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The soil’s shear strength is an important parameter that is used frequently
throughout the design phase of construction. The conventional method
of calculating shear strength in a laboratory is more expensive and time-
consuming. This study presents an attempt to develop models for predicting
soil shear strength with improved accuracy, particularly Extreme Gradient
Boosting (XGBoost), Gradient Boosting (GB), Adaptive Boosting (AdaBoost),
and Categorical Boosting (CatBoost). The Coefficient of determination (R2),
Root Mean Squared Error (RMSE), Mean Absolute Error (MAE), Mean Absolute
Percentage Error (MAPE), and Mean Absolute Deviation (MAD) indices were
used to validate each of the developed models. The analysis of the
results demonstrates that the AdaBoost model achieved a better prediction
performance with R2 = 0.99794 and lowest values of RMSE = 0.00400, MAE =
0.00080, MAPE = 0.24390 andMAD= 0.00080 followed by the CatBoost model
with R2 = 0.99651, RMSE = 0.00521, MAE = 0.00429. MAPE = 1.33450 and MAD
= 0.00429 in the training phase when compared to previous models such as
multivariate adaptive regression splines and support vector regression published
in the literature. In addition, SHapley Additive Explanations analysis elucidates
that the liquidity index has the greatest influence on soil shear strength, followed
by wet density.
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1 Introduction

The shear strength of the soil is a significant attribute which
is employed most frequently throughout the design phase of
construction projects. Collapse of building and ground failure are
often associated with the shear strength of the soil (Das, 2021).
When evaluating the stability of constructions, such as high-rise
building foundations, retaining walls, embankments, and airfield
pavements, geotechnical engineers take the soil’s shear strength into
account (Vanapalli and Fredlund, 2000; Zhang et al., 2023). As a
result, in many geotechnical designs, estimating the shear strength
of soil accurately is a crucial task (Gao et al., 2020; Li et al., 2019;
Eid and Rabie, 2017; Yu et al., 2021; Zou et al., 2024). Traditional
calculations of shear strength rely on the cohesion (c) and internal
friction angle (φ) parameters. These parameters of interest (c, φ)
can be determined in the lab using the vane shear test equipment
or any indirect technique of soil testing; in the field, they can
be measured using the tri-axial test, the unconfined compressive
strength test, or the direct shear test (Murthy, 2009; Phamet al., 2018;
Xu et al., 2021).

The soil shear strength is affected by specific gravity, void
ratio, water content, plastic limit, liquid limit, stress history, and
relative density (Pham et al., 2020). Over the past few years, there
has been rapid development in the field of artificial intelligence
techniques. This development has led to the emergence of machine
learning (ML) algorithms that have been proposed and are now
widely used in various fields. ML applications have transformed
the way how complex problems can be tackled using new and
innovative solutions. Due to their learning ability, ML algorithms
became a desirable tool for revealing relationships between many
soil parameters. Therefore, the growing interest in studying the
potential applications of ML algorithms on geotechnical issues has
beenwitnessed in the past decades (Ahmad et al., 2021; Ahmad et al.,
2022a; Ahmad F. et al., 2022; Ahmad F. et al., 2023; Ahmad M. et al.,
2023; Barkhordari et al., 2023; Asteris et al., 2022a; Li et al., 2022;
Armaghani et al., 2014; Armaghani et al., 2017) including shear
strength of soil (Pham et al., 2018; Nguyen et al., 2021; Tien Bui et al.,
2019). Furthermore, several researchers have also utilized ML
algorithms to solve some other specific problems (Fan et al., 2024;
Zhou et al., 2022; Lü et al., 2024; Zi et al., 2024; Noman et al.,
2024).The parameters for civil works design are frequently tested by
using empirical correlations, which are produced by fitting equations
for regression to a pre-existing database, as opposed to direct
measurements in the lab and field (Hua et al., 2024; Shu et al., 2024;
Wang et al., 2024; Shan et al., 2025). Garven and Vanapalli (2006)
looked into nineteen distinct empirical techniques for predicting soil
shear strength in unsaturated conditions. With the approach used,
a number of possible soil parameters were assessed for association
with soil shear strength.

Soft computing techniques are known for their proficiency in
non-linear modeling, and there is evidence in the literature from
a number of technical and scientific fields that these techniques
can establish correlations between desired outcomes and a variety
of influencing parameters, whether those parameters have direct
or indirect impacts (Fan et al., 2024; Zhou et al., 2022; Lü et al.,
2024; Asteris et al., 2022b; Koopialipoor et al., 2019). Taking into
account the effects of influencing parameters, experimental data
can be used to design a high performance soft computing-based

paradigm. However, choosing a suitable soft computing model is
challenging for the reasons listed below: (a) Inadequate modeling
and validation; (b) models in use not being able to identify the
precise global optimum; (c) problemswith overfitting, etc. XGBoost,
GB, AdaBoost, and CatBoost are all powerful machine learning
algorithms, often chosen for their strengths in solving a variety
of classification and regression problems (Abdullah et al., 2024;
Ahmad et al., 2022c; Ahmad et al., 2022d; Ahmad et al., 2022e;
Islam and Amin, 2020; Prokhorenkova et al., 2018; Dorogush et al.,
2018; Chen and Guestrin, 2016). These algorithms have proven
to be versatile and adaptable to a wide variety of domains, as
evidenced by their frequent use in research across fields but
the applications in geotechnical engineering are limited based
on literature surveys. Therefore, these four well-known machine
learning algorithms—XGBoost, GB,AdaBoost, andCatBoost—have
been chosen for modeling in this study. Furthermore, selected
a research topic “the prediction of soil shear strength” which is
an important geotechnical engineering task (Pham et al., 2018;
Nguyen et al., 2021; Tien Bui et al., 2019). Therefore, this paper
tries to address the following issues: (1) providing an accurate
and efficient ML model for predicting the soil shear strength;
(2) Examining the prediction accuracy of the best ML model
against that of existing models in literature; and (3) using the
Shapley Additive exPlanations (SHAP) approach to describe the
importance and participation of input variables that influence the
soil shear strength.

The paper is organized as follows: Section 2 presents the
data collection and correlation analysis. Section 3 explains the
theory of Extreme Gradient Boosting (XGBoost), Gradient
Boosting (GB), Adaptive Boosting (AdaBoost), and Categorical
Boosting (CatBoost); Section 4 describes the performance
measurement used; Section 5 presents the results and a discussion
of them; and at last, findings derived from the achieved
results are given.

2 Dataset and correlation analysis

A total of 249 soil samples (see supplementary data,
Supplementary Table S1) from 65 boreholes were collected from the
geotechnical investigation phase of the Le Trong Tan Geleximco
Project, located in the west of Hanoi, Vietnam (see Figure 1)
reported by Cao et al. (2022).The depth of the collected soil samples
ranges from 1.20 to 39.5 m. The boreholes are drilled by means of
slurry (a mixture of bentonite and water), and thin-walled metal
tubes to ward off soil collapses. The soil samples with a diameter
of 91 mm are gathered by the method of piston samplers. The
sample collection process complies with the Vietnamese national
standards of the TCXDVN-194-2006 (High Rise Building—Guide
for Geotechnical Investigation), the TCN-259-2000 (the procedure
for soil sampling by boringmethods). Further details can be found in
Cao et al. (2022) research paper.

The factors measured from soil samples are depth of sample (X1,
m), sand percentage (X2), loam percentage (X3), clay percentage
(X4), moisture content (X5, %), wet density (X6, g/cm3), dry density
(X7, g/cm3), void ratio (X8), liquid limit (X9, %), plastic limit (X10,
%), plastic index (X11), and liquidity index (X12). These 12 factors
are employed as conditioning variables to estimate the shear strength
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FIGURE 1
Site location—Le Trong Tan Geleximco, Hanoi, Vietnam.

of the soil (Y, kg/cm2). The descriptive statistics of the dataset are
presented in Table 1. As can be inferred from the table, the sample
variances (scattered in the range of 0.00539–131.891) indicate a wide
range of input parameters. The variance for the output parameter is
0.00769. The values of standard error are also scattered in a wide
range from 0.00465 to 0.72779 and thus confirm the credibility
of the dataset. The heat map of the Pearson correlation coefficient
(r) between each parameter is shown in Figure 2. The Pearson
correlation coefficient (r) shown in Figure 2 presents that liquidity
index (X12) and shear strength of soil (Y) has a strong positive
correlation, i.e., (r = 0.83). In statistical modeling, it is well known
that the existence of strongly correlated variables can significantly
influence the efficiency of the model. This belief stems from the
assumption that these variables, due to their strong correlation,
may cause redundancy and unnecessary complexity in the model.
Moreover, Kutner et al. (2005) also argued that these correlated
variables do not typically affect inferences about mean responses
in the data. Correlation only captures linear relationships. Since
the relationship between variables is non-linear, the correlation
coefficient value is low, so it is worthwhile to explore the relationship
through non-linearmodels.This suggests that even if variables share
a strong correlation, each can still provide unique and valuable
insights about the average responses in the dataset, thereby making
them essential components of the model. Whereas correlation
coefficient between sand percentage (X2) and shear strength of soil
(Y) exhibited a notably weak negative correlation (r = −0.02) for the
dataset which indicates that the relationship between the variables is
not linear.

3 Machine learning algorithms

3.1 Adaptive boosting

Adaptive Boosting (AdaBoost), an ensemble of several
weak learner decision trees, outperforms random guessing by a
modest margin. To minimize the error of the previous tree, the
adaptive feature of the AdaBoost technique transmits gradient
information from previous trees to subsequent trees. As a
result, the continuous process of learning trees at every stage
promotes the growth of an efficient learner. The weighted average
of the predictions produced by each tree is used to establish
the final extension. The weight distribution of every sample in
the dataset must be changed throughout the training of every
distinct tree model. In each iteration, it assigns higher weights
to misclassified data points in an attempt to lower the overall
classification error. The training outcomes show fluctuation in
line with the variation of the training data, and the total of all the
outcomes is the result of this process (Schapire, 2013). AdaBoost’s
significant adaptability improves its robustness against outliers and
irrelevant data. Moreover, the approach is specifically tailored
to function in a way that feeds the information gathered by
prior trees to subsequent trees. This allows them to concentrate
solely on training data that present prediction challenges
(Freund and Schapire, 1997).

A single decision tree is called a weak learner because of its
limited capabilities. Researchers are considering if it is possible to
create a strong learner by combining many weak learners together.
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TABLE 1 Descriptive statistics of the dataset.

X1 X2 X3 X4 X5 X6 X7 X8 X9 X10 X11 X12 Y

Mean 9.25743 23.4215 48.4524 27.7281 35.6975 1.82225 1.34932 1.01847 41.8478 27.5501 14.2983 0.56791 0.34867

Standard
Error

0.49801 0.72779 0.58368 0.32386 0.45098 0.00465 0.00775 0.0115 0.39115 0.34678 0.16393 0.00997 0.00556

Median 7 22.33 48.92 28.25 35.46 1.82 1.36 0.99 41.12 26.97 14.88 0.59 0.33

Mode 1.8 13.63 48.19 28.25 38.52 1.9 1.18 0.91 42.36 26.35 16.09 0.67 0.34

Standard
Deviation

7.8585 11.4844 9.21034 5.11043 7.1164 0.07342 0.12224 0.18141 6.17228 5.47212 2.58682 0.15734 0.08769

Sample
Variance

61.756 131.891 84.8303 26.1165 50.6432 0.00539 0.01494 0.03291 38.0971 29.9441 6.69164 0.02476 0.00769

Kurtosis 3.06744 4.10668 0.96042 9.59503 −0.8985 −1.2612 −1.1695 −1.1456 −0.1382 −0.6668 3.17321 −0.4761 −0.6686

Skewness 1.7292 1.59734 −0.8483 −0.2033 0.11263 −0.0267 0.00783 0.21098 0.05605 0.39716 −1.5586 −0.5305 0.50391

Range 38.3 69.26 48.68 41.42 31.37 0.27 0.48 0.7 34.11 24.69 15.07 0.81 0.37

Minimum 1.2 6.79 14.97 8.79 18.38 1.7 1.14 0.67 23 16.52 4.03 0.07 0.18

Maximum 39.5 76.05 63.65 50.21 49.75 1.97 1.62 1.37 57.11 41.21 19.1 0.88 0.55

Sum 2305.1 5831.96 12064.7 6904.29 8888.67 453.74 335.98 253.6 10420.1 6859.98 3560.27 141.41 86.82

Count 249 249 249 249 249 249 249 249 249 249 249 249 249

In 1990, the conjecturewas verified, providing the basic ideas behind
the boosting algorithm, which combines multiple weak learners in a
sequential fashion (Schapire, 1990).

3.2 Gradient boosting

Gradient boosting (GB) is an ensemble technique that builds
several weak models and then combines them to enhance
performance as a whole. The GB minimizes the loss function
associated with a given model by applying the gradient descent
methodology. There is an iterative process involved in adding
weak learners to the model. The total input of all weak learners
establishes the final prediction, which is subsequently decided by
a gradient optimization process aiming at minimizing the strong
learner’s overall error (Islam and Amin, 2020; Aurélien, 2019). The
method by which GB fits the model to the residuals (the difference
between the actual and predicted values) of the preceding iteration
is to optimize a user-specified loss function. These loss functions
include, for example, the log loss for classification and the mean
squared error for regression. There are three main mechanisms
involved in the GB. Optimizing a loss function is the first thing
that needs to be done. It is required that the loss function be
differentiable. A loss function is used to quantify the degree of
concordance between a machine learning model and observed
data relevant to various phenomena. Depending on the specific
issue at hand, different loss functions may be chosen. The use
of the weak learner is implemented in the following stage. In

gradient boosters, the decision tree is used as the weak learner.
Regression trees are a unique technique for handling residuals in
previous iteration forecasts by integrating the output of successive
models; they produce precise values for divisions and enable for
output aggregation. While classification and regression problems
use different approaches, they share a common approach to data
classification. Regression analysis is an approach that makes use
of decision trees. The gathering of multiple poor performers is
what the third phase involves. The analysis gradually incorporates
successive decision trees. A gradient descent technique is applied
during the tree-incorporation process in order to minimize loss.
Gradient boosters require the gradient component as a necessary
component. The gradient descent optimization technique is applied
to the model’s output in place of using the parameters of the
weaker models. By altering both the gradient and the loss
function, the gradient boosting strategy, which is an enhanced
variant of the gradient descent method, permits generalization
(Ngo et al., 2023).

3.3 Extreme gradient boosting

Extreme Gradient Boosting, or XGBoost, is a method developed
by Chen based on gradient boosting (Chen and Guestrin, 2016). In
this method, the decision trees classifier is usually used as a weak
model (Zounemat-Kermani et al., 2021). The projections are based
on a sequence of weak learners that consistently improve the output
of their predecessors. To address the overfitting problem, XGBoost
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FIGURE 2
Correlation heat map.

FIGURE 3
The methodology applied during the model development and performance evaluation.
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TABLE 2 Hyperparameter optimization results.

Model Base
estimator

Number of
trees

Limit depth
of individual
tree

Learning
rate

Regularization Classification
algorithm

Regression
loss
function

AdaBoost Tree 28 — 1.00 — SAMME.R Linear

GB — 46 5 0.104 — — —

CatBoost — 100 6 0.111 0.003 — —

XGBoost — 63 6 0.083 1 — —

TABLE 3 Model performance in training and testing phases.

Model Training data Testing data

R2 RMSE MAE MAPE MAD R2 RMSE MAE MAPE MAD

XGBoost 0.99488 0.00631 0.00437 1.48272 0.00437 0.86359 0.03158 0.02454 7.53478 0.02454

GB 0.99372 0.00699 0.00527 1.69236 0.00527 0.85355 0.03272 0.02593 7.86085 0.02593

AdaBoost 0.99794 0.00400 0.00080 0.24390 0.00080 0.85689 0.03234 0.02405 7.36267 0.02405

CatBoost 0.99651 0.00521 0.00429 1.33450 0.00429 0.85042 0.03306 0.02575 7.93946 0.02575

FIGURE 4
The predicted versus actual soil shear strength: (A) XGBoost, (B) GB, (C) AdaBoost, and (D) CatBoost models based on the training dataset.
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FIGURE 5
The predicted versus actual soil shear strength: (A) XGBoost, (B) GB, (C) AdaBoost, and (D) CatBoost models based on the testing dataset.

adds a regularization component to the objective function given in
Equation 1.

O =
n

∑
i=1
(L(yi,F(xi))) +

t

∑
k=1

R( fk) +C (1)

whereO is objective function, R( fk) denotes the regularization term
at the k iteration time, and C is a constant. To prevent overfitting,
XGBoost offers regularization settings. The regularization term is
expressed in Equation 2 as:

R( fk) = αH+
1
2
η

H

∑
j=1

w2
j (2)

where α denotes complexity of leaves, H represents the number of
leaves, η denotes the penalty parameter, and wj is the output of
each leaf node. The trees are split either level-wise or according to
depth by the XGBoost algorithm. Each tree in the decision-making
process analyzes the feature and the threshold that corresponds with
it, as well as identifying the branch impact that has the best possible
outcome. Consecutive splits are used to extend the tree topologies.

3.4 Categorical boosting (CatBoost)

Categorical Boosting (CatBoost) is a permutation-based
approach that differs from conventional algorithms. It is a
distinctivemethod for processing categorical data in data processing

(Prokhorenkova et al., 2018; Dorogush et al., 2018). The proposed
method includes two new concepts: ordered target statistics and
ordered boosting. Hancock and Khoshgoftaar (Hancock and
Khoshgoftaar, 2020) provided a thorough analysis of this method,
looking at howwell it works in a variety of domains for classification
and regression problems. In order to manage category features,
CatBoost uses target statistics as additional numerical features.
This is a highly successful strategy that minimizes information loss
(Prokhorenkova et al., 2018). CatBoost uses Ordered Boosting,
a type of gradient-based regularization that prevents overfitting
by limiting model complexity. The dataset is arranged in a random
order by the algorithm, and then themean label value for the training
samples that fall into the same category inside the arrangement is
calculated. Following Prokhorenkova et al. (Prokhorenkova et al.,
2018), if σ = (σ1, σ2, . . ., σn) is a permutation, the category xσp,k can
be substituted with the average label value ̂xσp,k in Equation 3.

̂xσp,k =
∑p−1

j=1
[xσj,k = xσp,k]Yσj + a.P

∑p−1
j=1
[xσj,k = xσp,k] + a

(3)

where P is a prior value; a is the weight of the prior; Yσj is a
label value; [·] denotes the Iverson bracket, namely, [xσj,k xσp,k]
equals 1 if xσj,k = xσp,k, and otherwise, it is equal to 0. For further
details regarding CatBoost, interested readers are referred to the
publications of Prokhorenkova et al. (Prokhorenkova et al., 2018)
and Dorogush et al. (Dorogush et al., 2018).
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FIGURE 6
Comparison of the proposed models results in the training dataset (A)
XGBoost, (B) GB, (C) AdaBoost, and (D) CatBoost in predicting soil
shear strength values.

4 Performance evaluation

The evaluation stage involves the computation of diverse
assessment metrics, encompassing, Coefficient of determination
(R2), Root Mean Squared Error (RMSE), Mean Absolute Error
(MAE), Mean Absolute Percentage Error (MAPE), and Mean
AbsoluteDeviation (MAD).Thesemetrics serve to gauge the efficacy
of the model’s performance, shedding light on the extent to which
the model’s predictions correlate with the actual target values.
The formulations used to calculate these performance metrics are

FIGURE 7
Comparison of the proposed models results in the testing dataset (A)
XGBoost, (B) GB, (C) AdaBoost, and (D) CatBoost in predicting soil
shear strength values.

expressed in Equations 4–8.

R2 = 1−

m

∑
i=1
( ̂yi − yi)

2

m

∑
i=1
(yi − yi)

2
(4)

RMSE = √ 1
N

m

∑
i=1
( ̂yi − yi)

2 (5)
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FIGURE 8
Taylor diagram of proposed models for (A) Training, and (B) Testing phases.

MAE = 1
N

m

∑
i=1
| ̂yi − yi| (6)

MAPE = 1
N

m

∑
i=1
|
yi − ŷi
yi
| ∗ 100 (7)

MAD = 1
N

m

∑
i=1
|(ŷii − yi)| (8)

where ̂yi represents the predicted value; yi represents the average
value; yi represents the measured value; m is the training or testing
samples; and N indicates the total number of samples.

Figure 3 presents the schematic view of steps of the
methodology.

5 Results and discussion

Themodels for predicting the soil shear strength were developed
using Orange, a popular open-source machine learning technology
platform for statistical computation and data mining (Demšar et al.,
2013). Orange software (version 3.32.0), developed in collaboration
with the open source community at the Bioinformatics Laboratory,
Faculty of Computer and Information Science, University of
Ljubljana, was used to analyze the data in this work. Orange software
incorporates a comprehensive range of ML algorithms that are
widely utilized in research and practice. In this study, depth of
sample (X1, m), sand percentage (X2), loam percentage (X3), clay
percentage (X4), moisture content (X5, %), wet density (X6, g/cm3),
dry density (X7, g/cm3), void ratio (X8), liquid limit (X9, %), plastic
limit (X10, %), plastic index (X11), and liquidity index (X12) were
the predictor variables, and shear strength of soil (Y, kg/m3) was
the target variable. Every modelling stage necessitates the selection
of an appropriate size of training and testing datasets. Thus, 175
data points, or 70% of the total data, were used to develop models,

and 74 data points, or 30% of the data, were utilized to evaluate
the models in this study. The proposed models were tweaked using
trial and error to obtain optimal hyperparameter values based on
accurate soil shear strength prediction. Tuning hyperparameters
appropriately leads to more efficient training, better performance,
and a generalizable model. This research finds the best values
for some important model parameters and clarifies the definitions
of these hyperparameters. During the trials, the models’ tuning
parameters were chosen, and they were adjusted until the best
values shown in Table 2 were achieved.

The efficacy of the models that were developed was assessed
using a number of performance metrics, including the coefficient
of determination (R2), mean absolute error (MAE), mean absolute
percent error (MAPE), root mean square error (RMSE), and mean
absolute deviation (MAD). Table 3 and Figures 4, 5 provide a
summary of the developedmodels’ performance during the training
and testing stages. Based on the findings, the proposed AdaBoost
model achieved the highest coefficient of determination value R2

= 0.99794 and lowest values of RMSE = 0.00400, MAE = 0.00080,
MAPE = 0.24390 and MAD = 0.00080 followed by the CatBoost
model (R2 = 0.99651, RMSE = 0.00521, MAE = 0.00429. MAPE =
1.33450 andMAD = 0.00429) in the training phase. However, in the
testing phase, the XGBoost model achieves R2 = 0.86359, RMSE =
0.03158; MAE = 0.02454, MAPE = 7.53478, and MAD = 0.02454
followed by the AdaBoost (R2 = 0.85689, RMSE = 0.03234, MAE
= 0.02405, MAPE = 7.36267, and MAD = 0.02405) found slightly
lower. Along the line (x = y), the scatter plot displays the predicted
and actual soil shear strengths. A point on the line (x = y) represents
an error-free prediction of the model’s performance; a prediction
that is closer to the line (x = y) denotes a more accurate model.

The accuracy of all developed models at predicting soil shear
strength values is depicted in Figures 6A–D for the training dataset
and Figures 7A–D for the testing dataset. The AdaBoost model (see
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TABLE 4 Comparison of the developed models with available models in literature.

References Model Training data Testing data

R2 RMSE R2 RMSE

Rabbani et al. (2023)

ANN-GA 0.7925 0.1068 0.7891 0.1172

ANN-MPA 0.7857 0.1088 0.8172 0.1060

ANN-PSO 0.7161 0.1256 0.7937 0.1178

Cao et al. (2022)

SVR 0.896 0.028 0.708 0.045

MARS 0.833 0.035 0.696 0.045

RBFNN 0.828 0.036 0.736 0.042

GRNN 0.988 0.010 0.711 0.044

BPNN 0.765 0.040 0.659 0.047

MARS+RBFNN 0.840 0.035 0.768 0.040

AEFA-MARS 0.903 0.027 0.758 0.041

AEFA-RBFNN 0.879 0.030 0.777 0.039

AEFA-MARSANN 0.864 0.032 0.826 0.035

Current Study

XGBoost 0.99488 0.00631 0.86359 0.03158

GB 0.99372 0.00699 0.85355 0.03272

AdaBoost 0.99794 0.00400 0.85689 0.03234

CatBoost 0.99651 0.00521 0.85042 0.03306

Note: ANN: artificial neural network; MPA: marine predators algorithm; GA: genetic algorithm; PSO: particle swarm optimization; AEFA: artificial electric field algorithm; RBFNN: radial basis
function neural network and MARS: multivariate adaptive regression splines.
The ideal values for MAD, RMSE, and MAPE, are 0, indicating perfect model predictions.

TABLE 5 Rank analysis of developed models.

Model Training data Testing data Total score

R2 RMSE MAE MAPE MAD R2 RMSE MAE MAPE MAD

XGBoost 0.99488 0.00631 0.00437 1.48272 0.00437 0.86359 0.03158 0.02454 7.53478 0.02454
29

Score 3 3 2 2 2 4 4 3 3 3

GB 0.99372 0.00699 0.00527 1.69236 0.00527 0.85355 0.03272 0.02593 7.86085 0.02593
13

Score 1 1 1 1 1 2 2 1 2 1

AdaBoost 0.99794 0.00400 0.00080 0.24390 0.00080 0.85689 0.03234 0.02405 7.36267 0.02405
38

Score 4 4 4 4 4 3 3 4 4 4

CatBoost 0.99651 0.00521 0.00429 1.33450 0.00429 0.85042 0.03306 0.02575 7.93946 0.02575
20

Score 2 2 3 3 3 1 1 2 1 2
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FIGURE 9
SHAP diagram for the AdaBoost model.

Figure 6C) provided the most reliable prediction, as their predicted
results are sufficiently consistent with the actual shear strength
values and less error values shown in this graph whereas in testing
dataset XGBoost model (see Figure 7A) showed reliable prediction.
It is generally visible by the larger aggregation of results around the y-
axis ( y = 0) by the AdaBoost model in training and testing datasets,
with the exception of a few noise points. The comparative findings
show that AdaBoost can predict accurately the soil shear strength
values as compare to the other models (i.e., XGBoost, GB, and
CatBoost) because their predicted results are sufficiently consistent
with the actual shear strength values.

Taylor diagram, a straightforward graphical representation of
the relationship between predicted and actual data, is used to
evaluate the effectiveness of various simulation models. It presents
standard deviations, correlation coefficients, and root-mean-square
(RMS) differences on a two-dimensional graph to illustrate a
statistical comparison of multiple models. The radial distance from
the origin is used to express the standard deviation. The difference
in standard deviation units between the actual and anticipated fields
determines the RMS error. The azimuthal angle is a representation
of the correlation coefficient. Figure 8 shows the Taylor diagrams
for testing and training datasets. It’s evident from Figure 8 that all
the developed models, i.e., CatBoost, XGBoost, AdaBoost, and GB
are performing better in both the testing and training phases. The
dots for CatBoost and XGBoost are almost coinciding, and their
performance is equally good; however, AdaBoost seems slightly
better in both the training and testing phases.

The results of the current research were also validated against
literature reports on the implementation of models over the train
and test modeling phases. Weights and biases are utilized as factors

in order to organize the computational connection that exists among
the many components of an ANN by Rabbani et al. (2023). It was
determined through a procedure of trial and error howmany hidden
processing would be optimal for the system. In the course of this
inquiry, 500 iterationswere carried out to ensure that the simulations
have a suitable level of reliability. The optimal hyperparamters for
the various models presented in Table 4 such as SVM, BPNN,
etc., readers may consult Cao et al. (2022) research paper. It is
worthwhile to mention here that the data and input parameters in
this study were kept the same as that of Rabbani et al. (2023) and
Cao et al. (2022) owing tomake a fair comparison. Table 4 represents
the comparative performance of soft computing models that were
studied to evaluate the suitability of soil shear strength prediction.
According to the results, AdaBoost model was demonstrated as
being comparatively best model with R2 = 0.8569 and RMSE
= 0.0323 whereas the model BPNN developed by Cao et al.
(2022) showed worse performance with R2 = 0.659 and RMSE
= 0.047 in testing data. The comparative analysis results revealed
that the AdaBoost model can be implemented in the future
applications.

After calculating all the performance indices for the testing and
training phase, models are ranked consequently. The ranking scores
for two distinct models that produce identical results could be the
equal. Ideal value of performance parameters for R2 is considered
as 1, whereas for RMSE, MAE, MAPE, and MAD it is 0. On the
basis of calculation for performance measures, the rank analysis of
all the developed models were computed and shown in the tabular
form (Table 5) to pick the best model (Xue et al., 2023). AdaBoost
model overall score in both training and test phases together is
38, considerably higher than XGBoost (29), CatBoost (20), and
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GB (13) as in Table 5. This gives an in-depth evaluation of the
model’s predictive ability and presentation (Mustafa et al., 2022).
As a result, the AdBoost model outperforms the other developed
models in predicting shear strength of soil. The top model received
a maximum of four points (as four models were used in this study),
while the worst model received one point. Following that, all of the
rankings are summed together to provide a total rank, which is as
well calculated in this learning process (Mustafa et al., 2022).

6 Shapley analysis

Lundberg and Lee’s SHapley Additive ExPlanations (SHAP)
technique explains how to predict instance x by examining the
relative value of each characteristic in the prediction process.
The basic concept behind the plot is that features having higher
SHAP values hold more importance. The dots indicate the Shapely
explanatory values calculated for each instance in the dataset such
that red denotes greater values while blue denotes lower values.
The SHAP summary chart takes into account the importance and
impact of each feature. In the summary graphic, the Shapley value
of each feature and occurrence is represented by a dot. A coordinate
system’s horizontal axis is determined by the Shapley value, whereas
its vertical axis is determined by a particular attribute. A chromatic
gradient that goes from the least intense to the most intense hue
indicates the relative value of a feature. The attributes listed are
arranged according to relative importance in a hierarchical format.
The impact’s polarity—positive or negative—is indicated by the
horizontal axis. Red and blue are used as chromatic markers to
indicate feature values; greater feature values are indicated by red,
and lower feature values are indicated by blue. The inputs having
high importance are present on the top and their importance
decreases going from top to bottom. The result of Shapley analysis
based on the AdaBoost model in the form of summary plot
is given in Figure 9. Notice that most of the red points are located
at the negative side of Shap values in front of liquidity index
(X12). Since red colour indicates higher values, it means that an
increase in liquidity index (X12) will have a negative Shap value
and consequently a negative impact on the output (shear strength
in this case). Higher values of liquidity index (X12) increase the
shear strength significantly, while lower values of wet density (X6)
and loam percentage (X3) decreases the shear strength of soil
significantly. After liquidity index (X12), wet density (X6) is the
next most important variable having both red and blue points in
a continuous manner within a range lesser than liquidity index
(X12). Furthermore, the void ratio (X8) variable does not have a
significant impact on the prediction of shear strength of soil. It is
important to mention here that very low impact polarity values on
the horizontal axis of a Shapley values might be very low due to
limited data variety. Since, the data was collected from an actual
building job, it became much clearer that the soil in the region
that was the subject of the study has distinctive qualities. This led
to a lower value for critical elements, which in turn led to the
shear strength of soil having a lower value. Small datasets present
unique challenges that can affect the Shapley values, which are
calculated based on the contribution of each feature to the model’s
prediction.

7 Conclusion

In this research study, the ML algorithms such as XGBoost,
GB, AdaBoost, and CatBoost were used to predict the soil shear
strength. The performance of the developed models was evaluated
using statistical metrics such as R2, RMSE, MAE, MAPE, and MAD
and compared to the available soft computing models developed
recently in the literature. The following are the main findings based
on the results.

(1) The rank analysis of AdaBoost model in training and test
phases together is 38, considerably higher than XGBoost
(29), CatBoost (20), and GB (13). As a result, the AdaBoost
outperforms the other developed models in predicting shear
strength of soil.

(2) The new proposed models i.e., XGBoost, GB, AdaBoost, and
CatBoost have the highest performance capability as compare
to available models developed recently in literature with less
variation in the actual and predicted values in terms of errors
in the training and test sets. The coefficient of determination
value in the training phase is highest for AdaBoost (0.9979).
In the testing phase, XGBoost (0.86359) have a slight lead over
AdaBoost (0.8569).

(3) The validation of developed models was done using a variety
of error metrics such as RMSE, MAE, MAPE, MAD, and the
findings showed that developed models fulfilled the standards
that the literature suggested being accepted.

(4) The Shapley analysis results show that feature liquidity index
(X12) is the variable that has the greatest influence on soil
shear strength, followed by wet density (X6). Higher value
of liquidity index (X12) increase the soil shear strength
significantly, while lower values of plastic index (X11) and loam
percentage (X3) decreases the soil shear strength significantly.
The void ratio (X8) variable does not have a significant impact
on the prediction of soil shear strength.

The accuracy and reliability of predictions provided by the
presented models improve when interpolation is employed, as
opposed to extrapolation, owing to the use of input values.Therefore,
the models should not be applied to input parameter values outside
of the range specified by the study. It should be noted that the
accuracy and reliability of machine learning algorithms are affected
by the dataset, such as the number and kind of samples. Therefore,
additional samples should be collected and more effective models
should be suggested in the future.
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