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Introduction: The monitoring of soil displacement during highway slope
instability currently faces challenges such as poor stability, low accuracy, and
high costs. In this study, a Micro-Electro-Mechanical System (MEMS) sensor is
proposed for measuring internal soil displacement during slope movement. A
method for convertingMEMS-based acceleration signals into displacement data
is also developed.

Methods: To evaluate the applicability of MEMS technology for deep
displacement monitoring, an indoor model test was conducted using a highway
slope composed of gravelly soil from Jiangxi Province as a case study. Three
slopemodelswith varying gravel contents (20%, 40%, and 60%)were designed to
simulate displacement caused by slope instability. Displacement data obtained
from the MEMS sensors were analyzed and compared with Particle Image
Velocimetry (PIV) data.

Results and Discussion: The results showed that the average relative errors
of vertical displacement for the MEMS sensor compared to PIV at three
measurement points in the sliding area were 5.79%, 5.54%, and 5.89% for
slopes with 20%, 40%, and 60% gravel content, respectively. Similarly, the
average relative errors of horizontal displacement were 6.11%, 5.21%, and 4.73%.
These findings indicate that the trends in soil movement within the sliding
area correspond to changes in gravel content. Furthermore, the relatively small
average relative errors of the MEMS sensor demonstrate its feasibility and
potential for deep soil displacement monitoring in slope stability studies.

KEYWORDS

MEMS sensors, slope with gravelly soil, gravel content, model test, deep soil
displacement

1 Introduction

Among the various types of road hazards (Li et al., 2016;Wen and Jiang, 2017; Liao et al.,
2018), the destabilization of highway cut slopes poses a particularly significant risk
(Ren et al., 2021; Zhang et al., 2022; Zhou et al., 2023; Ren et al., 2024; Guthrie et al., 2009).
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In practical engineering scenarios, highway slopes are often
composed predominantly of gravelly soils, characterized by the
presence of lumps and gravels with inter-particle disorder. Key
external factors contributing to slope destabilization include rainfall,
seismic activity, blasting operations, and excavation at the slope
base. Among these, gravel content plays a critical role in influencing
the stability of gravelly soil slopes, significantly impacting their
physical and mechanical properties as well as their deformation
characteristics.

In studies on the influence of gravel on slope stability, Fang
(Fang et al., 2024; Fang et al., 2023a) used particle image velocimetry
(PIV) to conduct physical model tests, the analysis revealed that
soil arches expand and elongate during excavation. The inverse
velocity method proved effective for predicting slope failure time.
Li and Hu (Li et al., 2024) using the Zaharnur open-pit coal
mine in China as a prototype, investigated the arching effect
unique to soft rocks. Based on the deformation characteristics
of the slope, they proposed that the optimal ratio ranges of
slope excavation width to the height and width of the outermost
crack are 0.36–0.49 and 0.72–1.00, respectively. Bai and Wang
(Wang et al., 2024a) investigated confluence flow generation
on slopes with varying gradients and gravel cover conditions.
Their results showed that gravel cover effectively reduces runoff
under low rainfall intensities. Additionally, the lattice Boltzmann
model accurately simulated soil flow formation. Bian and Wang
(Bian et al., 2024) conducted consolidated undrained triaxial
shear tests on modified gravel soil specimens and observed that
gravel soil exhibits greater compactness and higher load-bearing
capacity compared to homogeneous soil of equivalent volume.
Numerical simulations further revealed that a threshold gravel
content of 30% significantly influences the mechanical properties
and deformation characteristics of the soil. In model test studies
on slope displacement monitoring, Park and Lim (Park et al.,
2019) integrated sensors with an Internet of Things (IoT) system
to monitor slope damage using modeled slope cutting tests.
Their proposed instrumentation standard relies on cumulative and
inverse displacement trends. Wang and Peng (Wang et al., 2024b)
developed a multi-degree-of-freedom method for monitoring
slope displacement and conducted experiments to evaluate its
accuracy and stability. Experimental results demonstrated that
the measurement error was less than 1 mm for distances under
40 m and less than 5 mm for a distance of 90 m. Numerous
studies (Liu et al., 2018; Wang et al., 2022a; Sheng et al., 2024;
Wang et al., 2022b) have highlighted the significant impact of
gravel content on the shear strength of gravelly soil slopes,
which directly influences slope displacement during instability.
Understanding the internal deformation characteristics of slopes is
therefore critical for analyzing highway cut slope instability. Current
methods for monitoring deep slope displacements include optical
fiber sensing, ground-penetrating radar (GPR), and time domain
reflectometry (TDR). Optical fiber sensors (Wu et al., 2019)measure
surface deformation by detecting strain within embedded fibers,
offering high accuracy but limited effectiveness in detecting large
deformations in deep soils. GPR (Liu et al., 2024; Pajewski and
Benedetto, 2012) provides high-precision subsurface imaging using
electromagnetic radiation but is cost-prohibitive for widespread
adoption. TDR (Guan et al., 2013; Ho et al., 2019), which relies on
electrical pulse signals to detect deformation, offers convenience but

lacks the ability to accurately determine displacement depth and is
prone tomeasurement errors.These limitations indicate the need for
a novel, reliable technique for monitoring deep slope displacements.

In recent years, advancements in MEMS technology have
inspired novel applications proposed by researchers (Algamili et al.,
2021; Gutierrez et al., 2023; Ge et al., 2024; Victor, 2023;
Barzegar et al., 2022).The core principle of MEMS accelerometers is
to capture acceleration signals from soil bodies. By applying dynamic
solution algorithms combined with Kalman filtering for dynamic
estimation, displacement information can be accurately derived
from acceleration data, enabling precise soil movement monitoring.
Li and Song (Li et al., 2023) introduced a method for real-time
monitoring of reservoir bank slope deformation using MEMS
inertial sensors. Their approach extended traditional displacement
measurement by incorporating rotational angle analysis. Using
inertial navigation principles, linear acceleration and angular
velocity were converted into motion velocity and displacement
at observation points, facilitating early slope failure detection.
Tao and Yang (Tao et al., 2021) developed a novel dam stability
sensing system utilizing a dual MEMS sensor structure embedded
within the dam. This system converted spatial deflection and
torsion angle outputs into endpoint coordinates of the sensor array,
which were then used to calculate dam settlement displacement
values. Additionally, numerous researchers (Freddi et al., 2023;
Shentu et al., 2020; Ge et al., 2021; Abraham et al., 2022;
Najafabadi et al., 2024; Jiao et al., 2023) have designed a variety
of MEMS-based deep displacement sensing devices for flexible
geotechnical structures. These devices have been successfully
applied in engineering projects, including slopes and excavation
pits. In summary, MEMS inertial sensors demonstrate exceptional
performance inmonitoring various geotechnical structures, offering
significant potential for practical applications.

This study investigates the feasibility of using MEMS
technology for monitoring displacement data under highway slope
instability. Based on a real gravelly soil slope project, three slope
instability tests were designed with varying gravel contents (20%,
40%, 60%) (Zhang et al., 2023). The displacement data captured
by MEMS sensors were compared with those obtained through
Particle Image Velocimetry (PIV). Additionally, the study evaluates
the effectiveness of MEMS in slope displacement monitoring
and explores the influence of gravel content variations on slope
displacement during failure events.

2 Deep soil displacement sensing
algorithm

2.1 Preprocessing of acceleration signals

The processing of deep soil displacement signals primarily
focuses on the precise acquisition of linear acceleration from the
moving soil. Before further analysis, the acceleration signal from
the sensor must undergo several preprocessing steps. The first step
involves eliminating zero-bias and random errors. To correct for
zero-bias error in the acceleration signal, the de-mean method is
applied (Zhang et al., 2020). Consider the X-axis as an example.
After embedding the sensor module in the soil and initiating
accelerometer calibration via the host computer’s software, the
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sensor’s default navigation coordinate system is transformed into
the carrier coordinate system, aligned with the target measurement
point. In this setup, the coordinate system is centered at the sensor
measurement point, and the X-axis ideally outputs 0 m/s2, though
occasional zero-bias errors may occur. To address these errors, the
sensor is left stationary for a duration of t minutes, during which n
acceleration data points are collected and averaged. The average of
the sampled acceleration data and individual sampled acceleration
values as shown in Equations 1, 2.

a = 1
N

N

∑
k−1

ak (1)

a′k = ak − a(k = 1,2,3,4...N) (2)

a -Average of the sampled acceleration data, ak-Individual
sampled acceleration values, a′k-Individual acceleration values
after preliminary de-meaning.

To eliminate random errors, a wavelet threshold
denoising function (Hu et al., 2023) was applied to remove the noise
component from the signal. Additionally, a least squaresmethodwas
employed to correct for baseline drift during sensor displacement.

The acquired acceleration values are adjusted by subtracting
the components of gravitational acceleration ( gx, gy, gz) along
each axis of the carrier coordinate system, thereby filtering out
the gravity component. Taking the X-axis linear acceleration
as an example, it is expressed by the following equation, with
similar expressions for the Y-axis and Z-axis. The sampled linear
acceleration as shown in Equation 3.

axlinear = a′x − gx (3)

a - Sampled linear acceleration along the X-axis, with the gravity
component removed, ak- Preprocessed sampled acceleration
along the X-axis, a′k-Sampled gravitational component along
the X-axis.

Following the preprocessing of the acceleration signal, the three-
axis linear acceleration can be derived. This linear acceleration is
then numerically integrated to obtain the sensor’s linear velocity,
and a second integration provides the three-axis linear displacement
of the sensor. In this study, Simpson’s rule is employed for the
integration of both linear acceleration and velocity. This method
has been shown to offer superior stability compared to the Newton-
Cotes formula and greater precision than the trapezoidal rule. The
velocity and displacement are obtained from Equations 4, 5.

vlinear(t) = vlinear(t− 1) +
alinear(t− 1) + 4alinear(t) + alinear(t+ 1)

6
×Δt

(4)

slinear(t) = slinear(t− 1) +
vlinear(t− 1) + 4alinear(t) + vlinear(t+ 1)

6
×Δt

(5)

t = 0,1,2, N-1, Δt represents the sampling time. By applying
the aforementioned equation, we can obtain Slinear, which is the
processed MEMS displacement signal.

FIGURE 1
Fixed-distance sliding rail test.

2.2 Validation of displacement sensing
algorithm based on fixed-distance sliding
rail test

The objective of this study is to validate the effectiveness of
the time-domain integration algorithm in processing the original
acceleration signal and assess the accuracy of the resulting
displacement signal. To achieve this, a sliding rail test is designed
for verification. The test setup consists of a linear track, 1 m in
length, with a slider attached. Before initiating the test, the sensor
is securely bonded to the slider to ensure that the sensor’s motion
is synchronized with that of the slider. The entire test process is
documented via video. A schematic diagram of the fixed-distance
sliding rail test is provided in Figure 1.

The experimental design consisted of ten distinct groups. The
aggregate results from these ten sets of fixed-distance sliding rail
tests are summarized in Table 1 To further assess the distribution
of the algorithmic displacement values, the Quantile-Quantile (Q-
Q) and error bar plot were examined. As shown in Figures 2, 3,
the algorithmic displacement values are predominantly clustered
around the reference line, thereby supporting the hypothesis that the
fixed-distance sliding rail test results obtained from the algorithm
are normally distributed.

Given the limited sample size, the displacement values from
the ten groups were subjected to a normality test. The Shapiro-
Wilk (S-W) test was applied, yielding a p-value of 0.179 (p > 0.05),
indicating that the data follow a normal distribution. The fixed-
distance sliding rail test algorithm displacement values were found
to follow a normal distribution. Therefore, a T-test was conducted
to evaluate whether any significant systematic errors were present in
the data. The formula for the T-test is as shown in Equation 6.

t = (x− u0)
√n
s

(6)

x represents the mean value of the fixed-distance sliding rail test
displacement, and u0 denotes the standard value. The displacement
data from the 10 groups of fixed-distance sliding rail tests are
individually substituted into the formula to perform a two-sided
T-test. The two-sided T-test formula as shown in Equation 7.

|t| <
ta
2

(7)

Using a two-sided T-test, the obtained p-value is 0.665 <
t0.025 = 2.262. This finding indicates the absence of significant
systematic error in the 10 sets of fixed-distance sliding rail test
displacement data. Thus, the accuracy and feasibility of the method
proposed in this study for converting MEMS acceleration signals
into displacement signals are confirmed.
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TABLE 1 Fixed-distance sliding rail test results reference table.

Number of test groups Actual displacement (mm) Algorithm displacement
(mm)

Relative error (absolute
value)

1 1,000 1,037.2 3.72%

2 1,000 968.6 3.14%

3 1,000 1,022.6 2.26%

4 1,000 1,069.7 6.97%

5 1,000 956.2 4.38%

6 1,000 947.9 5.21%

7 1,000 1,056.1 5.61%

8 1,000 963.2 3.68%

9 1,000 935.6 6.44%

10 1,000 975.2 2.48%

FIGURE 2
Quantile-Quantile plot of the fixed-distance sliding rail test.

3 Model test

The actual slope with gravelly soil is shown in Figure 4. The
model slopes featured a gradient of 45° and a 1:1 slope ratio,
primarily composed of weathered sandstone and gravelly soils. A
model box was used to form the slope, inducing an unstable, sliding
configuration. MEMS sensors were strategically placed in both
the unstable and slip-prone areas to monitor slope displacement.
The displacement data recorded by the MEMS sensors were then
compared to those obtained via Particle Image Velocimetry (PIV).
Furthermore, as the test is based on an actual gravelly soil slope,
gravel content was varied as a parameter. To investigate the impact of
gravel content on slope displacement during instability, three groups

FIGURE 3
Error bar of the fixed-distance sliding rail test.

of MEMS-based slope monitoring tests were conducted, each with
different gravel contents.

In accordance with the principles outlined in the Buckingham
π-theorem, the design of the gravel-soil slope model test was
conducted to ensure the accurate determination of the similarity
index. The key parameters considered in the soil-gravel mixture
slope model test include, slope angle (θ), gravel content (ω), soil
unit weight (γ), elastic modulus of the gravel-soil mixture (E),
Poisson’s ratio (μ), cohesion (c), and the angle of internal friction (φ).
The similarity ratio was determined using the magnitude analysis
method, resulting in a geometric similarity constant of n = 31.25.
Based on this, the prototype slope was found to be 25,000 mm in
height, while the model slope was scaled to a height of 800 mm.
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FIGURE 4
Photograph of slope destabilization on a highway in Jiangxi Province.

3.1 Model box

The model box dimensions are 1,500 mm in length, 600 mm
in width, and 1,500 mm in height. To observe lateral movement
of the fill material, a 25 mm thick glass surface was used at the
front of the model box. The physical and schematic diagrams of the
model box are shown in Figure 5.The lower part of the model box is
designed with a movable base plate, which can be manually lowered
to allow the bottom plate to shift downward by 50 mm. The sliding
device facilitates soil movement within the designated sliding and
unstable areas, simulating slope destabilization.This processmimics
the scenario where upper soil layers lose support from underlying
soils, either through excavation at the slope toe or sliding of the lower
layers. The sliding base plate has a width of 300 mm, with the upper
area designated as the sliding-causing area, and the unstable area
situated 600 mm above it.

The surface roughness of the test model box is a primary source
of friction, which can significantly affect the results. Tomitigate this,
the lateral boundaries of the model box are smoothed to reduce
frictional effects. To further minimize the influence of boundary
conditions on the test outcomes, pre-testing and model calibration
are conducted. These steps ensure the necessity of any further
adjustments to the boundary conditions, thereby enhancing the
reliability of the test results. Additionally, themodel box is reinforced
with steel bars along its perimeter to reduce lateral deformation and
maintain structural integrity during testing.

3.2 Test materials

Thesand and gravel used in the experimental setupwere sourced
from the Lijiang River in Guilin. In accordance with the definition
of gravelly soil from relevant studies (Design of building foundation,
2013), particles larger than 2 mmmust constitute more than 50% of
the total weight. During preparation, gravel sieved in the ranges of
10–19 mm and 5–10 mm was uniformly mixed in a 1:1 mass ratio,
while particles sieved in the range of 2–5 mm were blended with
soil at a 1:1 mass ratio. This mixing procedure ensures that particles

larger than 2 mm make up more than 50% of the total mass. The
resulting soil-gravel mixture was then used to prepare the necessary
amount of raw materials for the model slopes. The slope model was
constructed with three gravel content levels (20%, 40%, and 60%)
for the first layer, utilizing a combination of soil, river sand, and
gravelly soil. The second layer of the model slope was composed
solely of gravel.

A vibrating sieve machine with a 4-mesh screen was used to
obtain sufficient soil and gravel materials. A series of large-scale
comprehensive direct shear tests were conducted to determine the
physical properties of soils with varying gravel contents.Thephysical
parameters obtained from these tests are presented in Table 2.

3.3 MEMS and PIV

TheMEMS sensor utilized in this experimental evaluation is the
HWT901B nine-axis sensor, manufactured by a Chinese company,
as shown in Figure 6. This sensor offers a data output frequency of
up to 200 Hz, with an attitude angle measurement accuracy of 0.05°,
a precision of 0.05° for theX andY-axes, and 1° for the Z-axis. In the
experimental setup of this study, considering the prolonged duration
of the test, the sensor’s sampling frequency was configured to 1 Hz.

The Particle Image Velocimetry (PIV) diagram used in the
test is presented in Figure 7. PIV enables the determination of
point displacements within the observation area by analyzing time
intervals and displacement rates derived from successive images.
Once the commissioning of the PIV equipment is completed, the
lifting and sliding screw in the sliding area is rotated to induce a
uniform downward movement of the slope’s foot. Simultaneously,
the CCD camera begins capturing sequential images of the slope,
while the PIV host system receives and processes the image data
in real time.

3.4 Testing and monitoring procedures

To effectively collect displacement data from the deep soil layer
during soil movement in the slip-inducing area of the slope, MEMS
sensors in this experiment were strategically deployed in accordance
with the slope’s layered construction. Initially, sensors were placed at
designated points A5, A1, and A2 on the second layer. Subsequently,
as the gravel soil slope was modeled, additional sensors were
positioned at points A3, A4, A6, A7, A8, and A9. Sufficient slack
was provided in the connecting wires to allow the MEMS sensors
adequate displacement space, ensuring minimal interference from
the wires. The tests were categorized based on gravel content, 20%
gravel content was designated as Test A, 40% as Test B, and 60%
as Test C. Each test category was conducted twice, resulting in a
total of six tests. The sensor configuration for Test A is illustrated
in Figures 8A–C, while the configurations for Tests B and C are
identical to that of Test A.The test number of different gravel content
as shown in Table 3.

The sliding device of the model box was operated to ensure a
uniform descent of the sliding base plate. During this operation, the
upper computer systems for the MEMS sensors and the PIV system
simultaneously received data in parallel. Once the sliding base plate
reached its maximum displacement of 50 mm, the operation of the
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FIGURE 5
Indoor model test device for slope. (A) Composition of the model box (B) Downward sliding induced by the slip device.

TABLE 2 Physical properties of gravelly soil.

Soil-gravel ratio Density g/cm3 Maximum dry density
g/cm3

Optimum moisture
content

%

Internal friction angle
°

80:20 2.14 1.91 12.1% 30.59

60:40 2.20 2.11 9.7% 33.22

40:60 2.37 2.29 8.8% 35.40

settling device was terminated, marking the conclusion of the test.
After the test, the gravel soil and gravel were separately extracted,
and the MEMS sensors embedded in the slope mass were carefully
removed. Following the complete excavation of the gravel soil and
gravel, a subsequent series of sub-tests was conducted in accordance
with the predefined experimental procedures.

4 Analysis of test results

4.1 Vertical displacement analysis

The modeled slopes with varying gravel contents, both before
and after testing, are shown in Figure 9. It was observed that
the destabilized area of the slope decreases as the gravel content
increases. During the test, the front of the slope exhibited sliding
behavior caused by destabilization, with the rate of displacement
growth positively correlated with the distance from the source
of destabilization. The sensors at A3, A4, and A7 recorded the
most significant vertical displacements, whereas A6 and A8 showed
relatively minor vertical displacements. The data indicate that the
impact of slope failure on the unstable area diminishes gradually
with increasing height. This is attributed to the descent of the
movable plate, which induces a downward displacement of the soil
in the slip-causing area. As a result, the soil in the unstable area
partially fills the upper part of the slip-causing area. Consequently, as
the vertical displacement in the slip-causing area decreases, the soil

in the unstable area becomes increasingly stable. Additionally, the
slopes with 40% and 60% gravel content showed reduced vertical
displacement due to the higher gravel content, further enhancing
slope stability.

Figure 10A illustrates the displacement data from slope sensors
for the 20% gravel content test. Points A1, A2, and A5 recorded
no displacement (0 mm), while the maximum displacement was
observed at point A3, reaching 47.97 mm. Notably, point A3
exhibited a significant displacement at the beginning of the test.This
behavior can be attributed to the minimal gravitational influence
at the slope’s summit, which had little effect on displacement. In
contrast, the gravitational forces at the slope’s base were substantial,
leading to displacement influenced by the pressure and thrust
of the overlying soil mass. As a result, the maximum vertical
displacement occurred at A3. During the initial 10 s of the test,
notable displacement reductions were observed at points A7, A6,
and A8. After this period, the displacement curves at these points
began to stabilize and decrease gradually. This behavior is explained
by the gravel soil at A3 sliding first, creating a void that was
subsequently filled by the soil from points A7, A6, and A8. As the
slope continued to slide, the frictional forces increased, causing a
progressive smoothing of the displacement curves at these locations.

Figures 10B, C illustrate the slope sensor displacements for 40%
and 60% gravel content. Significant displacements were detected
at sensors B3, B4, and B7, concentrated in the slip-causing area.
The maximum vertical displacement occurred at B3 (42.15 mm),
comparable to A3 in the 20% gravel test. However, the overall
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FIGURE 6
MEMS sensor.

FIGURE 7
Diagram of slope with gravelly soil in PIV system.

displacements at 40% and 60% gravel content were notably smaller,
attributed to increased gravel content, which enhanced friction and
shear strength, reducing slope instability. At 60% gravel content, the
maximum displacement at C3 was 37.03 mm, slightly lower than
at 40% gravel content. The greater gravel content further improved
particle interlocking and solidification, enhancing the structural
integrity of the gravel skeleton. As the mechanical properties
approached those of a rock mass, vertical displacement in deeper
soil layers exhibited a significant decline, stabilizing the slope further
during sliding.

The study aims to evaluate the influence of varying gravel
contents on slope displacement, as well as the displacement
characteristics at different locations. Additionally, it seeks to validate
the effectiveness ofMEMS sensors inmonitoring slope displacement
by comparing displacement data obtained from PIV and MEMS
systems. To achieve this, five measurement points were selected
from the PIV system as reference points for vertical displacement
in the slope with 20% gravel content. These PIV-derived vertical
displacement values served as the true reference values, while the
displacement data recorded by MEMS sensors during the model
tests were considered the test values. A comparison of the vertical
displacement data from MEMS sensors and PIV measurements
is presented in Figure 11. Furthermore, the mean relative error
between MEMS and PIV vertical displacement data was calculated
using the formula as shown in Equation 8.

δ =
∑| SMEMS−SPIV

SPIV
| × 100

N
(8)

The parameter δ represents the mean relative error, where
SMEMS denotes the vertical displacement endpoint value measured
by the MEMS sensor, SPIV represents the vertical displacement
endpoint value measured by the PIV system, and N is the total
number of sensors used for data acquisition. Table 4 summarizes the
vertical displacement values obtained from both theMEMS and PIV
systems. In the primary displacement zones of slopes with gravel
contents of 20%, 40%, and 60%, the calculated mean relative errors
between the MEMS and PIV vertical displacement data are 5.79%,
5.54%, and 5.89%, respectively.

4.2 Horizontal displacement analysis

During the test, in the slip-causing area, the horizontal
displacements of A3 and A4, both buried at a depth of 100 mm,
were the largest within the first 90 s, exhibiting similar movement
trends. In contrast, the horizontal displacement of A7, buried at a
depth of 300 mm, was smaller than that of A3 and A4 prior to 90 s
but increased rapidly thereafter. Sensors A6 and A8, located in the
unstable area, experienced displacement due to insufficient support
from the underlying soil, which was mobilized by movement in
the slip-causing area. Sensors A4 and A7 were positioned at the
same horizontal location (L = 600 mm), as were A6 and A8 (L
= 400 mm). A comparative analysis of horizontal displacement
data from sensors at the same horizontal positions but different
burial depths revealed that sensors at shallower depths (A7 and
A8) recorded larger horizontal displacements than those at deeper
depths (A4 and A6). This indicates that during the descent of the
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FIGURE 8
The layout of sensor for Test A 4. (A) Schematic diagram of sensor layout for Test A (unit: mm, schematic diagram of sensor layout for Test B and Test C
is identical to that of Test A. (B) Layout of sensors on the first layer of Test A. (C) Layout of sensors on the second layer of Test A.

TABLE 3 Test number of different gravel content.

Test name Soil-gravel ratio Sensor number

A 20% A1, A2, A3, A4, A5, A6, A7, A8,
A9

B 40% B1, B2, B3, B4, B5, B6, B7, B8, B9

C 60% C1, C2, C3, C4, C5, C6, C7, C8,
C9

sliding device, the horizontal displacement in the unstable area
predominantly affects the shallow soil layer rather than the deeper
soil mass. Additionally, the horizontal displacements at A6 and A8
were greater than at A9, confirming that the bottom of the unstable
area exhibited the largest horizontal displacement over time. This
finding aligns with the hypothesis that sliding of the lower soil layers
in highway slopes triggers subsequent movement of the overlying
upper soil layers.

Figure 12A illustrates the slope sensor displacements for
20% gravel content, with the maximum horizontal displacement
recorded at point A7 (35.12 mm). During the first 90 s, A7 exhibited

smaller displacement compared to A3 and A4. However, after 90 s,
A7’s displacement increased significantly. This behavior reflects
typical traction slope instability, where the lower soil mass slides
first, triggering movement in the upper layers. Sensors A6 and
A8 in the stabilization area recorded displacements of 5.94 mm
and 18.58 mm, respectively. Their movement resulted from a lack
of support caused by soil displacement in the slip-causing area.
Comparing displacement data at the same horizontal position but
varying burial depths, A7 and A8 (shallow sensors) exhibited
greater horizontal displacement than A4 and A6 (deeper sensors),
indicating that the shallow soil experienced more pronounced
horizontal movement. Additionally, sensors at different horizontal
positions but the same depth revealed higher displacements at A4
and A7 in the slip-causing and unstable junction areas compared
to A8 and A6 in the upper unstable area. Displacement at A8
and A6 also exceeded that at A9 in the stabilized upper zone.
These observations confirm that initial movement in the lower slope
induces a pushing force, propagating displacement to the upper
soil layers.

Figure 12B illustrates the horizontal displacement of slope
sensors for the 40% gravel content test. Initially, the horizontal
displacements at points B3 and B4 were greater than that of B7.
However, after 50 s, the displacement at B7 increased significantly,
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FIGURE 9
Comparison diagram of slope before and after the test. (A) 20% gravel
content. (B) 40% gravel content. (C) 60% gravel content.

reaching a maximum of 34.31 mm, while the displacements at
B3 and B4 were comparatively smaller, at 9.88 mm and 9.36 mm,
respectively. A similar trend was observed in the 60% gravel
content test, as shown in Figure 12C. At the outset, the horizontal
displacements at C3 and C4 exceeded that of C7. After 30 s,
however, the displacement at C7 escalated sharply, peaking at
28.21 mm, compared to 6.75 mm and 6.28 mm for C3 and C4,
respectively. Among the three tests with varying gravel contents,
point 7 consistently exhibited the highest horizontal displacement,
underscoring its susceptibility to significant movement during slope
destabilization.

A comparative analysis was performed on the horizontal
displacement of points A4, B4, and C4 versus A7, B7, and C7
in slopes with 20%, 40%, and 60% gravel content, respectively.
As shown in Figure 12, at equivalent horizontal positions but
different vertical depths, the horizontal displacement at point 7
consistently exceeded that at point 4. This can be attributed to the
characteristics of shallow soil, which is typically looser and more
susceptible to external loads, leading to greater shear deformation
and, consequently, larger horizontal displacement. The surface soil
generally has a looser structure and lower shear strength, making
it more susceptible to displacement under sliding forces. For the

slope with 20% gravel content, a comparison between A6 and A8
reveals that A6 exhibits greater horizontal displacement than A8
at equivalent horizontal positions but varying vertical depths. This
observation is consistent with the tendency of landslides to initiate
destabilization in the central region, where the sliding surface is
typically more gradual. The localized instability induces outward
horizontal displacement of the gravel soil within this area.

The measurement points from the PIV system were selected
as reference values for horizontal displacement in the slope with
20%, 40% and 60% gravel content, based on sensor deployment
locations.These reference values were compared with the horizontal
displacement data obtained from MEMS sensors during the model
test. Figures 13A–C presents the comparison between the horizontal
displacement values measured by the MEMS sensors and those
recorded by the PIV system. In the primary displacement areas of
slopes with gravel contents of 20%, 40%, and 60%, the mean relative
errors between the MEMS and PIV horizontal displacement data
were 6.11%, 5.21%, and 4.73%, respectively. PIV and MEMS sensor
horizontal displacement relative error as shown in Table 5.

4.3 Impact analysis of gravel content on
slope stability

Figure 14A illustrates the vertical displacement at point 3 for
slopes with varying gravel contents. The slope with 20% gravel
content exhibits the highest vertical displacement, while increasing
gravel content results in a gradual reduction in displacement.
Compared to the A3 curve, which shows the greatest displacement,
the slopes with 40% and 60% gravel content demonstrate reductions
of 5.83 mm and 10.95 mm, respectively, at the same location.
This indicates that higher gravel content at measurement point 3
enhances slope soil stability. Furthermore, a comparison of the time-
displacement curves for B3 and C3 reveals similar trends in soil
movement, suggesting that the mechanical behavior of the 40% and
60% gravel content slopes closely resembles each other and differs
from the 20% gravel content slope. In the 20% gravel content slope,
the soil exhibits characteristics akin to sandy soils, whereas the 40%
and 60% gravel content slopes demonstrate properties more typical
of gravelly soils.

The vertical displacement at points 4 and 7 for slopes with 40%
and 60% gravel content was analyzed. After 80 s at point 4 and
90 s at point 7, the 40% gravel content slope exhibited accelerated
soil movement, with displacements gradually diverging from those
of the 60% gravel content slope. As shown in Figures 14B, C, the
progressive descent of the sliding device resulted in greater vertical
movement in the 40% gravel content slope compared to the 60%
gravel content slope at both measurement points.

Compared to the A3 curve, the slopes with 40% and 60%
gravel content exhibited reductions in displacement of 2.69 mm and
5.82 mm, respectively, at the same location. Further analysis reveals
that the slow deformation phase at point 3 lasts approximately 30 s
for the 20% gravel content slope, 40 s for the 40% gravel content
slope, and 50 s for the 60% gravel content slope. This indicates that
the transition from the slow deformation stage to the accelerated
horizontal displacement stage in deeper soil layers occurs more
gradually with higher gravel content, as shown in Figure 15A.
Combined with the observed trend of decreasing horizontal
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FIGURE 10
Vertical displacement analysis of measurement points at different locations with the same gravel content. (A) 20% gravel content (B) 40% gravel
content (C) 60% gravel content.

FIGURE 11
Comparison of vertical displacement test and PIV. (A) 20% gravel content (B) 40% gravel content (C) 60% gravel content.

TABLE 4 PIV and MEMS sensor vertical displacement relative error analysis table.

Soil-gravel ratio Number of the
sensor

MEMS vertical
displacement

(mm)

PIV vertical
displacement

(mm)

Relative error/%
(absolute value)

Mean relative
error/%

(absolute value)

80:20

3 47.98 45.74 4.90

5.79

4 35.47 33.43 6.10

7 22.70 23.71 4.26

6 4.03 4.3 6.28

8 8.84 8.23 7.41

60:40

3 42.15 39.35 7.12

5.544 17.17 16.34 5.08

7 16.52 15.82 4.42

40:60

3 37.03 34.95 5.95

5.894 9.59 9.02 6.32

7 9.37 8.89 5.40
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FIGURE 12
Horizontal displacement analysis of measuring points at different positions on slopes with the same gravel content. (A) 20% gravel content (B) 40%
gravel content (C) 60% gravel content.

FIGURE 13
Comparison of horizontal displacement test and PIV. (A) 20% gravel content (B) 40% gravel content (C) 60% gravel content.

TABLE 5 PIV and MEMS sensor horizontal displacement relative error analysis table.

Soil-gravel ratio Number of the
sensor

MEMS
horizontal

displacement
(mm)

PIV horizontal
displacement

(mm)

Relative error/%
(absolute value)

Mean relative
error/%

(absolute value)

80:20

3 12.57 12.01 4.66

6.11

4 12.00 11.56 3.81

7 35.12 33.54 4.71

6 18.58 17.83 4.21

8 5.94 5.25 13.14

60:40

3 9.88 9.22 7.16

5.214 9.36 9.12 2.63

7 34.31 32.42 5.83

40:60

3 6.75 6.42 5.14

4.734 6.28 6.03 4.15

7 28.21 26.89 4.91
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FIGURE 14
Vertical displacement analysis of measuring points at the same location with different gravel contents. (A) 20% gravel content (B) 40% gravel content
(C) 60% gravel content.

FIGURE 15
Horizontal displacement analysis of measuring points at the same location with different gravel contents. (A) 20% gravel content (B) 40% gravel
content (C) 60% gravel content.

displacement with increasing gravel content, these findings
suggest that higher gravel content enhances slope stability at
measurement point 3.

The time-displacement curves of A4, B4, and C4 in Figure 15B
exhibit a pattern similar to that observed at measurement point 3,
indicating that the soil nearmeasurement point 4 undergoes distinct
phases of slow deformation, acceleration, and gradual stabilization
in horizontal movement. At measurement point 7, the horizontal
displacement exceeds 20 mm, as shown in Figure 15C, marking it
as the location of maximum horizontal displacement among all
measurement points. Notably, this maximumdisplacement does not
occur at the slope foot but rather at the shallow burial position at the
junction of the slip-causing area and the stabilization area.

The test results demonstrate a clear correlation between slope
stability and gravel content, with stability decreasing as gravel
content diminishes. In slopes with 20% gravel content, the rapid
expansion of the slip area is attributed to smaller soil particles
and reduced cohesive forces, which significantly compromise slope
stability. Conversely, slopes with 60% gravel content exhibit high
stability due to the higher proportion of gravel, which enhances
shear strength and soil stiffness. Slopes with 40% gravel content
show moderate stability, further confirming the critical role of
gravel content in determining slope stability. Higher gravel content

contributes to a robust skeletal structure and increased soil density,
which strengthenmechanical properties and improve slope stability.
Large gravel particles inhibit the accumulation of fine-grained soils
and provide enhanced support. In contrast, slopes with low gravel
content exhibit alterations in pore structure, leading to an increased
proportion of fine particles that weaken the soil’s mechanical
properties. Furthermore, in practical applications, the fine particles
in low-gravel-content soils are prone to water absorption and
swelling, reducing friction and further diminishing slope stability.
In conclusion, increasing gravel content enhances slope stability by
improving the soil’smechanical properties, thereby reducing vertical
and horizontal displacements during slope destabilization.

In slopes with 20%, 40%, and 60% gravel content, the slip-
causing area represents the primary region of vertical and horizontal
displacement. This study conducts a comparative analysis of the
relative errors in vertical and horizontal displacements at measuring
points 3, 4, and 7 within the slip-causing area. For slopes with
20%, 40%, and 60% gravel content, the average relative errors in
vertical displacement measured byMEMS sensors compared to PIV
were 5.79%, 5.54%, and 5.89%, respectively. Similarly, the average
relative errors in horizontal displacement for the same slopes were
6.11%, 5.21%, and 4.73%, respectively. While the trends in soil
movement within the slip-causing areas of slopes with different
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TABLE 6 Summarized protocol for a physical model test.

gravel contents exhibit some variation, the mean relative errors for
both vertical and horizontal displacement measurements remain
below 1%. This indicates that MEMS sensors provide reliable and
accurate measurements of soil movement, demonstrating their
effectiveness in monitoring slope stability.

Unlike previous studies that focused on measuring surface
displacement, this research investigates internal acceleration
signals within the soil during slope failure. By employing MEMS
sensors as monitoring tools, acceleration signals are converted into
displacement data, enabling direct and intuitive measurements
of internal slope displacements. In simulated gravelly soil slope
experiments, MEMS sensors demonstrated good monitoring
capabilities, suggesting their potential for validation in real-world
highway gravelly soil slopes. However, challenges remain with this
sensing method. For instance, rotational changes in the sensor’s
orientation may introduce minor data deviations, and groundwater

interference can affect sensor performance. Future experimental
optimizations will integrate orientation calculations to achieve
precise three-dimensional positioning of sensors within the soil,
while also addressing issues related to ensuring the reliable operation
ofMEMS sensors in subterranean environments. Table 6 presents an
example of a standard protocol for a physical model test (Fang et al.,
2023b). In this table, a concise summary of the key information for
the test is provided, highlighting the essential details rather than
including every specific aspect.

5 Conclusion

This study investigates the potential of utilizing MEMS
technology to monitor displacements in slope models. Indoor
model tests were conducted to collect displacement data from deep

Frontiers in Earth Science 13 frontiersin.org

https://doi.org/10.3389/feart.2025.1541217
https://www.frontiersin.org/journals/earth-science
https://www.frontiersin.org


Wu et al. 10.3389/feart.2025.1541217

measurement points in slopes with varying gravel contents. The
primary objective of this research is to analyze the influence of gravel
content on the displacement characteristics of deep soil masses in
slopes.The accuracy of the displacement data obtained fromMEMS
sensors in the model tests was validated through PIV, leading to the
following key conclusions.

(1) This study demonstrates the effectiveness of MEMS sensor
technology for deep displacement monitoring in slopes
through a series of modeling tests. A comparison between
PIV and MEMS displacement data reveals that the vertical
and horizontal displacement endpoints calculated by PIV
align closely with those measured by MEMS sensors at
the same locations. The mean relative error of vertical and
horizontal displacements at measurement points within the
slip-causing area exhibited a maximum variation of only 1%.
These findings validate the accuracy of the algorithmically
processed MEMS signals and confirm the reliability of MEMS
technology for monitoring slope displacements. However, it
is important to acknowledge the limitations of the current
experiments, which have not fully addressed the effects of
sensor orientation changes, groundwater interference, and
large slope displacements on sensor performance.These issues
will be incorporated into more advanced and comprehensive
future investigations.

(2) Additionally, vertical and horizontal displacement values at
measurement points with varying gravel contents 20%, 40%,
and 60% but identical spatial locations were analyzed. The
results indicate a clear trend of decreasing displacement values
with increasing gravel content, highlighting the significant
influence of gravel content on enhancing slope stability.

(3) In practical engineering applications, the composition
of highway slopes and the factors contributing to slope
instability are often more complex. Future field tests on
actual slopes can further investigate these complexities and
validate the effectiveness of MEMS technology in diverse
conditions. Additionally, integrating MEMS sensors with
other monitoring technologies, such as fiber optic sensors
and ground-penetrating radar, can form a multi-sensor fusion
system. This advanced integration holds significant potential
to enhance the accuracy, reliability, and robustness of slope
monitoring and early-warning frameworks.
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