9 mm), and
catastrophic rainstorm (≥140 mm). Based on the above criteria, the
rainfall duration was set to 720 min, with a time step of 5 min for
the rainfall sequence. The peak rainfall coefficient (r) was chosen as
0.4, and the return period was adjusted to ensure the total rainfall
reached each designated level. (Considering the rainfall that triggers
waterlogging, this paper selected rainfall scenarios starting from
moderate rain) Figure 2 shows the rainfall hyetographs for the
different scenarios.

3.2.3 Construction of runoff landscape indices
In studying urban hydrological cycle and management,

identifying and understanding the functions of ‘source-sink’
landscapes is extremely important for regulating surface runoff.
‘Source’ landscapes, such as impervious surfaces, facilitate the
transformation of rainwater into surface runoff; ‘sink’ landscapes,
including urban green spaces and woodlands, can obstruct or
slow down runoff (Wang and Cheng, 2019). Furthermore, the
impact of ecological processes should be incorporated into the
stormwater runoff process to assess the influence of ecological
environmental factors on runoff dynamics and surface resistance.

Based on this, runoff landscape indices for source-sink areas were
further proposed, with specific methods as follows.

3.2.3.1 Identification of initial runoff sources
The sources of initial runoff were typically in areas with high

elevation, sparse vegetation, and poor soil permeability, where
rainfall could quickly and substantially reach the ground. To study
the initial runoff from different landscape units in the central urban
area, the elevation, vegetation cover, and soil type were resampled to
a 30 m resolution and assigned values based on five grades: 1, 3, 5, 7,
and 9. The weights of these three factors were determined using the
Analytic Hierarchy Process (AHP) (Table 1), resulting in a spatial
distribution map of initial runoff (Figure 3).

3.2.3.2 Definition of runoff dynamic surface and
resistance surface

Surface runoff is typically influenced by relative elevation,
slope, surface roughness, soil erodibility, land use, and vegetation
coverage (Wu et al., 2021; Zhao et al., 2022). Among these factors,
relative elevation and slope act as negative factors of the resistance
surface, facilitating runoff–i.e., source effects. Surface roughness,
vegetation coverage, and soil erodibility function as positive factors
of the resistance surface, delaying surface runoff–i.e., sink effects.
In this study, these factors were discretised into grids and assigned
resistance coefficients. The minimum resistance coefficient was set
to 1 and the maximum to 100. The AHP was used to determine
each factor’s resistance coefficients and weights (Table 2), resulting
in spatial distributions of positive and negative resistance surfaces
for surface runoff (Figure 4).

3.2.3.3 Runoff landscape indices for source-sink areas
The Minimum Cumulative Resistance (MCR) model, which

represents the cost required for an object to move from a source
to a destination (Zeng et al., 2023), is widely applied in the
study of natural ecology (Wang, et al., 2024) and socio-humanistic
processes (Zhou et al., 2023). The MCR model calculates the path
from a source to a sink by minimising the cumulative resistance
attributable to landscape features such as terrain, soil type, and
vegetation cover. The formula for calculating MCR is as follows
(Equation 2):

MCR = fmin(
i=1

∑
j=n

Dij×Ri) (2)

In the formula, MCR represents the minimum cumulative
resistance value, n denotes the number of landscape elements along
the path, and Ri represents the resistance value of the ith element.

The study used the MCR model to obtain source and sink
values for surface runoff. A ‘source’ value represents the strength
of stormwater runoff dynamics, while a ‘sink’ value represents the
magnitude of surface landscape resistance. The difference between
the two was used to determine whether a landscape unit was a
‘source’ landscape or a ‘sink’ landscape (Figure 5). If the difference
was greater than 0, the mobility of rainwater would be greater than
the surface landscape resistance—thus, the landscape unit would
belong to a ‘source’ landscape. This suggests the converse would be
true: if the difference was less than 0, themobility of rainwater would
be less than the surface landscape resistance—thus, the landscape
unit would belong to a ‘sink’ landscape.
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TABLE 1 Index and assignment of initial runoff factor.

Index Classification criteria Weight

Elevation <500 500–600 600–700 700–800 >800 0.1676

Soil types Sandy soil Silty soil Loamy soil Clay soil Claypan soil 0.3529

Vegetation coverage >0.8 0.6–0.8 0.4–0.6 0.2–0.4 <0.2 0.4795

Assignment 1 3 5 7 9 1.0000

FIGURE 3
Initial runoff spatial distribution.

In further steps, the SSRLI was constructed, and the
corresponding calculation formulawas derived. By considering both
the traditional source-sink landscape types (such as cultivated land
and forestland) and the source-sink landscapes during rainfall-flood
processes (Figure 5), for each sub-watershed within the study area,
the contribution of source-sink landscapes was calculated separately
(using the product of the proportion of source-sink landscapes
during rainfall-flood processes and the area of traditional source-
sink landscapes). Then, the source-sink landscape contributions

were divided and subjected to logarithmic operations to obtain the
following formula (Equations 3–5):

M =
n

∑
i=1

Psource_iSsource_i (3)

N =
n

∑
i=1

Psin k_iSsin k_i (4)

SSRLI = ln(M
N
) (5)
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TABLE 2 Resistance coefficient and weight of each factor.

Resistance surface positive factor of resistance coefficient and the weight

Surface
roughness

Resistance
coefficient

Vegetation
coverage

Resistance
coefficient

Soil
erodibility

Resistance
coefficient

<1.01 1 <0.1 10 >0.038 1

1.01–1.04 10 0.1–0.17 30 0.037–0.038 10

1.04–1.08 30 0.17–0.23 40 0.036–0.037 30

1.08–1.14 50 0.23–0.29 50 0.035–0.036 50

1.14–1.23 70 0.29–0.45 70 0.034–0.035 70

>1.23 100 >0.45 100 <0.034 100

0.1001 0.6305 0.2693

Resistance surface negative factor of resistance coefficient and the weight

Relative elevation Resistance coefficient Slope Resistance coefficient Landscape types Resistance coefficient

<2 1 <2.5 1 Forest 10

2–6 10 2.5–5.6 10 Urban green land 30

6–12 30 5.6–10.6 30 Cropland 40

12–19 50 10.6–17.1 50 Barren 50

19–28 70 17.1–25.3 70 Impervious 70

>28 100 25.3–55.7 100 Water 100

0.2333 0.2333 0.5334

where the SSRLI represents the Surface Runoff Landscape Index, M
and N represent the contributions of source and sink landscapes,
respectively; Psource_i and Psink_i represent the proportions of source
and sink landscapes, respectively, in the ith sub-watershed during
rainfall-flood processes; and Ssource_i and Ssink_i represent the
proportions of source and sink landscapes, respectively, in the
ith sub-watershed in the traditional sense. Theoretically, a higher
SSRLI value indicates a higher proportion of source landscapes
within the sub-watershed, resulting in more surface runoff and
vice versa.

3.2.4 Correlation analysis
This study took each sub-watershed as a sample, and the runoff

volume of the sub-watershed simulated by the SWMM was used as
the dependent variable. The area proportions of various landscape
types and the SSRLI value in the sub-watershed were used as
independent variables. Pearson correlation coefficient analysis was
employed to study the relationship between landscape patterns and
surface runoff (Equation 6).

Pearson r =
∑n

i=1
(xi − x)(yi − y)

√∑n
i=1
(xi− x)2∑n

i=1
(yi− y)2

(6)

where Pearson r represents the Pearson correlation coefficient,
with a value range from −1 to 1; n represents the number of
sub-watersheds; xi represents the proportion of each landscape
type in the i-th sub-watershed, and yi represents the SSRLI value
of the i-th sub-watershed. x and y respresent the averages of x
and y, respectively.

4 Results

4.1 Spatial distribution of landscape types
and patterns in the central urban area of
Chengdu

In 2022, the main landscape types in the central urban area
of Chengdu were impervious surfaces, forestland, and cultivated
land (Figure 6a), with areas of 1159.08 km2, 1052.61 km2, and
908.94 km2, respectively, accounting for 83.27% of the total area of
the study region. Urban green spaces, water bodies, and bare land
accounted for relatively small proportions, occupying 9.59%, 4.39%,
and 2.74% of the total area of the study region, respectively. Spatially,
the SSRLI values were higher in the central region and gradually
decreased towards the periphery (Equation 6b).
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FIGURE 4
Spatial distribution of resistance surface.

4.2 Spatial distribution of surface runoff
under different rainfall scenarios

Overall, as the rainfall intensity increased, the area of surface
runoff depth zones gradually expanded, showing a trend of
spreading from the central region to the periphery in space
(Figure 7). The rainfall amounts for moderate rain to extremely
heavy rainstorms were 8.98, 20.48, 61.63, 111.47, and 145.43 mm,
respectively, with corresponding surface runoff depths of 1.25, 3.99,
18.53, 43.79, and 63.25 mm. The average rainfall-runoff conversion
rate increased from 0.263 to 0.599, and the median value increased
from 0.245 to 0.629 (Figure 8). Notably, under the scenarios of heavy
rainstorms and extremely heavy rainstorms, the median conversion
rate was higher than the average.

4.3 The relationship between landscape
types and surface runoff

The correlation analysis between landscape types and
surface runoff (Figure 9) found that the proportions of cultivated
land and forest area showed a significant negative correlation with
runoff depth; the proportion of urban green space area initially
showed a positive correlation with runoff depth, followed by a
negative correlation, with an inflection point value of 32.5%; the
proportion of impervious surface area showed a strong positive
correlation with runoff depth; while bare land and water areas did
not show significant correlation with runoff depth.

Further analysis revealed differences in the correlation between
the proportion of landscape types (<20%, 20%–40%, 40%–60%,
60%–80%, >80%) and runoff depth under different rainfall
scenarios. When the proportion of urban green space was less
than 20%, it had a positive correlation with runoff depth, and the
correlation coefficient decreased with increasing rainfall intensity
(from 0.36 to 0.274). When the proportion was between 20%
and 40%, the correlation with runoff depth was not significant.
When the proportion exceeded 40%, there was a significant
negative correlation with runoff depth under moderate rain
scenarios (correlation coefficient of −0.413). Under rainstorm
scenarios, there was a negative correlation (correlation coefficient
of −0.246), but the correlation was not significant as rainfall
intensity increased (Figure 10a). For cultivated land, when the
proportion was less than 20%, the impact of cultivated land on
runoff depth decreased with increasing rainfall intensity, and the
correlation coefficient increased from −0.274 to −0.164. When
the proportion exceeded 20%, its impact on runoff depth was not
significant (Figure 10b). The proportion of impervious surfaces
had a negative correlation with runoff depth, and the correlation
gradually decreased with increasing rainfall intensity (Figure 10c).
When the proportion of forestland was less than 20%, its impact
on runoff depth decreased with increasing rainfall intensity,
and the correlation coefficient increased from −0.445 to −0.085.
When the proportion exceeded 80%, the correlation coefficient
slightly decreased from −0.701 to −0.694 under moderate to
heavy rain scenarios, while other impacts were not significant
(Figure 10d).
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FIGURE 5
Considering the spatial distribution of the source and sink landscape of the rainfall-flood process.

4.4 The relationship between landscape
patterns and surface runoff

The constructed SSRLI was validated by selecting 70% of the
sub-catchment areas for regression fitting (Figure 11) and using
the remaining 30% for validation. The linear relationship derived
from the regression fitting was used to extrapolate the surface
runoff of the validation sub-catchment areas. Finally, the differences
between the two sets of surface runoff were compared, and the
root mean square error (RMSE) measure was used to evaluate
the validation performance. The RMSEs obtained under different
rainfall scenarios ranging from moderate rain to extremely heavy
rainstorms were 0.58, 0.547, 0.436, 0.375, and 0.36, respectively.This
indicates that the SSRLI can accurately reflect the changes in surface
runoff, and RMSEs decrease with increasing rainfall intensity,
suggesting that the index becomes more accurate under higher
rainfall intensities.

Table 3 presents the results of the Pearson correlation coefficient
analysis of the relationship between the SSRLI and runoff depth.
Under different rainfall scenarios, the SSRLI shows a significant

positive correlation with runoff depth. From moderate rain to
extremely heavy rainstorms, the correlation coefficients were 0.653,
0.644, 0.605, 0.496, and 0.456, respectively, indicating a continuous
decrease in correlation. Among them, the change in correlation was
most pronounced when rainfall intensity increased from rainstorm
to heavy rainstorm levels.

5 Discussion

5.1 The influence of landscape
composition on surface runoff

Different types of landscapes have varying impacts on surface
runoff due to differences in their physical characteristics and
spatial configurations (Chen et al., 2024). This paper delves
into the influence of landscape types such as cultivated land,
impervious surfaces, urban green spaces, and woodlands on
the depth of surface runoff under various rainfall scenarios.
Consistent with previous research findings (Francisco et al., 2011;
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FIGURE 6
Spatial distribution of landscape types (a) and pattern (b) in Chengdu Downtown area in 2022.

FIGURE 7
Runoff depth distribution map under different rainfall scenarios in Chengdu downtown area. (a) MR; (b) HR; (c) RS; (d) TR; (e) CSR. Notes:
MR—Moderate Rain; HR—Heavy Rain; RS—Rainstorm; TR—Torrential Rain; CSR—Catastrophic Rainstorm.
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FIGURE 8
Runoff depth (a) and rain-runoff conversion rate (b) in different rainfall scenarios. Notes: MR—Moderate Rain; HR—Heavy Rain; RS—Rainstorm;
TR—Torrential Rain; CSR—Catastrophic Rainstorm.

Wang L. Y. et al., 2023; Yu H. F. et al., 2019), the proportion
of cultivated land and woodlands in this study exhibited a
strong negative correlation with runoff depth. However, as rainfall
intensity increased, the negative correlation weakened, indicating
that even high proportions of cultivated land and woodlands
may struggle to fully absorb and retain all rainfall under more
intense rainfall scenarios, contributing to increased surface runoff.
The proportion of urban green spaces showed a nonlinear trend
of initially increasing and then decreasing in its correlation
with runoff depth. This may be attributed to the fact that at
low proportions, the initial increase in urban green spaces is
insufficient to alter the surface cover conditions significantly.
However, when the proportion reaches a certain threshold, it begins
to impact surface runoff. Therefore, maintaining or increasing
a certain proportion of urban green spaces in urban planning
is crucial for controlling runoff and mitigating the risk of
waterlogging.

5.2 The relationship between landscape
types and surface runoff

Under natural conditions, bare land usually lacks vegetation
cover, with the soil directly exposed to the atmosphere. When
rainfall occurs, the rainwater cannot be intercepted, absorbed, and
slowly released by plants as it does in vegetated areas, but instead falls
directly on the ground surface. If the soil has poor permeability, the
rainwater will quickly converge into surface runoff in a short time,
thereby increasing the runoff depth. However, if the soil of the bare
land has good permeability, the rainwater can rapidly infiltrate into
the soil during rainfall, reducing the generation of surface runoff
and thus decreasing the runoff depth (Fang et al., 2024; Lu et al.,
2024). The central urban area of Chengdu, as the core area of the
city, has long been under high - intensity development pressure. A

large amount of land has been used for the construction of high -
rise buildings, commercial facilities, roads, and other infrastructure.
These construction activities have occupied the vast majority of land
area, resulting in a relatively small area of bare land. Due to the
limited area of bare land, the number of bare land samples available
for our research has also decreased accordingly. The insufficient
number of samples has, to some extent, limited our in - depth
analysis of the relationship between bare land and runoff depth.
Through careful study and data analysis of the existing samples,
we found that bare land did not have a significant impact on
runoff depth.

Existing studies generally believe that in small rainfall events,
the control effect of impervious surfaces on surface runoff is
more significant. The results of this study show that as rainfall
intensity increases, the correlation between impervious surfaces
and surface runoff weakens. The study indicates that when the
rainfall amount is less than 26.9 mm, the effective impervious
surface rate plays a dominant role in explaining the runoff process
(Liang et al., 2017). In small rainfall events, the mechanism of
runoff generation due to exceeding infiltration capacity is the main
one, and at this time, surface runoff generation is mainly directly
controlled by the proportion of impervious surfaces (especially the
effective impervious surface rate). Effective impervious surfaces
(such as roofs, paved roads, and other areas directly connected to
the drainage system) can quickly convert rainwater into surface
runoff, and their spatial distribution has a significant impact
on parameters such as the response time and peak of runoff
formation (Yao et al., 2024; Jiang et al., 2020). With the increase
of rainfall intensity, the mechanism of runoff generation due to
full storage gradually takes the dominant position. At this time,
the surface soil or permeable areas reach a saturated state, and
the total impervious surface rate (rather than its connectivity)
becomes the core factor determining the total amount of runoff. In
addition, high-intensity rainfall may exceed the carrying capacity
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FIGURE 9
Correlation between landscape types and surface runoff under rainstorm scenarios. (a) Urban greenland; (b) Cultivated land; (c)Forest; (d) Impervious
surface; (e) Bare land; (f) Water.

of the drainage system, leading to surface water accumulation
and pipeline overflow, further weakening the direct control of the
spatial layout of impervious surfaces on the runoff process. From
the perspective of hydrodynamic conditions, under high-intensity

rainfall, the flow velocity of surface runoff increases, which may
trigger the scouring effect of particulate pollutants (such as
suspended solids, total phosphorus). At this time, the output of
runoff pollution is more driven by rainfall intensity and flow
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FIGURE 10
Correlation coefficient between the proportion of different landscape types and surface runoff. (a) Urban greenland; (b) Cultivated land; (c) Impervious
surface; (d) Forest. Notes: MR—Moderate Rain; HR—Heavy Rain; RS—Rainstorm; TR—Torrential Rain; CSR—Catastrophic Rainstorm.

velocity, rather than the static characteristics of the layout of
impervious surfaces (Jiang et al., 2020).

5.3 Comparison of the SSRLI with
traditional landscape indices

Landscape indices serve as quantitative tools that can reveal
the compositional and spatial distribution characteristics of
landscape structures (Fu et al., 2025). However, traditional
landscape indices often rely solely on single scale analyses,
limiting their ability to reflect the details of landscape patterns
comprehensively and their relationships with ecological processes
across continuous scales, both macro and micro. Furthermore,
when studying surface runoff, a typical ecological process,
traditional landscape indices may fail to fully capture certain
crucial ecological dynamics, potentially obscuring important
aspects of the ecological process (Zhang et al., 2008). Given
these limitations, this study builds upon previous research to
develop a SSRLI aimed at more accurately assessing the impact
of landscape patterns on surface runoff. Through comparative

analysis with traditional landscape indices, it was found that the
SSRLI exhibits higher correlation and stronger explanatory power
in revealing the relationship between runoff depth and landscape
characteristics compared to traditionalmethods. Figure 4 showcases
the performance comparison be-tween the SSRLI and traditional
landscape indices in predicting surface runoff, further confirming
the practicality and superiority of the SSRLI. For details, see
Supplementary Appendix S2.

5.4 Limitation

This study constructs the source-sink runoff landscape index
based on the source-sink landscape theory, providing a new
perspective and methodology for regulating surface runoff. By
identifying the initial runoff source, defining the runoff driving
and resistance surfaces, and calculating the source-sink runoff
landscape index using the minimum cumulative resistance
model, it can effectively distinguish the “source” and “sink”
characteristics of landscape units. This is of great significance
for understanding the relationship between urban landscape
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FIGURE 11
Scatterplot of correlation between the SSRLI and surface runoff under different rainfall scenarios. (a) MR; (b) HR; (c) RS; (d) TR; (e)CSR Notes:
MR—Moderate Rain; HR—Heavy Rain; RS—Rainstorm; TR—Torrential Rain; CSR—Catastrophic Rainstorm.

TABLE 3 Correlation coefficient between landscape index and runoff depth.

Landscape index Classification

Moderate rain Heavy rain Rainstorm Torrential rain Catastrophic rainstorm

SSRLI 0.653∗∗ 0.644∗∗ 0.605∗∗ 0.496∗∗ 0.456∗∗

Contag −0.112∗∗ −0.093∗∗ −0.191∗∗ −0.211∗∗ −0.212∗∗

Division 0.387∗∗ 0.406∗∗ 0.132∗∗ 0.049 0.035

Lpi −0.201∗∗ −0.206∗∗ −0.052 −0.17 −0.017

Lsi 0.641∗∗ 0.646∗∗ 0.468∗∗ 0.357∗∗ 0.326∗∗

Pd 0.597∗∗ 0.610∗∗ 0.367∗∗ 0.248∗∗ 0.218∗∗

Shdi 0.321∗∗ 0.344∗∗ 0.065∗ −0.013 −0.024

Shei 0.445∗∗ 0.460∗∗ 0.170∗∗ 0.074∗ 0.054

Notes:∗indicates that the test of significance passed 90 percent;∗∗∗indicates that the test of significance passed 99 percent.

patterns and hydrological processes. However, this study also has
certain limitations.

(1) In this study, the 1160 delineated sub - watersheds were used
as the statistical sample size. There may be spatial dependence
between sub - sub -watersheds. Traditional correlation analysis
assumes sample independence, which may underestimate the
significance level.

(2) Although we used high - resolution remote sensing images for
remote sensing data classification, and the overall accuracy of
land - use classification was 86%, the small amount of mixing
still may cause slight deviations in the calculation of landscape
indices. In addition, surface runoff depth is greatly affected by
the intensity of human activities, which may indirectly affect
runoff depth by regulating the infiltration rate.Therefore, there
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may be potential biases in the process of data collection and
processing.

(3) In the process of constructing the source-sink landscape
index, the impact of runoff loss factors such as rainwater
infrastructure and evaporation was not considered. Rainwater
infrastructure (such as stormwater pipes, rain gardens, etc.)
plays a key role in urban stormwater management. They
can change the path, speed, and volume of runoff, thereby
affecting the function of the source-sink landscape. Future
research should further improve the construction method of
the source-sink landscape index based on the existing work,
and incorporate the runoff loss factors into consideration.
By collecting and analyzing data on rainwater infrastructure,
such as the distribution, capacity, and drainage efficiency
of pipes, and studying the evaporation characteristics of
different landscape units, a more comprehensive and accurate
source-sink landscape index model can be established. This
will help to more accurately assess the regulatory effect of
urban landscapes on surface runoff, provide a more scientific
and reliable basis for urban hydrological cycle research
and stormwater management, and thus better guide urban
planning and construction, and improve the city’s stormwater
response capacity and ecological resilience.

6 Conclusion

Taking the central urban area of Chengdu as the research
region, this paper simulated hydrological processes through the
SWMM, analyzed the spatial distribution characteristics of surface
runoff under different rainfall scenarios, and constructed a SSRLI
to further explore the correlation between different landscape types
and surface runoff. The main conclusions are as follows.

(1) In 2022, the main landscape types in the central urban area
of Chengdu were cultivated land, woodlands, and impervious
surfaces, accounting for 83.27% of the total area of the study
region. From moderate rain to extremely heavy rainstorms,
the rainfall increased from 8.98 mm to 145.43 mm, and the
corresponding surface runoff depth increased from 1.25 mm
to 63.25 mm. The average conversion rate of rainfall to runoff
increased from 0.263 to 0.599.

(2) The proportion of cultivated land showed a strong negative
correlation with runoff depth (correlation coefficient of −0.81),
while the proportion of impervious surfaces showed a strong
positive correlation with runoff depth (correlation coefficient
of 0.78). When the proportion of urban green spaces increased
to 32.5%, the increase in urban green spaces effectively reduced
surface runoff. An increase in the proportion of woodlands
could also reduce runoff depth, but the trend of reduction
gradually slowed down. The impacts of bare land and water
areas on surface runoff were not significant.

(3) When the proportion of urban green spaces was less than
20%, it showed a positive correlation with runoff depth, and
after exceeding 20%, it showed a negative correlation. When
the proportion was greater than 40%, there was a significant
negative correlation under moderate rainfall scenarios. When
the proportions of cultivated land and woodlands were less

than 20%, their impacts on surface runoff weakened as rainfall
intensity increased; the negative correlation between the
proportion of impervious surfaces and runoff depth decreased
as rainfall intensity increased.

(4) The SSRLI proved effective in predicting changes in surface
runoff, especially under heavy rainfall conditions, where its
predictive performance was more accurate. From moderate
rain to extremely heavy rainstorm scenarios, the correlation
coefficients between the SSRLI and surface runoff were
0.653, 0.644, 0.605, 0.496, and 0.456, respectively, showing a
continuous decrease in correlation.
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